
 OPTIMALLY LOCATING SURVEILLANCE ASSETS IN URBAN AREAS

Javier Salmeron(a), Kevin Wood(b)

(a),(b) Operations Research Department, Naval Postgraduate School, Monterey, CA, 93943, U.S.A.

(a)jsalmero@nps.edu, (b)kwood@nps.edu

ABSTRACT
This paper develops mathematical-programming models
for optimal placement of tower-mounted surveillance
systems such as BETSS-C (Base Expeditionary
Targeting and Surveillance Systems-Combined). A
solution maximizes the “value” that a set of tower-
mounted cameras has in covering pre-defined “points of
interest” on the ground. Near-optimal solutions for
problems with up to 20 towers, 30 candidate locations
for those towers and 100 points of interest are produced
on laptop computer in under five minutes.

Keywords: camera tower, surveillance, facility location,
integer programming, generalized network flow

1. INTRODUCTION
In Iraq and Afghanistan, Coalition Forces have found
that camera towers such as “GBOSS” (Ground-Based
Operational Surveillance System), BETSS-C (Base
Expeditionary Targeting and Surveillance Systems-
Combined), and JLENS/RAID PS2 systems can help
thwart the emplacement of improvised explosive
devices (IEDs). These systems can also identify
disturbances to which troops should respond, follow
suspicious vehicles, and so on. Their use in populated
areas is critical to the security of U.S. and allied military
forces as well as local civilian populations. No tool
currently exists, however, for assigning a limited
number of camera towers to a larger number of
potential (secure) sites so as to optimize the “value” of
the surveilled “points of interest” (POIs) or to optimize
some other appropriate objective.
To address the lack of an appropriate analysis tool, the
research described here develops, implements and
solves a series of prototypic mathematical models for
optimizing camera-tower placement. We create mixed-
integer, nonlinear optimization (MINLP) models for
this purpose, reformulate those models for tractability,
and solve them using general-purpose optimization
tools. Results are displayed graphically. We note that
the models described in this paper should apply to the
optimized placement of aerostats (i.e., tethered, camera-
carrying balloons), in conjunction with camera towers
or by themselves.

2. MATHEMATICAL MODELS

2.1. A Basic Camera-Tower-Location Model
We first develop a MINLP model for optimizing
camera-tower locations. This model, and the others
studied in this paper, concern themselves with detecting

specific acts at specific points on the ground from
individual towers, and not with attempting to identify
and track suspicious, moving targets, perhaps across
multiple towers. Thus, our models resemble stochastic
facility-location models in which a limited set of
facilities is opened to serve uncertain customer demands
at known locations. Analysts use such models for
locating and sizing actual production facilities, but also
for locating emergency-services facilities (such as fire
stations) and delivery assets (such as ambulances) to
meet probabilistically occurring emergencies (such as
building fires or medical calls). Snyder (2006) provides
a review of such models.
Murray et al. (2006) make explicit use variants on
facility-location models in order to locate security
monitors effectively. Their bi-objective approach
locates cameras (cf. facilities) and accumulates rewards
for both single and double coverage of a control point
(cf. customer). Their approach does not incorporate
compounded probabilities of detection as our models
do, however. Hörster and R. Lienhart (2006) address a
problem involving both coverage and resolution of
images, accounting for cost of operations and
effectiveness of a set of orientation-dependent cameras.
They have a number of models, but at least one model
has a strong flavor of a facility-location model, with
variables that determine whether a camera is placed at
particular location and with a particular orientation (cf.
facility operations), and with rewards that depend on
whether a particular control point is covered by (cf.
served by) by a camera. Bodor et al. (2007) address the
problem of camera placement for maximum
observability of moving subjects in a given area, and
introduce a joint measure of observability with quality
of the view. Their optimization in terms of the “motion
statistics of a scene” resembles the optimization of
facility locations over an empirical distribution of
customer demands. A substantial literature covers more
detailed models of camera physics and subject motion
but, of necessity, limits the combinatorial aspects of
camera placement. For an overview of such models, we
refer the reader to Section 3 in Bodor et al. (2007) and
the references therein.
Our models are not game-theoretic defender-attacker
models (Brown et al. 2006), but is useful to describe
them in terms of (a) a defender who operates the
surveillance system and who will suffer the
consequences of undetected attacks, and (b) an attacker
who attempts to carry out attacks on the defender in a
probabilistic fashion. Our first model, NLPavg1,
follows.

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

8

mailto:jsalmero@nps.edu
mailto:kwood@nps.edu

NLPavg1: min y

i
I L

i
i

v q
∈ ∈
∑ ∏y







 (1)

subject to:

L
y m

∈

≤∑




 (2)

{0,1} ,l Ly l∈ ∀ ∈ (3)

where L∈ is a set of potential camera-tower locations;
i I∈ is a set of POIs that should be kept under
surveillance; m is the number of camera towers
available, with each having identical capabilities; iv is
the “value” of POI i, which represents the damage that
the unique “initiating event” (such as an IED
emplacement) would cause at i if the event is not
detected; iq



 is the probability of not detecting an event
at POI i from location  if a tower is placed at that
location; and the decision variable 1y =



 if a tower is
located at


, and 0y =



 otherwise. If more than one
type of event might occur a POI i (e.g., an IED
emplacement or a riot), the POI can be replicated and
treated as a separate POI for each event type.
We note that, as described above, each event occurs or
does not occur within short timeframe. We maintain
that viewpoint for simplicity in descriptions. A
surveillance system might be in place for months or
years, however, and a POI might suffer from many
events over that time. In such a case, the model remains
valid, however, if events at i occur according to a
Poisson process with known rate (Lin et al. 2013). Now,

iv represents the expected total value of potential
attacks on i over the monitoring period if all attacks are
successful.
Now, since y

iL
q

∈∏ 





 is the probability that an event at
at POI i goes undetected by all of the installed camera
towers, NLPavg1’s objective, under an assumption of
independence, minimizes overall expected value of
undetected events across all POIs, subject to the limit
on available towers. Henceforth, we use “expected
damage” to mean the “expected value of undetected
events.” In particular, we refer to “expected damage at
an individual POI i,” y

i L iv q
∈∏ 





, and to “overall

expected damage,” y
i ii I L

v q
∈ ∈∑ ∏ 





. We add four
notes, also:
(1) NLPavg1 does assume independence of detections
for an event at a given POI, and requires some user
inputs that may not be immediately available, namely

iv and iq


; subjective estimates for these quantities may
be required.
(2) The notation hides some of the practical aspects of
an implementation. Suppose, for instance, that no line
of sight exists between potential camera-tower location
 and POI i. In this case 1iq =



 and the model is
correct. However, our implementation would not even
create the corresponding term in the objective function.

(3) This model and all others in this paper extend in a
straightforward fashion to handle various (but fixed)
camera configurations at a given location that provide
different coverages of an area.
(4) Given that 0iv i> ∀ , and given that y

iL
q

∈∏ 





 is a

convex function of continuous iy , the continuous
relaxation of NLPavg1 is a convex problem. Thus, in
theory, NLPavg1 can be solved using the integer
extension of Kelley’s cutting-plane algorithm “KCPA”;
see Kelley (1960). Our testing of KCPA shows that it
performs poorly, however. We have also tested a
standard solver that will solve convex MINLPs like
NLPavg1. Again, computational performance is poor.
(Some details will be provided in Section 4.) Because
of poor results with “standard methods,” we emphasize
the conversion of NLPavg1 as well the next model, into
mixed-integer linear programs (MIPs), which can be
solved by standard, linear-programming-based branch
and bound.

2.2. Minimizing Maximum Expected Damage
A second model, NLPmx1, seeks to minimize the
maximum expected damage at any POI, i.e., the worst-
case damage across all POIs:

NLPmx1:

,
min

z
z

y
 (4)

subject to: (2), (3)
y

L
i iz v q i I

∈

≥ ∈∀∏ 





, (5)

where the new set of constraints ensures that the
objective value takes the maximum, across all POIs, of
the expected damage at each individual POI. In theory,
NLPmx1 can also be solved via an extension Kelley’s
cutting-plane algorithm, but a simpler approach exists
based on the fact that we can minimize z′ = log z
without affecting the outcome:

olog l g y
i i

L
v qz i I

∈

 ≥ ∀ ∈ ⇒ 
 
∏ 





()lo logg i il l
l L

z q iyv I
∈

′ ≥ ∀+ ∈∑ . (6)

Thus, the following model is equivalent to NLPmx1,
and can be solved as a MIP:

MIPmx1:

,
min

z
z

′
′

y
 (7)

subject to:
(2), (3), (6).

NLPmx1 may be a more appropriate model than
NLPavg1 if, roughly speaking, a large number of
small-scale attacks spread across a region is deemed
less damaging to the defender than a few large-scale
attacks that are focused on a smaller area. For example,
minimizing overall expected damage seems appropriate
when the attacker has limited information about our

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

9

monitoring methods and our valuations of the various
POIs: we expect an adversary or group of adversaries to
carry out multiple, somewhat “random” attacks in this
case. A worst-case analysis could be more appropriate if
the attacker can learn about and selectively attack a few
high-value and possibly poorly monitored locations;
this relates to defender-attacker models as described by
Brown et al. (2006).
Unfortunately, the linearization technique applied to
NLPmx1 does not apply to NLPavg1: the logarithm
function cannot be used to decompose that model’s
objective function y

ii Li I
v q

∈∈∑ ∏ 





 into a linear
expression of the y-variables. Different linearization
techniques apply, however, as described next.

2.3. Converting NLPavg1 into Generalized Network

Flow Based Model
This section converts NLPavg1 into a MIP whose
structure may be viewed in terms of generalized
network flows (Ahuja et al., 1993, pp. 566-572). Let

{ | 1}i iL L q= ∈ <


 , let () | |,in i L= and assume that iL
is ordered as 1 ()2, ,{ , , }.k n

ii
i

i i iL … …=     We propose the
following model:

NETavg1:

, , ,
min i

I
i

i
qv

∈
′

′∑yq x x
 (8)

subject to:
(2), (3)

1 1, ,
1

i ii i
x ix I+ = ∀ ∈
 

 (9)

1 1 1, , ,
,)2, , (k k k k k

i i i i ii i i i i
x x I nq ix x i k− − − ∈+ = + ∀ = …

    

 (10)

() () (), , ,n i n i n i
i i ii i iiq x Ix q i= ∈+′ ∀
  

 (11)

0 1 ,i ix y i LI∈≤ ≤ − ∀ ∈
 

 (12)
0 , .ii y i Lx I≤ ∀ ∈≤ ∈

 

 (13)

For each i I∈ , the model describes a generalized
network flow over a series of paired, parallel arcs.
Starting with one unit of flow representing the
probability of non-detection of an event at i , the flow
first crosses one of two parallel arcs corresponding to

1
i iL∈ . If 1 0

i
y =


, no camera tower is installed at 1
i ,

an event at i cannot be detected from that location, and
the flow traverses the arc corresponding to 1

ii
x


 with no

reduction; that is, the probability of non-detection
remains one. But, if 1 1

i
y =


, the flow traverses an arc

corresponding to 1
ii

x


, and the flow received at the end

of that arc is reduced to 1
ii

q


; that is, the probability of

non-detection of an event at i has been reduced from
one to that factor. Repeating this construction for all

, 2,..., (),k
i k n i= means that the flow exiting the last

node associated with i and recorded by iq′ equals
()

1
,

k
i

k
i

yn i

k i
q

=∏ 



 as required.

2.4. Limited Camera Surveillance
The models NLPavg1, NETavg1 and MIPmx1 all
assume that if 1iq <



 and a camera tower is located at


, then a probability of non-detection equaling iq


 is
always achieved from that location. This assumption
may be optimistic, because a camera needs time to pan
or rotate, tilt, zoom in and out, and focus on each of the
POIs assigned to it (Peruzzi 2013). Also, human
observers may become less efficient (i.e., probabilities
of detection may decrease) if required to monitor too
many POIs. Our research has not yet addressed directly
these difficult issues, although the work of Burton et al.
(2008) may apply. That work determines the proportion
of time that a single camera should dedicate to
surveilling POI i, assuming events of interest occur
according to a Poisson process with a location-
dependent rate and that detection times at each location
are exponentially distributed. (Independence is assumed
between POIs.)
We can make our approach more realistic with respect
to the issues discussed above, however. To do that, we
incorporate a parameter k denoting the maximum
number of sites that any one camera tower may be
assigned to surveil. Additional variables are also
defined: 1iy =



if a tower is located at L∈ and is
assigned to surveil POI i I∈ , and 0,iy =



 otherwise.
With this new modeling paradigm, NLPavg1,
NETavg1 and MIPmx1 convert into NLPavg2,
NETavg2 and MIPmx2, respectively:

NLPavg2:

,
min iy

i
i

i
I L

v q
∈ ∈
∑ ∏y y







 (14)

subject to:
(2), (3)

i
i I

k Ly y
∈

≤ ∀ ∈∑
 

 (15)

NETavg2:

, ,,
min

Ii
iiv q

∈
′

′∑,x x y yq
 (16)

subject to:
(2), (3), (9)-(13),(15)
0 1 ,i i ix y i LI≤ ≤ − ∀ ∈ ∈

 

 (17)
0 ,ii ix y Ii L≤ ≤ ∀ ∈ ∈

 

 ; (18)

MIPmx2:
, , ,
min

z
z

′
′

,x x y y
 (19)

subject to:
(2), (3), (15)

log) .(logi i
L

iz v q i Iy
∈

≥ + ∀′ ∈∑
 



 (20)

3. COMPUTATIONAL IMPLEMENTATION

3.1. Optimization Environments
This section tests NETavg1, MIPmx1, NETavg2 and
MIPmx2 using a number of randomly generated

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

10

physical settings. All linear models are implemented in
Xpress-MP development environment (FICO 2015),
and are solved using the Xpress Optimizer, Version
27.01.02. The remainder of the document refers to this
implementation, except for brief, specific comments on
results obtained using (a) Kelley’s cutting plane
algorithm on a nonlinear formulation, and (b) one
standard algorithm for MINLPs.
The size of the mathematical models varies by scenario
(see Section 4). For example, scenario “Large9,” which
applies NETavg2 on a 30-location, 100-POI example,
generates a model with 2,738 variables (899 binary) and
2,739 constraints; scenario “Large10,” which is
identical to “Large9,” but applies MIPmx2, generates a
model with 900 variables (899 binary) and 131
constraints. All computational times are for runs
performed using a single processor on a Dell Latitude
XT2 Core Duo laptop computer, with 5 GB of RAM,
and running at 1.60 GHz.

3.2. Database
The supporting database for our tool is implemented in
Microsoft Access (Microsoft 2015). Each database file
contains one modeling example (corresponding to the
“DBQ” input parameter in the Xpress-MP code), which
represents an instance of physical layout of POIs and
locations. For that instance, the file may include several
“scenario” settings that differ, for example, in the
number of available cameras or in the type of model to
be solved. The structure of this database is as follows
(see Figure 1):
Tables: LOC (locations); POI (points of interest);
LOC_POI (attributes for locations and points of
interest); SCENARIO (different scenarios to run, see
Section 4, and associated solutions to store, for the
incumbent “example,” of locations and POIs).
Queries: Delete_LOC (eliminates all records from LOC
table); Delete_POI (eliminates all records from POI
table); LOC_POI_CreateMatrix (creates the list of all
possible combinations of locations and POIs to ease the
input of associated probabilities).

Figure 1. Database tables and queries

Fields in each of the above tables and relationships are
shown in Figure 2. Tables 1-4 describe these fields in
more detail.

Figure 2. Fields for the database tables, and relation-
ships among tables

Table 1: LOC (Candidate tower locations)
Name Type Default Description
Node Text Location code
XCoor Double 0.0 X coordinate
YCoor Double 0.0 Y coordinate
FixedSelection Yes/No No Location must be

selected?
Selected Yes/No No Location was selected?

(OUTPUT)

Table 2: POI (Points of interest)
Name Type Default Description
Node Text POI code
XCoor Double 0.0 X coordinate
YCoor Double 0.0 Y coordinate
val Double 1.0 Value of the POI

Table 3: LOC_POI (Attributes by LOC and POI)
Name Type Default Description
LOCnode Text Location code
POInode Text POI code
prob Double 0.0 Probability of detection at the

POI from the location
Selected Yes/No No POI selected to be surveilled

from the location? (OUTPUT)

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

11

Table 4: SCENARIO (Parameters, options, etc.)

Name Type Default Description
Index Long

Integer
 Scenario index

(AUTOMATED)
Run Yes/No Yes Run this scenario?
MinMax Yes/No No Solve MIPmx (Yes) or

NETavg (No). (Variants 1
or 2 depending on the
number of POIs per camera)

nCameras Long
Integer

0 Number of camera towers
allowed

nPOIsPerCamera Double 2 Number of POIs each
camera tower may surveil at
a time. Enter 0 if unlimited.

ObeyFixed Yes/No No Obey all fixed selections
specified in LOC table?

Max_Time Long
Integer

100 Maximum run time
(seconds)?

Max_Gap Double 0.0 Maximum optimality gap?
Gap Double Actual gap? (OUTPUT)
E_Value Double Overall expected damage?

(OUTPUT)
Max_Val Double Maximum single damage?

(OUTPUT)
CPU_time Double Computational time

(seconds)? (OUTPUT)

3.3. Graphical Input and Output Environment
Xpress-MP’s embedded graphical displays help
visualize the problem and its solution. For example,
Figure 3 shows a snapshot mapping out POIs and
candidate camera-tower locations; the values for POIs
are displayed, also. By clicking on the “Visible” toggle,
we would see a series of lines connecting candidate
locations with those POIs that could be surveilled, with
strictly positive probability of detection.
After the model is run, the “Selected” toggle turns on
the display of the following: (a) optimized tower
locations, (b) the type of model solved, i.e., average
(“avg”) or min-max (“mx”), and (c) the number of
camera towers available. “Sel. Visible” (Selected
Visible) toggles a display that shows which camera
towers are assigned to which POIs.

4. COMPUTATIONAL RESULTS
This section presents results for two hypothetical
examples, “Small Example” and “Large Example.”
Each example has a specific “physical setting,” which
connotes geographical data on candidate locations and
POIs, POI values, and probabilities of event detection
by POI and location.
An example may also have several parametric variants
called “scenarios.” A scenario includes the original
physical setting from the example, but adds certain
parameter values and chooses which optimization
model to apply. For instance, we can use the
geographical layout of Small Example and create one
scenario that allows more camera towers than another,
or that seeks to optimize NETavg1 rather than, say,
MIPmx1. The scenario is completed by filling in the
data for the scenario record (for example, see, Figure 5

in Section 4.1). A user can create a rich variety of
scenarios for the same example by just changing a few
input parameters and/or toggle settings as identified in
Table 4. For example, the user can set the number of
camera towers available, toggle the use an ``mx
model’’ or an “avg model.” and specify solution-
algorithm parameters (e.g., maximum run time
allowed).
Unless otherwise noted, all the scenarios are set to run
until a 0% optimality gap is achieved, or a maximum
time limit of 300 seconds is reached. No locations are
preselected to receive a camera tower.

4.1. Small Example
The physical layout in this example (Figure 3) has ten
potential camera-tower locations and eight POIs. Figure
4 enlarges a portion of the example with visibility links
activated and associated probabilities of detection
displayed. For example, the probability of detecting POI
I4 from location L8 is 0.707.

Figure 3. Preliminary display of locations (blue) and
POIs (red)

Figure 4. A portion of Small Example enlarged to show
lines of sight, two POIs and one camera-tower location.

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

12

We run four scenarios for this example, as indicated in
Figure 5. (From here on, we use Smalln to refer to the
n-th scenario for Small Example, where the index n is
automatically produced by the database program.)
Small1, as modeled and solved, seeks to minimize
overall expected damage by applying NETavg1. Each
of three available camera towers can surveil an
unlimited number of POIs simultaneously (indicated
with a default value of zero in the data). Small2 is
identical to Small1, but a different model, MIPmx1,
applies; that is, we seek to minimize the maximum
damage at any individual POI. Small3 and Small4 are
identical to Small1 and Small2, respectively, except that
they limit the number of POIs that can be surveilled
from any one location to a maximum of three.
Accordingly, we apply NETavg2 to solve Small3 and
MIPmx2 to solve Small4.

Figure 5. Small Example scenarios (Small1,...,Small4)

Figure 6 summarizes results for the Small Example
scenarios. Small1 and Small2 produce similar solutions:
the optimal Small1 objective (for NETavg1) yields an
expected damage, over all POIs, of 11.15; see
“E_Value” output. Here, the largest, expected damage
for a single POI is 1.94, as seen under “Max_Val.” In
fact, this is the minimum Max_Val achievable, as
shown when model MIPmx1 is applied in Small2. By
coincidence, the converse occurs in this example: the
E_Value in the Small2 solution matches the minimum
E_Value obtained for Small1. (This coincidence seems
unlikely, in general, because instances of MIPmx1 may
have many optimal solutions.)

Figure 6. Results for Small Example scenarios

Scenarios Small3 and Small4 are restrictions of Small1
and Small2, respectively. E_Value for Small3 increase
to 20.60 from Small1’s value of 11.15, and “Max-
Value” increases for Small4 to 3.40 from Small2’s
value of 1.94. Figure 8 displays the solutions. We
observe that NETavg2’s solution leaves two POIs
without any surveillance in Small3, and one of those
unsurveilled POIs (I3) defines the maximum expected
damage (Max_Val equals 5.0). On the other hand, when
Max_Val is minimized using MIPmx2 in Small4, the
largest, expected damage occurs at another POI (I7,
with Max_Val equaling 3.4).

Figure 7. Graphical solution to both Small1 and Small2
scenarios.

Figure 8. Graphical solutions to Small4 (top) and
Small4 (bottom) scenarios

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

13

Figure 9. Large Example with 30 locations and 100
POIs

 Figure 10. Large Example scenarios (Large1,...,
Large10)

Figure 11. Results for Large Example scenarios

4.2. Large Example
This example has 100 POIs to be surveilled from some
subset of 30 candidate camera-tower locations (Figure
9). We run ten scenarios, Large1,...,Large10 (see Figure
10): Large1-Large5 use NETavg1 to allocate 5, 10, 15,
20 or 25 towers, respectively, with unlimited
surveillance for each tower; Large6-Large9 fix the
number of available camera towers to 15, and solve
NETavg2 with per-tower surveillance limits of 2, 4, 6
and 8 POIs, respectively; Large10 solves the 15-tower,
8-POIs-per-tower problem using MIPmx2.
Figure 11 displays results. We note, for example, that
all unlimited-surveillance scenarios solve optimally in
the allotted time. This is not the case for Large8 and
Large9 limited-surveillance scenarios, where 2% and
14% optimality gaps remain after 300 seconds of
computation.
On the other hand, Large10 solves quickly. Recall that
Large10 is identical to Large9, except that Large10
minimizes the largest expected damage for a single POI
(Max_Value), while Large9 minimizes overall expected
damage (E_Value). Outcomes are notably different for
Large9 and Large10. In particular, Max_Value is over

100% greater (worse) for Large9 than for Large10 and,
conversely, E_Value for Large10 is almost 100%
greater (worse) than for Large9.
Figure 12 graphically depicts the solutions for the two
scenarios. (POI names are hidden in the displays for the
sake of clarity.) We observe that, for the most part, the
scenario solutions place camera towers at different
locations. But, when a location such as L27 at
coordinates (72, 61) is selected under both scenarios,
the surveilled POIs are different.

Figure 12. Graphical solution displays for scenarios
Large9 (top) and Large10 (bottom).

As discussed in Section 2.1, it is possible, in theory, to
solve NLPavg1 and NLPavg2 using (a) variants of
KCPA (Kelley 1960) and (b) a standard MINLP solver.
We have implemented (a) and (b) for our Small- and
Large-Example scenarios using the GAMS algebraic
modeling system (McCarl et al. 2014). Specifically, we
use CPLEX 12.4 (GAMS 2015, pp. 109-160) to solve
master problems in our own implementation of KCPA,
and we use DICOPT (GAMS 2015, pp. 189-208) as a
general MINLP solver; our implementation of DICOPT
employs CPLEX 12.4 for solving MIP master problems

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

14

and MINOS (GAMS 2015, pp. 323-354) to solve
continuous, non-linear subproblems.
For Small-Example scenarios, DICOPT and KCPA
produce optimal solutions in times that are comparable
to, or only modestly longer than, those reported in
Figure 6. On the other hand, with a few exceptions,
neither DICOPT nor KCPA solve Large-Example
scenarios efficiently. For example, DICOPT solves
Large1, which is the smallest of the Large-Example
scenarios, in only 2 seconds, but it produces a
suboptimal solution having an E_Value of 203.27,
rather than an optimal solution, which has an optimal
E_Value of 179.27. Relative optimality gaps become
even worse as the complexity of the scenarios increases.
For example, Large9 results in an E_Value equaling
138.30, yet the optimal value is 66.13. Finally, we note
that KCPA converges to the optimal solution of the
scenarios mentioned above, but even the smallest
scenario takes hundreds of iterations to solve and
requires computation time that exceeds 1,900 seconds.

5. CONCLUSIONS AND FUTURE RESEARCH
Our work should be extended to more accurately assess
and incorporate the “information value” of a collection
of POIs that might be assigned to one or more camera
towers for surveillance. Exactly how to carry this out is
unclear, but we see three key issues:
(a) The current implementation assumes a simple
additive or separable value function that ignores
“scheduling issues.” But, a camera that is set to surveil a
collection of POIs may be programmed to focus on,
zoom in on, and surveil each POI for a given amount of
time before transitioning to another POI. The
corresponding surveillance and transition times affect
the value of the information collected (for example, the
probability that an IED emplacement is detected), and
should be part of the optimization process.
(b) Our current models assume constant conditions, but
the time of day and weather can affect probabilities of
event detection. Naturally, this variability could
influence optimal camera-tower placements.
(c) We ignore the possibility that mobile surveillance
systems such as UAVs may operate in conjunction with
camera towers.

ACKNOWLEDGMENTS
We thank the Joint Improvised Explosive Device Defeat
Organization for support that inspired this work.

REFERENCES
Ahuja R.K., Magnanti T.L., Orlin J.B., 1993. Network

Flows. Theory, Algorithms and Applications.
Upper Saddle River, NJ:Prentice Hall.

Bodor, R., Drenner, A., Schrater, P., Papanikolopoulos,
N., 2007. Journal of Intelligent and Robotic
Systems 50:257–295.

Burton D., Kress M., Lin K., Rowe A., Szechtman, R.
2008. Optimal Mix and Employment of Sensors
for Persistent Surveillance – Final Report. Project

Report (obtained from authors at the Naval
Postgraduate School, Monterey, CA, U.S.A).

Brown G., Carlyle, M. Salmerón J., Wood K., 2006.
Defending critical infrastructure. Interfaces 36:
530-544.

FICO, 2015. FICO Xpress Optimization Suite.
Available from:
http://www.fico.com/en/products/fico-xpress-
optimization-suite.

GAMS, 2015. GAMS—The solver manuals.
Washington, DC: GAMS Development
Corporation.

Hörster, E. and Lienhart, R., 2006. On the Optimal
Placement of Multiple Visual Sensors. Universität
Augsburg, Institut für Informatik, Report 2006-18.

Kelley J.E., 1960. The cutting-plane method for solving
convex programs. Journal of the Society for
Industrial and Applied Mathematics 8:703-712.

Lin K.Y., Atkinson M.P., Chung, T.H., Glazebrook
K.D., 2013.. A graph patrol problem with random
attack times. Operations Research 61: 694–710.

McCarl B.A., Meeraus, A., van der Eijk P., Bussieck
M., Dirkse S., Steacy P., Nelissen F., 2014.
McCarl GAMS user guide. Washington, DC:
GAMS Development Corporation.

Microsoft, 2015. Microsoft Access 2013. Available
from: https://products.office.com/en-us/access.

Murray A.T., Kim K., Davis J.W., Machiraju R., Parent
R., 2007. Coverage optimization to support
security monitoring. Computers, Environment and
Urban Systems 31:133-147.

Peruzzi L., 2013. Borders and base perimeters: No
trespassing please! Armada International, Issue
1:4-6.

Snyder L.V., 2006, Facility location under uncertainty:
a review. IIE Transactions 38:547-564.

Proceeding of the International Defense and Homeland Security Simulation Workshop 2015,
ISBN 978-88-97999-60-7; Bruzzone,Longo and Sottilare Eds

15

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=duQlj0MAAAAJ&citation_for_view=duQlj0MAAAAJ:_FxGoFyzp5QC
http://www.fico.com/en/products/fico-xpress-optimization-suite
http://www.fico.com/en/products/fico-xpress-optimization-suite
https://products.office.com/en-us/access

