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ABSTRACT 
This paper develops mathematical-programming models 
for optimal placement of tower-mounted surveillance 
systems such as BETSS-C (Base Expeditionary 
Targeting and Surveillance Systems-Combined). A 
solution maximizes the “value” that a set of tower-
mounted cameras has in covering pre-defined “points of 
interest” on the ground. Near-optimal solutions for 
problems with up to 20 towers, 30 candidate locations 
for those towers and 100 points of interest are produced 
on laptop computer in under five minutes.  

Keywords: camera tower, surveillance, facility location, 
integer programming, generalized network flow 

1. INTRODUCTION
In Iraq and Afghanistan, Coalition Forces have found 
that camera towers such as “GBOSS” (Ground-Based 
Operational Surveillance System), BETSS-C (Base 
Expeditionary Targeting and Surveillance Systems-
Combined), and JLENS/RAID PS2 systems can help 
thwart the emplacement of improvised explosive 
devices (IEDs). These systems can also identify 
disturbances to which troops should respond, follow 
suspicious vehicles, and so on. Their use in populated 
areas is critical to the security of U.S. and allied military 
forces as well as local civilian populations. No tool 
currently exists, however, for assigning a limited 
number of camera towers to a larger number of 
potential (secure) sites so as to optimize the “value” of 
the surveilled “points of interest” (POIs) or to optimize 
some other appropriate objective. 
To address the lack of an appropriate analysis tool, the 
research described here develops, implements and 
solves a series of prototypic mathematical models for 
optimizing camera-tower placement. We create mixed-
integer, nonlinear optimization (MINLP) models for 
this purpose, reformulate those models for tractability, 
and solve them using general-purpose optimization 
tools. Results are displayed graphically. We note that 
the models described in this paper should apply to the 
optimized placement of aerostats (i.e., tethered, camera-
carrying balloons), in conjunction with camera towers 
or by themselves.  

2. MATHEMATICAL MODELS

2.1. A Basic Camera-Tower-Location Model 
We first develop a MINLP model for optimizing 
camera-tower locations. This model, and the others 
studied in this paper, concern themselves with detecting 

specific acts at specific points on the ground from 
individual towers, and not with attempting to identify 
and track suspicious, moving targets, perhaps across 
multiple towers. Thus, our models resemble stochastic 
facility-location models in which a limited set of 
facilities is opened to serve uncertain customer demands 
at known locations. Analysts use such models for 
locating and sizing actual production facilities, but also 
for locating emergency-services facilities (such as fire 
stations) and delivery assets (such as ambulances) to 
meet probabilistically occurring emergencies (such as 
building fires or medical calls). Snyder (2006) provides 
a review of such models. 
Murray et al. (2006) make explicit use variants on 
facility-location models in order to locate security 
monitors effectively. Their bi-objective approach 
locates cameras (cf. facilities) and accumulates rewards 
for both single and double coverage of a control point 
(cf. customer). Their approach does not incorporate 
compounded probabilities of detection as our models 
do, however. Hörster and R. Lienhart (2006) address a 
problem involving both coverage and resolution of 
images, accounting for cost of operations and 
effectiveness of a set of orientation-dependent cameras. 
They have a number of models, but at least one model 
has a strong flavor of a facility-location model, with 
variables that determine whether a camera is placed at 
particular location and with a particular orientation (cf. 
facility operations), and with rewards that depend on 
whether a particular control point is covered by (cf. 
served by) by a camera. Bodor et al. (2007) address the 
problem of camera placement for maximum 
observability of moving subjects in a given area, and 
introduce a joint measure of observability with quality 
of the view. Their optimization in terms of the “motion 
statistics of a scene” resembles the optimization of 
facility locations over an empirical distribution of 
customer demands. A substantial literature covers more 
detailed models of camera physics and subject motion 
but, of necessity, limits the combinatorial aspects of 
camera placement. For an overview of such models, we 
refer the reader to Section 3 in Bodor et al. (2007) and 
the references therein. 
Our models are not game-theoretic defender-attacker 
models (Brown et al. 2006), but is useful to describe 
them in terms of (a) a defender who operates the 
surveillance system and who will suffer the 
consequences of undetected attacks, and (b) an attacker 
who attempts to carry out attacks on the defender in a 
probabilistic fashion. Our first model, NLPavg1, 
follows.   
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where L∈  is a set of potential camera-tower locations; 
i I∈  is a set of POIs that should be kept under 
surveillance; m  is the number of camera towers 
available, with each having identical capabilities; iv is 
the “value” of POI i, which represents the damage that 
the unique “initiating event” (such as an IED 
emplacement) would cause at i  if the event is not 
detected; iq



 is the probability of not detecting an event 
at POI i from location   if a tower is placed at that 
location; and the decision variable 1y =



 if a tower is 
located at 


, and 0y =



 otherwise. If more than one 
type of event might occur a POI i  (e.g., an IED 
emplacement or a riot), the POI can be replicated and 
treated as a separate POI for each event type. 
We note that, as described above, each event occurs or 
does not occur within short timeframe. We maintain 
that viewpoint for simplicity in descriptions. A 
surveillance system might be in place for months or 
years, however, and a POI might suffer from many 
events over that time. In such a case, the model remains 
valid, however, if events at i  occur according to a 
Poisson process with known rate (Lin et al. 2013). Now, 

iv  represents the expected total value of potential 
attacks on i  over the monitoring period if all attacks are 
successful.  
Now, since y
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 is the probability that an event at 
at POI i goes undetected by all of the installed camera 
towers, NLPavg1’s objective, under an assumption of 
independence, minimizes overall expected value of 
undetected events across all POIs, subject to the limit 
on available towers. Henceforth, we use “expected 
damage” to mean the “expected value of undetected 
events.” In particular, we refer to “expected damage at 
an individual POI i,” y
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, and to “overall 

expected damage,” y
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. We add four 
notes, also: 
(1) NLPavg1 does assume independence of detections 
for an event at a given POI, and requires some user 
inputs that may not be immediately available, namely

iv and iq


; subjective estimates for these quantities may 
be required. 
(2) The notation hides some of the practical aspects of 
an implementation. Suppose, for instance, that no line 
of sight exists between potential camera-tower location 
  and POI i. In this case 1iq =



 and the model is 
correct. However, our implementation would not even 
create the corresponding term in the objective function.  

(3) This model and all others in this paper extend in a 
straightforward fashion to handle various (but fixed) 
camera configurations at a given location that provide 
different coverages of an area. 
(4) Given that 0iv i> ∀ , and given that y

iL
q

∈∏ 





 is a 

convex function of continuous iy , the continuous 
relaxation of NLPavg1 is a convex problem. Thus, in 
theory, NLPavg1 can be solved using the integer 
extension of Kelley’s cutting-plane algorithm “KCPA”; 
see Kelley (1960). Our testing of KCPA shows that it 
performs poorly, however. We have also tested a 
standard solver that will solve convex MINLPs like 
NLPavg1. Again, computational performance is poor. 
(Some details will be provided in Section 4.)  Because 
of poor results with “standard methods,” we emphasize 
the conversion of NLPavg1 as well the next model, into 
mixed-integer linear programs (MIPs), which can be 
solved by standard, linear-programming-based branch 
and bound. 

2.2. Minimizing Maximum Expected Damage 
A second model, NLPmx1, seeks to minimize the 
maximum expected damage at any POI, i.e., the worst-
case damage across all POIs: 
 
NLPmx1: 

,
min

z
z

y
  (4) 

subject to: (2), (3) 
y

L
i iz v q i I

∈

≥ ∈∀∏ 





,   (5) 

 
where the new set of constraints ensures that the 
objective value takes the maximum, across all POIs, of 
the expected damage at each individual POI. In theory, 
NLPmx1 can also be solved via an extension Kelley’s 
cutting-plane algorithm, but a simpler approach exists 
based on the fact that we can minimize z′  = log z 
without affecting the outcome: 
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Thus, the following model is equivalent to NLPmx1, 
and can be solved as a MIP: 
 
MIPmx1:   

,
min

z
z

′
′

y
   (7) 

subject to:  
(2), (3), (6). 
 
NLPmx1 may be a more appropriate model than 
NLPavg1 if, roughly speaking, a large number of 
small-scale attacks spread across a region is deemed 
less damaging to the defender than a few large-scale 
attacks that are focused on a smaller area. For example, 
minimizing overall expected damage  seems appropriate 
when the attacker has limited information about our 
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monitoring methods and our valuations of the various 
POIs: we expect an adversary or group of adversaries to 
carry out multiple, somewhat “random” attacks in this 
case. A worst-case analysis could be more appropriate if 
the attacker can learn about and selectively attack a few 
high-value and possibly poorly monitored locations; 
this relates to defender-attacker models as described by 
Brown et al. (2006). 
Unfortunately, the linearization technique applied to 
NLPmx1 does not apply to NLPavg1: the logarithm 
function cannot be used to decompose that model’s 
objective function y

ii Li I
v q

∈∈∑ ∏ 





 into a linear 
expression of the y-variables. Different linearization 
techniques apply, however, as described next. 
 
2.3. Converting NLPavg1 into Generalized Network 

Flow Based Model  
This section converts NLPavg1 into a MIP whose 
structure may be viewed in terms of generalized 
network flows (Ahuja et al., 1993, pp. 566-572). Let
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following model: 
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For each i I∈ , the model describes a generalized 
network flow over a series of paired, parallel arcs. 
Starting with one unit of flow representing the 
probability of non-detection of an event at i , the flow 
first crosses one of two parallel arcs corresponding to 

1
i iL∈ . If 1 0

i
y =


, no camera tower is installed at 1
i , 

an event at i cannot be detected from that location, and 
the flow traverses the arc corresponding to 1

ii
x


 with no 

reduction; that is, the probability of non-detection 
remains one. But, if 1 1

i
y =


, the flow traverses an arc 

corresponding to 1
ii

x


, and the flow received at the end 

of that arc is reduced to 1
ii

q
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; that is, the probability of 

non-detection of an event at i  has been reduced from 
one to that factor. Repeating this construction for all 
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2.4. Limited Camera Surveillance  
The models NLPavg1, NETavg1 and MIPmx1 all 
assume that if 1iq <



 and a camera tower is located at 


, then a probability of non-detection equaling iq


 is 
always achieved from that location. This assumption 
may be optimistic, because a camera needs time to pan 
or rotate, tilt, zoom in and out, and focus on each of the 
POIs assigned to it (Peruzzi 2013). Also, human 
observers may become less efficient (i.e., probabilities 
of detection may decrease) if required to monitor too 
many POIs. Our research has not yet addressed directly 
these difficult issues, although the work of Burton et al. 
(2008) may apply. That work determines the proportion 
of time that a single camera should dedicate to 
surveilling POI i, assuming events of interest occur 
according to a Poisson process with a location-
dependent rate and that detection times at each location 
are exponentially distributed. (Independence is assumed 
between POIs.) 
We can make our approach more realistic with respect 
to the issues discussed above, however. To do that, we 
incorporate a parameter k denoting the maximum 
number of sites that any one camera tower may be 
assigned to surveil. Additional variables are also 
defined: 1iy =



if a tower is located at L∈  and is 
assigned to surveil POI i I∈ , and 0,iy =



 otherwise. 
With this new modeling paradigm, NLPavg1, 
NETavg1 and MIPmx1 convert into NLPavg2, 
NETavg2 and MIPmx2, respectively: 
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3. COMPUTATIONAL IMPLEMENTATION 

3.1. Optimization Environments 
This section tests NETavg1, MIPmx1, NETavg2 and 
MIPmx2 using a number of randomly generated 
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physical settings. All linear models are implemented in 
Xpress-MP development environment (FICO 2015), 
and are solved using the Xpress Optimizer, Version 
27.01.02. The remainder of the document refers to this 
implementation, except for brief, specific comments on 
results obtained using (a) Kelley’s cutting plane 
algorithm on a nonlinear formulation, and (b) one 
standard algorithm for MINLPs. 
The size of the mathematical models varies by scenario 
(see Section 4). For example, scenario “Large9,” which 
applies NETavg2 on a 30-location, 100-POI example, 
generates a model with 2,738 variables (899 binary) and 
2,739 constraints; scenario “Large10,” which is 
identical to “Large9,” but applies MIPmx2, generates a 
model with 900 variables (899 binary) and 131 
constraints. All computational times are for runs 
performed using a single processor on a Dell Latitude 
XT2 Core Duo laptop computer, with 5 GB of RAM, 
and running at 1.60 GHz. 
 
3.2. Database  
The supporting database for our tool is implemented in 
Microsoft Access (Microsoft 2015). Each database file 
contains one modeling example (corresponding to the 
“DBQ” input parameter in the Xpress-MP code), which 
represents an instance of physical layout of POIs and 
locations. For that instance, the file may include several 
“scenario” settings that differ, for example, in the 
number of available cameras or in the type of model to 
be solved. The structure of this database is as follows 
(see Figure 1):  
Tables: LOC (locations); POI (points of interest); 
LOC_POI (attributes for locations and points of 
interest); SCENARIO (different scenarios to run, see 
Section 4, and associated solutions to store, for the 
incumbent “example,” of locations and POIs). 
Queries: Delete_LOC (eliminates all records from LOC 
table); Delete_POI (eliminates all records from POI 
table); LOC_POI_CreateMatrix (creates the list of all 
possible combinations of locations and POIs to ease the 
input of associated probabilities). 
 

 

 

Figure 1. Database tables and queries 

Fields in each of the above tables and relationships are 
shown in Figure 2. Tables 1-4 describe these fields in 
more detail. 
 

 
Figure 2. Fields for the database tables, and relation-
ships among tables 

Table 1: LOC (Candidate tower locations) 
Name Type Default Description 
Node Text  Location code 
XCoor Double 0.0 X coordinate 
YCoor Double 0.0 Y coordinate 
FixedSelection Yes/No No Location must be 

selected? 
Selected Yes/No No Location was selected? 

(OUTPUT) 

Table 2: POI (Points of interest) 
Name Type Default Description 
Node Text  POI code 
XCoor Double 0.0 X coordinate 
YCoor Double 0.0 Y coordinate 
val Double 1.0 Value of the POI 

 

Table 3: LOC_POI (Attributes by LOC and POI) 
Name Type Default Description 
LOCnode Text  Location code 
POInode Text  POI code 
prob Double 0.0 Probability of detection at the 

POI from the location 
Selected Yes/No No POI selected to be surveilled 

from the location? (OUTPUT) 
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Table 4: SCENARIO (Parameters, options, etc.) 

Name Type Default Description 
Index Long 

Integer 
 Scenario index 

(AUTOMATED) 
Run Yes/No Yes Run this scenario?  
MinMax Yes/No No Solve MIPmx (Yes) or 

NETavg (No). (Variants 1 
or 2 depending on the 
number of POIs per camera) 

nCameras Long 
Integer 

0 Number of camera towers 
allowed 

nPOIsPerCamera Double 2 Number of POIs each 
camera tower may surveil at 
a time. Enter 0 if unlimited. 

ObeyFixed Yes/No No Obey all fixed selections 
specified in LOC table? 

Max_Time Long 
Integer 

100 Maximum run time 
(seconds)?  

Max_Gap Double 0.0 Maximum optimality gap? 
Gap Double  Actual gap? (OUTPUT) 
E_Value Double  Overall expected damage? 

(OUTPUT) 
Max_Val Double  Maximum single damage? 

(OUTPUT) 
CPU_time Double  Computational time 

(seconds)? (OUTPUT) 
 
 
3.3. Graphical Input and Output Environment  
Xpress-MP’s embedded graphical displays help 
visualize the problem and its solution. For example, 
Figure 3 shows a snapshot mapping out POIs and 
candidate camera-tower locations; the values for POIs 
are displayed, also. By clicking on the “Visible” toggle, 
we would see a series of lines connecting candidate 
locations with those POIs that could be surveilled, with 
strictly positive probability of detection. 
After the model is run, the “Selected” toggle turns on 
the display of the following: (a) optimized tower 
locations, (b) the type of model solved, i.e., average 
(“avg”) or min-max (“mx”), and (c) the number of 
camera towers available. “Sel. Visible” (Selected 
Visible) toggles a display that shows which camera 
towers are assigned to which POIs. 
 
4. COMPUTATIONAL RESULTS 
This section presents results for two hypothetical 
examples, “Small Example” and “Large Example.” 
Each example has a specific “physical setting,” which 
connotes geographical data on candidate locations and 
POIs, POI values, and probabilities of event detection 
by POI and location.  
An example may also have several parametric variants 
called “scenarios.” A scenario includes the original 
physical setting from the example, but adds certain 
parameter values and chooses which optimization 
model to apply. For instance, we can use the 
geographical layout of Small Example and create one 
scenario that allows more camera towers than another, 
or that seeks to optimize NETavg1 rather than, say, 
MIPmx1. The scenario is completed by filling in the 
data for the scenario record (for example, see, Figure 5 

in Section 4.1). A user can create a rich variety of 
scenarios for the same example by just changing a few 
input parameters and/or toggle settings as identified in 
Table 4. For example, the user can set the number of 
camera towers available,   toggle the use an ``mx 
model’’ or an “avg model.” and specify solution-
algorithm parameters (e.g., maximum run time 
allowed).  
Unless otherwise noted, all the scenarios are set to run 
until a 0% optimality gap is achieved, or a maximum 
time limit of 300 seconds is reached. No locations are 
preselected to receive a camera tower. 
 
4.1. Small Example 
The physical layout in this example (Figure 3) has ten 
potential camera-tower locations and eight POIs. Figure 
4 enlarges a portion of the example with visibility links 
activated and associated probabilities of detection 
displayed. For example, the probability of detecting POI 
I4 from location L8 is 0.707. 
 

 
Figure 3. Preliminary display of locations (blue) and 
POIs (red) 
 

 
Figure 4. A portion of Small Example enlarged to show 
lines of sight, two POIs and one camera-tower location. 
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We run four scenarios for this example, as indicated in 
Figure 5. (From here on, we use Smalln to refer to the 
n-th scenario for Small Example, where the index n is 
automatically produced by the database program.) 
Small1, as modeled and solved, seeks to minimize 
overall expected damage by applying NETavg1. Each 
of three available camera towers can surveil an 
unlimited number of POIs simultaneously (indicated 
with a default value of zero in the data). Small2 is 
identical to Small1, but a different model, MIPmx1, 
applies; that is, we seek to minimize the maximum 
damage at any individual POI. Small3 and Small4 are 
identical to Small1 and Small2, respectively, except that 
they limit the number of POIs that can be surveilled 
from any one location to a maximum of three. 
Accordingly, we apply NETavg2 to solve Small3 and 
MIPmx2 to solve Small4. 
 

 
Figure 5. Small Example scenarios (Small1,...,Small4) 

Figure 6 summarizes results for the Small Example 
scenarios. Small1 and Small2 produce similar solutions: 
the optimal Small1 objective (for NETavg1) yields an 
expected damage, over all POIs, of 11.15; see 
“E_Value” output. Here, the largest, expected damage 
for a single POI is 1.94, as seen under “Max_Val.” In 
fact, this is the minimum Max_Val achievable, as 
shown when model MIPmx1 is applied in Small2. By 
coincidence, the converse occurs in this example: the 
E_Value in the Small2 solution matches the minimum 
E_Value obtained for Small1. (This coincidence seems 
unlikely, in general, because instances of MIPmx1 may 
have many optimal solutions.)  
 

 
Figure 6. Results for Small Example scenarios  

Scenarios Small3 and Small4 are restrictions of Small1 
and Small2, respectively. E_Value for Small3 increase 
to 20.60 from Small1’s value of 11.15, and “Max-
Value” increases for Small4 to 3.40 from Small2’s 
value of 1.94. Figure 8 displays the solutions. We 
observe that NETavg2’s solution leaves two POIs 
without any surveillance in Small3, and one of those 
unsurveilled POIs (I3) defines the maximum expected 
damage (Max_Val equals 5.0). On the other hand, when 
Max_Val is minimized using MIPmx2 in Small4, the 
largest, expected damage occurs at another POI (I7, 
with Max_Val  equaling 3.4). 

 

 
 

Figure 7. Graphical solution to both Small1 and Small2 
scenarios. 

 
 

 
Figure 8. Graphical solutions to Small4 (top) and 
Small4 (bottom) scenarios 
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Figure 9. Large Example with 30 locations and 100 
POIs 

 Figure 10. Large Example scenarios (Large1,..., 
Large10) 

Figure 11. Results for Large Example scenarios 

 

4.2. Large Example 
This example has 100 POIs to be surveilled from some 
subset of 30 candidate camera-tower locations (Figure 
9). We run ten scenarios, Large1,...,Large10 (see Figure 
10): Large1-Large5 use NETavg1 to allocate 5, 10, 15, 
20  or 25 towers, respectively, with unlimited 
surveillance for each tower; Large6-Large9 fix the 
number of available camera towers to 15, and solve 
NETavg2 with per-tower surveillance limits of 2, 4, 6 
and 8 POIs, respectively; Large10 solves the 15-tower, 
8-POIs-per-tower problem using MIPmx2.  
Figure 11 displays results. We note, for example, that 
all unlimited-surveillance scenarios solve optimally in 
the allotted time. This is not the case for Large8 and 
Large9 limited-surveillance scenarios, where 2% and 
14% optimality gaps remain after 300 seconds of 
computation.  
On the other hand, Large10 solves quickly. Recall that 
Large10 is identical to Large9, except that Large10 
minimizes the largest expected damage for a single POI 
(Max_Value), while Large9 minimizes overall expected 
damage (E_Value). Outcomes are notably different for 
Large9 and Large10. In particular, Max_Value is over 

100% greater (worse) for Large9 than for Large10 and, 
conversely, E_Value for Large10 is almost 100% 
greater (worse) than for Large9. 
Figure 12 graphically depicts the solutions for the two 
scenarios. (POI names are hidden in the displays for the 
sake of clarity.) We observe that, for the most part, the 
scenario solutions place camera towers at different 
locations. But, when a location such as L27 at 
coordinates (72, 61) is selected under both scenarios, 
the surveilled POIs are different.   
 
 

 
 

 
Figure 12. Graphical solution displays for scenarios 
Large9 (top) and Large10 (bottom). 
 
 
As discussed in Section 2.1, it is possible, in theory, to 
solve NLPavg1 and NLPavg2 using (a) variants of 
KCPA (Kelley 1960) and (b) a standard MINLP solver. 
We have implemented (a) and (b) for our Small- and 
Large-Example scenarios using the GAMS algebraic 
modeling system (McCarl et al. 2014). Specifically, we 
use CPLEX 12.4 (GAMS 2015, pp. 109-160) to solve 
master problems in our own implementation of KCPA, 
and we use DICOPT (GAMS 2015, pp. 189-208) as a 
general MINLP solver; our implementation of DICOPT 
employs CPLEX 12.4 for solving MIP master problems 
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and MINOS (GAMS 2015, pp. 323-354) to solve 
continuous, non-linear subproblems.  
For Small-Example scenarios, DICOPT and KCPA 
produce optimal solutions in times that are comparable 
to, or only modestly longer than, those reported in 
Figure 6. On the other hand, with a few exceptions, 
neither DICOPT nor KCPA solve Large-Example 
scenarios efficiently. For example, DICOPT solves 
Large1, which is the smallest of the Large-Example 
scenarios, in only 2 seconds, but it produces a 
suboptimal solution having an E_Value of 203.27, 
rather than an optimal solution, which has an optimal 
E_Value of  179.27.  Relative optimality gaps become 
even worse as the complexity of the scenarios increases. 
For example, Large9 results in an E_Value equaling 
138.30, yet the optimal value is 66.13. Finally, we note 
that KCPA converges to the optimal solution of the 
scenarios mentioned above, but even the smallest 
scenario takes hundreds of iterations to solve and 
requires computation time that exceeds 1,900 seconds. 
 
 
5. CONCLUSIONS AND FUTURE RESEARCH  
Our work should be extended to more accurately assess 
and incorporate the “information value” of a collection 
of POIs that might be assigned to one or more camera 
towers for surveillance. Exactly how to carry this out is 
unclear, but we see three key issues: 
(a) The current implementation assumes a simple 
additive or separable value function that ignores 
“scheduling issues.” But, a camera that is set to surveil a 
collection of POIs may be programmed to focus on, 
zoom in on, and surveil each POI for a given amount of 
time before transitioning to another POI. The 
corresponding surveillance and transition times affect 
the value of the information collected (for example, the 
probability that an IED emplacement is detected), and 
should be part of the optimization process.  
(b) Our current models assume constant conditions, but 
the time of day and weather can affect probabilities of 
event detection. Naturally, this variability could 
influence optimal camera-tower placements.  
(c) We ignore the possibility that mobile surveillance 
systems such as UAVs may operate in conjunction with 
camera towers.  
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