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Abstract

The design, development, and testing of a digital tracking array is described. The array operates at 2.4 GHz for tracking video
and data from UAVs and other mobile transmitters. A monopulse tracking technique is used to keep the beam scanned to the
direction of the incoming signal. The array is built entirely of commercial off-the-shelf (COTS) components. Calibration,
measurement of patterns, and verification of the tracking function are also discussed.
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1. Introduction

igital beamforming has many advantages over conventional

beamforming [1, 2]. A digital antenna provides complete
control of the amplitude and phase at every element, allowing the
potential to provide a wide variety of desirable pattern features that
can be changed dynamically by software. These include rapid beam
scanning and accurate beam pointing, pattern shaping by precise
amplitude and phase control, and multiple beams. Digital archi-
tecture allows flexibility in processing and array reconfiguration
for multiple functions.

With the growth in wireless devices over the last ten years,
many of the critical components required for digital arrays, such as
the modulators and demodulators, have become widely available at
low cost. This article describes the design and development of a
digital array to receive and track signals from unmanned air vehi-
cles (UAVs) and mobile transmitters. The array uses an error signal
from the difference beam to correct beam-pointing errors and to
continuously scan the sum beam in the direction of the incoming
signal, as illustrated in Figure 1.

Analog Devices (AD) AD8347 quadrature demodulators are
used to directly down-convert the signal at each element. National
Instruments (NI) Compact Realtime /O (cRIO) controllers and
modules perform the data collection and transfer to a host com-
puter, where the beam is formed in the processor.

2. Array Design

The array operates at f =2.4 GHz so that it can track video
and data signals from the UAV transmitted at that frequency. An
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array beamwidth in the range of 10° to 20°, with a maximum scan

of +40° from broadside, was deemed acceptable for the given
operational ranges and velocities of the UAVs [3]. The array is
comprised of eight elements, equally spaced at d =6.5cm (0.52
wavelength) to assure that no grating lobes occur at the maximum
scan [4]. The antenna elements are printed-circuit dipoles above a
finite ground plane [5]. A Microwave Studio [6] model of the com-
plete array is shown in Figure 2. The simulated broadside sum and
difference beams are shown in Figure 3. The difference beam is
formed by subtracting the outputs from the left half of the array
(elements 1 through 4) from those of the right half (elements 5
through 8). The algorithm for beamforming is discussed in Sec-
tion 3.

A block diagram of the array’s architecture is shown in Fig-
ure 4. A low-noise amplifier (LNA) is located at the output of each
clement. The output of the low-noise amplifier is fed to the RF
input of an AD8347 quadrature demodulator. An AD8347 evalua-
tion board is shown in Figure 5, and its specifications can be found
in [7]. It operates from 800 to 2700 MHz with a modulation band-
width of about 50 MHz.

For a signal at carrier frequency f, with amplitude 4 and
phase @,
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Figure 1. The sum and difference beams used for antenna
pointing.
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Figure 2. A Microwave Studio model of the array and ground

plane (viewed from the back of the ground plane).
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Figure 3. The computed sum and difference patterns for the

array at broadside scan.
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Figure 4. The array architecture (only one channel is shown).
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Figure 5. The Analog Devices AD8347 evaluation board.

s(t)= A(t)cos[ 27 fi + @ (1) ]. (1)

The in-phase (/) and quadrature (Q) representation is given by

s(t)=1(t)cos(27 1) - Q(¢)sin (27 ft), @)
where

1()=A(t)cos[@(1)], )

0(r) = A(r)sin[@(1) ] @)

The amplitude and phase represents a point on the 7, Q plane, as
shown in Figure 6. The phase is obtained from the quadrature
components by

@(r)=tan' [Q(2)/1(2)]. )

The demodulator has differential outputs (/*, 7, Q%, and Q")
for obtaining the baseband in-phase and quadrature components of
the received signal. The components are given by

I=I"-I", (6)

0=0"-0". ()
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Figure 6. The in-phase and quadrature plane.
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Figure 7. The measured phase data for a typical demodulator
board (*) and with the offset removed (solid line).

In the process of characterizing the demodulators, it was found that
the 7/Q circles were not centered, and that each board had a unique
offset. Therefore, it was necessary to calibrate every board and to
correct for the offsets in the beam processing. Mechanically adjust-
able phase shifters were used to introduce phase shifts from 0° to
360°. The phase obtained from the measured //Q components is
plotted in Figure 7 for a typical demodulator. The radius of the cir-
cle is determined by the voltage, VGIN, which controls the base-
band amplification. The NI9215 analog input module, which fol-
lows the demodulators, has 16-bit resolution, but a fixed +10 V
input range. Therefore, larger circles are preferred because they
give smaller quantization errors. Typical voltage ranges for the
ADS8347 were 1+0.05V, ie., the I/Q circle radius was about
100 mV. After sampling, the voltage quantization step is approxi-
mately 0.305 mV. Each Al module has four channels, so one mod-
ule is required to sample the four differential voltages from each
demodulator.
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An equally phased local-oscillator (LO) signal is distributed
to all demodulators. The power dividers and connecting cables
were measured and trimmed to give phases within a couple of
degrees of a common reference. The signal level was adjusted to
fall in the proper operating range for the AD8347, which has a
dynamic range of 80 dB [3].

The NI cRIO-9215 analog input modules are connected
directly to the NI field-programmable gate array (FPGA) hardware
[8]. This is the NI cRIO-9104 reconfigurable chassis with the real-
time embedded controller, cRIO-9004. The cRIO-9104 chassis has
eight slots and an FPGA core with 196 kB of RAM. The FPGA
core has an individual connection to each NI c¢RIO-9215 analog
input module, and can read information from all modules simulta-
neously at a rate of 100 kS/s. The FPGA circuitry in the cRIO-9104
chassis passes the data to the real-time embedded controller
through a local PCI bus. The cRIO-9004 includes 64 MB of
DRAM memory and 512 MB of nonvolatile flash storage for data-
logging applications. Embedded software code processes the data
from the /O modules and transfers the data to the host program,
running LabView software [9]. This FPGA program is synchro-
nized with the host program on a laptop computer by the means of
an FPGA-generated interrupt request (IRQ) or an internal millisec-
ond real-time clock source. Communication between the host and
controller is by hardwired LAN connection, although a wireless
connection could be used.

3. Beamforming and Tracking

The array is situated with the ground plane normal in the y
direction and the elements distributed along the z axis. The dipoles
are parallel to the x axis. For a simple linear array along the z axis,
the array factor is given by

N
AF (0,8) = w, exp| jkd, cos®)], (8)
n=l1

where N=8, k=27/A4 (A is wavelength), w, is a complex
weight added by the processor, and

o [2;1—(N+1)]d

n > ©)

is the location of element n relative to the origin at the center of the
array. The demodulators provide spatial samples of the exponential
factor in Equation (8):

1, = cos| jkd, cos6)], (10)
O, =sin| jkd, cosd]. (11)

Therefore, to obtain a response equivalent to a beam scanned in the
direction 6, ,

w, = exp[— jkd, cosO, + jy, + jy,]- (12)

The term y,, is the correction for phase differences from channel »n

relative to the reference channel. These were obtained by calibra-
tion. The y, are zero for the sum beam; for the difference beam,

half are zero (N/2<n<N) and halfare 7 (1<n<N/2).
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Figure 9. The measured phase as a function of the transmitted
phase for the eight channels after calibration.
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Figure 10. The bench-top scan pattern for broadside incidence.
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A monopulse technique was used to generate an error signal
for tracking. The ratio of the difference-beam-to-sum-beam output
is generally used to derive the error signal [10]. Figure 8 shows the
ratio A/Z in the vicinity of the null, which can be approximated by

AZ~K®. (13)

where K is the monopulse slope constant. The constant K was
obtained for various scan angles from the Microwave Studio model
shown in Figure 2.

4. Measurements

After assembly of the components, each channel was cali-
brated by cycling an input signal through 360° and measuring the
received phase using the 7 and Q outputs. The 7/Q circle offsets and
any constant phase shift between channels was calculated. The cor-
rected data for the eight channels are presented in Figure 9. This
plot characterizes the phase-measurement capability of the array;
the residual errors shown are not be removed by processing.

A bench-top check of the array scanning was performed by
disconnecting the dipoles and feeding the amplifiers directly with
an RF signal split through a 1:8 power divider. This simulated a
plane wave incident from broadside. For this excitation condition,
the beam was scanned from —40° to 40° degrees by changing 6

in Equation (12). The results are shown in Figure 10.

Pattern measurements were taken in the Naval Postgraduate
School anechoic chamber. The measured and simulated difference
patterns are shown in Figure 11. (Data were limited to the range of

+20° degrees because of the chamber’s geometry and the fact that
this frequency is below the design frequency of the chamber.) Fig-
ure 12 is a time strip chart of the scan angle as the array was
rotated at a constant rate. The chart shows that the beam direction
remained pointed at the source. The small oscillations occurred
because of slight over-corrections in the scan angle.

5. Summary and Conclusions

A digital tracking array, employing commercial off-the-shelf
components, was designed, simulated in Microwave Studio, and
subsequently built and tested. Before construction of the array, the
devices were characterized using a vector network analyzer. The
demodulator boards were found to have individual offsets that
needed to be corrected in the beam processing. The final results
were in good agreement with measured data, and tracking was
demonstrated in an anechoic chamber by rotating the array and
verifying that the beam remained pointed at the transmitting
antenna. The total cost of the antenna was less than US$10,000,
not including the software licenses and laptop computer.

Field testing of the array is planned, and upgrading the design
to include a transmitting function is also in progress. Similar to the
receiving side, the transmitting channels will utilize commercially
available modulator boards (AD8346) and analog output modules
(NI cRIO 9263).
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Figure 8. The normalized noiseless sum-to-difference ratio in
the vicinity of the difference-beam null.
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Figure 11. A comparison of measured and simulated patterns.
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Figure 12. A time strip chart showing the beam scan angle as
the array was rotated from 25° to —25° (0° was broadside).
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