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Two-Way Pattern Grating Lobe Control for
Distributed Digital Subarray Antennas
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Abstract—An approach to controlling the two-way pattern
(i.e., the product of the transmitting and receiving antenna pat-
terns) for a distributed digital subarray antenna (DDSA) is
presented. Collectively combining periodic widely separated sub-
arrays results in grating lobes (GLs), and they are unwanted
because of the ambiguities that accompany them. The approach
to GL control presented here involves a combination of conven-
tional suppression methods on the transmitting side and in the
digital beamforming on the receiving side, filling the gaps between
the subarrays with “virtual” elements, thus forming a contiguous
array. Individually, the transmitting and receiving antenna pat-
terns may not have adequate performance, but it is demonstrated
that if designed to complement each other, the two-way pattern
can achieve ultralow sidelobe performance. The effects of receiv-
ing element signal-to-noise ratio (SNR) and errors in calibration
are also addressed.

Index Terms—Distributed subarray antennas, grating lobe
(GL) suppression, two-way pattern, virtual elements.

I. INTRODUCTION

C OMPLETE digital control of amplitude and phase at
the element level of an array allows great flexibility

in beamforming. Modern radar and communications systems
incorporate phased arrays with wider bandwidths, allowing for
the possibility that several systems on the same platform can
share arrays. A system that incorporates distributed digital sub-
arrays (DDSAs) working cooperatively as a single array, thus
forming an array of subarrays, can potentially increase the
output signal-to-noise ratio (SNR) and provide better spatial
resolution compared with using the subarrays individually.

A major factor impacting the antenna architecture is the plat-
form design philosophy, particularly for military applications
that require low signatures. It is difficult to find an available
area sufficient for a large array on board a platform, so it
might be necessary to use several relatively small noncontigu-
ous (separated) areas (subarrays) and then process the received
signal coherently. The technical challenges of such an approach
include time and frequency synchronization, calibration, and
error correction.
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Periodically, distributed subarrays (subarrays whose centers
are equally spaced) form a long baseline and are capable of
very accurate angular location of targets [1], [2]. However, col-
lectively combining periodic widely separated subarrays results
in grating lobes (GLs), and they are unwanted because of the
ambiguities that accompany them. Even if the individual array
patterns have no GLs, conventional beamforming with periodic
DDSAs will have an output response with GLs that cannot be
suppressed using traditional windowing methods.

In this paper, we focus on distributed antennas that com-
prised subarrays that can operate individually or collectively.
It is assumed that no GLs appear in the visible region for
each subarray when scanned. We employ techniques for GL
suppression on both the transmitting and receiving sides of
the distributed array system. Individually, the transmitting and
receiving antenna patterns may not have adequate performance,
but if designed to complement each other, the two-way pattern
(i.e., the product of the transmitting and receiving patterns) can
achieve acceptable performance. Radar is the primary appli-
cation of interest; however, the techniques presented can be
extended to other electronic systems as well.

In Section II, the general formulas for the pattern of a DDSA
with arbitrary geometry are presented, and some special cases
discussed. In Section III, we summarize the conventional meth-
ods for array GL suppression. Some examples of conventional
GL reduction methods that can be applied to DDSAs are dis-
cussed in Section IV. Few of these methods have been applied
to distributed subarrays. Due to the limited effectiveness in
suppressing DDSA GLs by these conventional methods, in
Section V, we investigate a new approach which utilizes the
power of digital signal processing to eliminate the GLs and fur-
ther lower the sidelobes on the receiving pattern. In Section VI,
it is demonstrated that a combination of the traditional methods
on the transmitting side together with the digital beamforming
and processing on the receiving side provide significant two-
way pattern improvement. In Section VII, an analysis of the
effect of calibration errors and SNR is addressed. Section VIII
gives a summary and conclusion.

II. FORMULAS FOR DDSA

In Fig. 1, an illustration of the general array geometry is
shown, where
Ns = number of subarrays,
m = subarray index (m = 1, 2, . . . , Ns), and
xs(m), ys(m), zs(m) = coordinates of subarray m in the

global system.
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Fig. 1. Subarray m and its local coordinate system relative to the global origin.

The subarrays can be rotated and tilted with respect to the
global origin. In the global system, for an observer at (θ, φ), the
direction cosines are

u = sin θ cosφ

v = sin θ sinφ

w = cos θ. (1)

Similarly, the direction cosines in the scan direction in global
coordinates (θs, φs) can be denoted as (us, vs, ws). In the
local subarray m coordinate system, the corresponding direc-
tion cosines of an observer at (θm, φm) are (um, vm, wm) and
the scan angle direction cosines are denoted (usm, vsm, wsm).
A rotation matrix can be used to obtain the subarray direction
cosines from the global ones and vice versa.

Consider planar rectangular subarrays with all elements in
the local z = 0 plane. The element spacing is constant within
each subarray, but can vary from subarray to subarray. The
number of elements in the subarrays can vary such that
Nx(m), Ny(m) = number of elements in the local x and y

directions for subarray m, and
dx(m), dy(m) = spacing between elements for subarray m.
The complex pattern of the mth subarray is given by the sum

Fs(m) =

Nx(m)∑
p=1

Ny(m)∑
q=1

W (m, p, q)

× exp [jk(x(m, p)um + y(m, q)vm)] (2)

where k = 2π/λ (λ is the wavelength at the frequency of oper-
ation and an ejω t time dependence is assumed and suppressed).
The complex weight

W (m, p, q) = a(m, p, q)ejψ(m,p,q) (3)

at element p, q of subarray m is applied for scanning, side-
lobe control, beamshaping, and error compensation. For equally
spaced elements, with each subarray centered at its local origin

x(m, p) =
2p− (Nx(m) + 1)

2
dx(m) ≡ P (m, p)dx(m)

y(m, q) =
2q − (Ny(m) + 1)

2
dy(m) ≡ T (m, q)dy(m)

(4)

so that

Fs(m) =

Nx(m)∑
p=1

Ny(m)∑
q=1

W (m, p, q)

× exp [jk(P (m, p)dx(m)um + T (m, q)dy(m)vm)] .

(5)

The total distributed array pattern is obtained by including
the array factor constructed from the centers of each subarray

Ft =

Ns∑
m=1

Fs(m) exp [jk (xs(m)u+ ys(m)v + zs(m)w)] .

(6)

To complete the expression for the pattern, an element factor
must be added. In the local subarray coordinates (θm, φm), the
element factor �S for subarray m can be expressed as

�S(m, θm, φm) = Sθ(m, θm, φm)θ̂m + Sφ(m, θm, φm)φ̂m.
(7)

This allows for the possibility that elements are different for
each subarray, which generally would not be the case. The final,
most general expression for the total array pattern is

�Ft(θ, φ) =

Ns∑
m=1

Fs(m) �S(m,um, vm)

× exp {jk [xs(m)(u− us) + ys(m)(v − vs)

+ zs(m)(w − ws)]} . (8)

The normalized power pattern is computed by

Pnorm(θ, φ) =

∣∣∣�Ft(θ, φ)
∣∣∣2∣∣∣�Ft(θ, φ)

∣∣∣2
max

=
�Ft(θ, φ) • �Ft(θ, φ)

∗
∣∣∣�Ft(θ, φ)

∣∣∣2
max

(9)

where * is complex conjugation. For the remainder of the paper,
we consider only isotropic elements and neglect the element
factor.

The general formulas of (5) and (6) can be reduced to closed
form for a periodic planar rectangular array of subarrays with
uniform weights. The index m can be dropped from the sub-
array quantities if all subarrays are identical. The subscript m
can also be dropped from the direction cosines because all sub-
arrays are aligned with the global coordinate system. The final
formulas contain the familiar uniform array functions found in
[3] and [4].

Note that when receiving, the exponential factor in (5)
would be obtained from the element baseband in-phase (I) and
quadrature (Q) samples

I(m, p, q) + jQ(m, p, q) ≡ exp [jk(P (m, p)dx(m)um

+ T (m, q)dy(m)vm)] . (10)

In a digital beamforming approach, the weights are applied in
the processing to obtain the array response. In the virtual filling
technique, virtual elements are added to the summation in (5)
based on estimates of the I and Q values at their locations. As
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will be shown in Section V, the response of a contiguous array
can be duplicated.

III. GL SUPPRESSION FOR DDSAS

A. Conventional Methods

If the element spacing is small enough so that individual
subarray GLs do not occur for any scan angle, then any GLs
that occur are due to the gaps between the subarrays in the
rectangular grid (i.e., the lattice GLs, also called construction
GLs). Some of the conventional (traditional) GL suppression
techniques are as follows.

1) Placement of Element Pattern Nulls: The array can
incorporate an element that has nulls at the locations of the
GLs [5].

2) Subarray Lattice Selection: Arrays can employ nonrect-
angular periodic lattice configurations [6].

3) Placement of Subarray Nulls: One can select the subar-
ray spacing and size so that subarray pattern nulls fall at the GL
locations [7].

4) Perturbations in the Geometry: Minor changes in the
geometry such as rotation and tilt of the subarrays can be used
to reduce (but not eliminate) the GLs [8], [9].

5) Multiplicative Beamforming: Multiplicative beamform-
ing on the receiving side has been employed in [10]–[12].
The GLs can be suppressed by multiplication of the main and
auxiliary array outputs.

6) Aperiodic or Random Subarray Sizes: Random subar-
raying has been proposed for contiguous array antennas to
reduce the GLs due to the subarray steering or when the phase
center distances between subarrays are too large [13], [14].

7) Aperiodic or Random Displacement: An aperiodic or
random array has no GLs because there is no strong period-
icity [15]–[17]. Taken to the extreme, this would be an array
where the subarray locations are completely random (subject to
any nonoverlapping constraints). For the DDSA case, aperiodic
or random displacement of identical subarrays is an option for
lowering the GLs. Most practical applications do not allow for
randomly distributed locations. One exception would be a “ran-
domly thinned” array of subarrays because it is deployed over
a well-defined area.

B. Virtual Filling Method

Virtual filling is a digital processing method that can only
be used on the receiving side [18]. The idea is to fill the gaps
of a DDSA with virtual elements in the processing so that
the synthesized pattern has no GLs, and amplitude tapering
for sidelobe control can be applied [19]. The response of a
contiguous array can be duplicated in a number of directions
limited by the total number of elements. The directions of inter-
est would normally be those of the desired signal (main beam)
and interference or clutter (sidelobes).

The procedure can be viewed as an interpolation of the inci-
dent wave phases at the locations of the virtual elements from
measurements of the phases at the real elements. Multiple time
samples (snapshots) are taken at the real elements and virtual

Fig. 2. Physical layout of a periodic distributed linear array composed of 10
identical planar subarrays whose centers are equally spaced. The gap between
subarrays is 1.5λ.

element phases estimated from the direction-of-arrival (DOA)
information. No hardware is associated with the virtual ele-
ments. Equations (5) and (6) still hold, although terms are added
for the virtual elements.

The modified matrix pencil method is ideally suited for this
direction finding problem [20]. In [19], the modified matrix
pencil method has been extended to handle the problem of mul-
tiple subarrays for both single and multiple snapshots. After
filling the gaps between subarrays virtually, the “filled” array
can be treated as contiguous, and therefore, some advantages
that come with a larger contiguous aperture array are obtained.
In particular, the strong array response to signals received in
the GLs is suppressed and sidelobe tapers can be applied to
increase the signal-to-clutter ratio [21]. The effectiveness of
this method depends on the SNR and DOA errors, which are
addressed briefly in Section VII.

C. Combined Solution for Two-Way GL Suppression

The conventional solutions provide moderate (several dB)
of GL suppression [14], [22]. Since the virtual filling method
is applicable when receiving only, the combination of a con-
ventional solution on the transmitting side, such as random
displacements and sizes, in conjunction with digital beam-
forming and virtual filling for the receiving side is proposed.
Improvement in the two-way pattern, in terms of lower side-
lobes and GLs, is possible due to the pattern multiplication.

IV. CONVENTIONAL METHOD FOR TRANSMITTING SIDE

For attacking the GL problem on the transmitting side,
introducing randomness is one of the possible approaches.
We consider subarrays with random displacements and sizes.
Simulation results shown in this section are the ones with the
lowest GLs based on 100 Monte Carlo trials of which the maxi-
mum GLs are identified for all trials. It should be noted that for
other numbers of trials, the best arrangement might be different.

As an example, suppose we would like to design a DDSA
where each subarray is a periodic array with 10 elements along
x and 4 elements along y, with an element spacing of λ/2 in
both dimensions. Subarrays are separated by gaps of 1.5λ. In
Figs. 2 and 3, the physical layout and radiation pattern can be
seen, respectively. GLs occur due to the periodic gaps between
subarrays.

A. Random Subarray Displacement and Sizes

As a first step in reducing GLs, we add random positions
for each subarray in addition to their random sizes as shown in
Fig. 4. As can be seen in Fig. 5, the peak GL level has been
lowered by about 6.5 dB by randomization.
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Fig. 3. Scanned radiation pattern of the periodic distributed subarray antenna
shown in Fig. 2.

Fig. 4. Physical layout of the array with random subarray sizes and random
subarray locations.

Fig. 5. Radiation pattern of the array shown in Fig. 4 scanned to 20◦.

V. COMBINING CONVENTIONAL METHODS AND THE

VIRTUAL FILLING METHOD

A. Introduction

In [19], we proposed the virtual filling method on the receiv-
ing side to mimic a contiguous array pattern, and therefore, a
sidelobe taper can be applied to lower the sidelobes. The vir-
tual filling method cannot be used on the transmitting side, and
the GLs from a DDSA on the transmitting side can only be
addressed with traditional methods as discussed in Section III.

For the purpose of illustration, we choose random subar-
ray sizes with fixed subarray gaps for the transmitting model
for two reasons. First, since the gaps between subarrays are
fixed, it is much easier to implement this configuration in prac-
tice compared to arrangements with random gaps. Second, with
random subarray sizes and fixed subarray gaps, the subarray

Fig. 6. The transmitting DDSA model with real elements (in blue) and the
receiving DDSA model with real and virtual elements (in blue and red,
respectively).

Fig. 7. Periodic DDSA receiving pattern for equal amplitude signals from 10◦
and −25◦.

phase centers are actually randomized and GLs are partially
suppressed.

B. Simulation Results

A random-sized 20-subarray DDSA with number of ele-
ments of 6, 8, 12, 10, 14, 10, 8, 14, 18, 16, 33, 21, 31, 47, 53,
39, 65, 21, 45, 29 was first chosen on the basis of the lowest
GL level from 100 Monte Carlo simulation trials that ran-
domly assigned the number of elements of each subarray under
the constraint that the total number of elements in the DDSA
was 500. Element spacings are 0.48λ, and spacings between
subarrays are 4.8λ. The DDSA model is shown in Fig. 6.

Two signals of equal power coming in from 10◦ and −25◦

relative to broadside are used for this simulation. One of these
represents the desired signal from a point target and the other an
undesired signal such as clutter return from a hill or structure.
In a real scenario, the amplitudes and phases will be determined
by target radar cross section, clutter cross section, ranges, trans-
mitting antenna gain values, etc., but first we consider a simple
case of equal magnitudes and noncoherent phases (arbitrarily
chosen as π/5 and −4π/5) for the two signals.

The transmitting pattern has a Taylor amplitude taper with
parameters n = 5, SLL = −20 dB. On the receiving side, ther-
mal noise with an SNR of 6 dB is added to the I and Q
components at each real element.

A baseline receiving pattern of the periodic 20-subarray
DDSA (25 elements in each subarray) is shown in Fig. 7, for
reference. The plot gives the response of the array in the main
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Fig. 8. Receiving pattern for a DDSA with random subarray sizes and equal
amplitude signals from 10◦ and −25◦.

Fig. 9. DDSA with random subarray sizes and virtual filling of the receiving
array using 100 snapshots for equal signals from 10◦ and −25◦. A 35-dB
Taylor distribution was applied and the element SNR is 6 dB.

beam scan direction θs when signals are incident from the spec-
ified directions. A conventional filled array with low sidelobes
has large responses that occur in the directions of the signals,
whether desired or not, because the main beam is pointed in
their direction. A distributed array with gaps has large responses
not only in the directions of the signals when they are in the
mainbeam, but also when the signals are in the GL directions.

The receiving pattern of the random 20-subarray case is
shown in Fig. 8. The randomness has lowered the GLs but also
increased the average sidelobe level. In Fig. 9, the sidelobe level
of the receiving array has been lowered by virtually filling the
gaps between subarrays and applying a Taylor amplitude taper
(n = 5, SLL = −35 dB). The virtual elements used to fill the
gaps were estimated from 100 noisy snapshots (time samples)
of receiving signals.

To illustrate the effectiveness of the virtual method, the array
responses for varying element SNRs, incoming signal strengths,

Fig. 10. DDSA with random subarray sizes and virtual filling of the receiving
array using 30 snapshots for equal signals from 10◦ and −25◦. A 35-dB Taylor
distribution was applied and the element SNR is 6 dB.

Fig. 11. DDSA with random subarray sizes and virtual filling of the receiving
array using 30 snapshots for equal signals from 10◦ and −25◦. A 35-dB Taylor
distribution was applied and the element SNR is 0 dB.

and number of snapshots are shown in Figs. 10–14. The “orig-
inal array” is the pattern using the real elements. The “filling
processed” pattern results after the virtual filling processing.
Comparing Figs. 9 and 10 and Figs. 11 and 12 illustrates the
dependence of the response on the number of snapshots (100
vs. 30). A comparison of Figs. 9 and 12 and Figs. 10 and 11
gives an indication of how the response varies with element
SNR. The patterns in Figs. 13 and 14 show the array responses
for unequal signal amplitudes.

Comparisons verify that the virtually filled distributed array
has the same behavior as an array with no GLs and that ampli-
tude tapering can be applied. The processing tradeoffs are also
evident. The SNR per element can be traded off with num-
ber of snapshots. Increasing the number of snapshots increases
the required observation time, and therefore, delays the beam-
forming calculation, which in turn introduces latency into the
system.
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Fig. 12. DDSA with random subarray sizes and virtual filling of the receiv-
ing array using 100 snapshots for equal signals from 10◦ and −25◦. A 35-dB
Taylor distribution was applied and 0-dB element SNR.

Fig. 13. DDSA with random subarray sizes and virtual filling of the receiv-
ing array using 30 snapshots for 6-dB unequal signals from 10◦ and −25◦.
A 35-dB Taylor distribution was applied and the element SNR is 6 dB.

VI. TWO-WAY PATTERN DESIGN

A. Approach

Applying pattern multiplication, the normalized two-way
pattern is defined as

Fnorm2way
(θs, φ) = FnormTx

(θs, φ)× FnormRx
(θs, φ) (11)

where FnormTx
(θs, φ) is the normalized pattern of the transmit-

ting DDSA array, and FnormRx
(θs, φ) is the normalized pattern

of receiving DDSA array. Both beams are scanned to the same
angle θs. Using the two-way pattern multiplication approach,
we shall see that the remaining DDSA transmitting GLs can be
reduced by the pattern of the DDSA receiving array.

Suppose we use a combination of random subarray size and
locations for the transmitting DDSA and apply virtual filling

Fig. 14. DDSA with random subarray sizes and virtual filling of the receiving
array using 30 snapshots for 10-dB unequal signals from 10◦ and −25◦. A
35-dB Taylor distribution was applied and the element SNR is 6 dB.

Fig. 15. Periodic DDSA two-way pattern for equal amplitude signals from 10◦
and −25◦.

for the receiving DDSA illustrated in Fig. 6. Because of the
same aperture size, both transmitting and receiving patterns
possess the same main beamwidth. The low sidelobe attribute
of the receiving pattern can significantly reduce the GLs of the
transmitting pattern after the multiplication has been done.

B. Simulation Results

For comparison purposes, a two-way pattern of the periodic
DDSA is shown in Fig. 15. The two-way pattern shown in
Fig. 16 is obtained from the transmitting pattern and the filled
receiving pattern. The relative sidelobe level has gone down to
less than −50 dB without affecting the mainbeam.

Using the combination of random sizes and locations when
transmitting, and the virtual filling method when receiving, an
improved two-way pattern with an ultralow sidelobe level is
obtained.
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Fig. 16. Two-way scanning pattern of a DDSA with random subarray sizes
and virtual filling of the receiving array using 30 snapshots for equal amplitude
signals from 10◦ and −25◦. Taylor distributions were applied and the element
SNR is 6 dB.

VII. DATA SAMPLING, CALIBRATION, NOISE AND ERRORS

There are many conceivable radar architectures that could
incorporate subarrays with virtual elements, and since mod-
ern radars are tending toward completely digital, this virtual
approach might be only one of several modes of operation.
Although the proposed antenna system does not rely on com-
bined transmit and receive modules at each element, the tech-
nology to accomplish this has been demonstrated [23], and all
of the necessary components are commercially available in the
wireless frequency bands.

The data sampling requirements are dependent on the spe-
cific radar (carrier frequency, waveform parameters, bandwidth,
type of demodulation scheme used, etc.) A system level simula-
tion of the radar is required to optimize the antenna parameters
for a specific radar function.

The effectiveness of the virtual method is determined by the
accuracy of the signal DOA estimates used to find the virtual
element phases. For a practical application, noise and errors
cause degradation of the DOA estimates. Some types of error,
such as those due to manufacturing imperfections, mutual cou-
pling, quantization, and calibration errors [24], [25], can be
measured or predicted in advance and possibly be compensated
for by adjustment of the array weights [26], [27]. Thermal noise
appears in almost all receivers and is commonly modeled as
random from sample to sample. Here we will consider a com-
bination of the two types of error. One is a fixed error that
is random from element to element, but unchanging in time.
The second is random from sample to sample (i.e., between
snapshots).

We model the thermal noise at the element level by specify-
ing the element SNR. Low-noise amplifiers at each element can
be used to increase the element level SNR.

As an example, we use a five-subarray DDSA to examine
the effects of fixed errors on the DOA estimation and virtual
filling method. Each subarray comprised 10 elements with ele-
ment spacing equal to 0.45λ. Subarray center distances are 10λ.

Fig. 17. Performance comparison of contiguous, original DDSA, and virtual
filled array. Assuming no fixed errors and with 6-dB SNR at each element.
Taylor amplitude taper has been applied. Equal amplitude signals from 10◦
and −25◦.

Fig. 18. RMSE of DOA versus rms phase errors from 0◦ to 12.1◦ for different
element SNRs.

Fixed errors are uniformly distributed from −21◦ to 21◦ (root-
mean-square [rms] error [RMSE] values from 0◦ to 12.1◦), and
the SNR is varied from 6 to 21 dB at each element. We con-
sider two equal amplitude signals impinging on the DDSA from
DOAs of −10◦ and 15◦ relative to broadside. The receiving
patterns for 6-dB element SNR for the ideal contiguous array
of the same aperture size as the DDSA, the original DDSA,
and the virtually filled one are compared in Fig. 17. There is
about 20 dB of improvement in GL and sidelobe suppression
observed after applying the virtual filling method.

A DOA error leads to incorrect weights for the virtual ele-
ments, resulting in degraded GL suppression and SL reduction.
In order to quantify the effect of fixed errors on the DOA esti-
mation, a plot that compares the RMSE of the DOA versus rms
phase error for different SNR levels is shown in Fig. 18. The
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Fig. 19. Pattern comparison of contiguous, original DDSA, and virtual filled
DDSA for 21◦ fixed error and with 6-dB SNR at each element. Taylor ampli-
tude taper (n = 5, SLL = −30 dB) has been applied. Plots are normalized to
the contiguous error free case in Fig. 17.

Fig. 20. RMSE of DOA versus rms phase errors from 0◦ to 12.1◦ and 6-dB
SNR per element for different signal angles.

formula used to calculate the average RMSE of the DOA for K
signals is

RMSE =

√√√√√
K∑
r=1

[(
θ̂r − θr

)2
]

K
(12)

where θ̂r is the estimated angle, and θr is the true angle of signal
r. Two conclusions can be made.

1) The most efficient way to improve the RMSE of the DOA
is to increase the SNR at each element. Alternately, more
shapshots can be collected.

2) For rms phase errors less than 6◦ which correspond to
a fixed error of −10.5◦ to 10.5◦, the effect on DOA
estimation can be ignored for all SNRs considered.

In cases where the fixed errors can be compensated for
by precalculation or premeasurement, there will still be some

residual error after correction. We consider residual phase
errors up to 21◦ and examine how they degrade the radiation
pattern. Fig. 19 has a plot of the pattern of the worst case (21◦

fixed error) for a 6-dB SNR. Comparing Fig. 19 with Fig. 17,
we see that the effect of the fixed error on the receiving pattern
is to increase the sidelobe level and lower the main beam by
0.6 dB.

We also consider the effect of signal angle on the RMSE of
the DOA with fixed errors uniformly distributed between −21◦

and 21◦ and 6-dB SNR per element. As can be seen in Fig. 20,
because the projected aperture area decreases at large signal
angles, the RMSE of the DOA is increased.

VIII. SUMMARY AND CONCLUSION

This paper has focused on the fundamental issues of GL
suppression and error effects for DDSAs. In a general sense,
using more elements in an array system can potentially increase
the array gain when transmitting, and increase the output SNR
when receiving. Often the mechanical, structural, and opera-
tional limitations discussed in Section I can prohibit the use of
a large contiguous array on a platform. The idea of using sepa-
rated arrays that together form a DDSA is a potential solution to
this dilemma. The critical issues that must be addressed are cal-
ibration, time and frequency synchronization, error correction,
and GLs.

This study examined a combined approach to suppress the
GLs of a DDSA on both the transmitting and receiving sides.
Several conventional methods for GL suppression were men-
tioned in Section III. By combining several GL reduction
methods, such as random sizes and locations, the GLs can
be reduced more than when using any one of the methods
individually. Potential disadvantages, such as polarization loss,
hardware complexity, gain loss and limited suppression abil-
ity for large separations, restrict the use of the methods, and
therefore, tradeoffs need to be made accordingly.

Filling gaps between arrays with virtual elements for the
purpose of receiving processing allows a synthesized antenna
response that duplicates a contiguous array in a number of
directions that is limited by the total number of elements used
in the processing. The synthesized response has no GLs and
can have low sidelobes, as seen in Section V. As a first step
in the virtual processing, the signal amplitudes, phases, and
DOAs must be extracted from the real element I and Q sam-
ples. These data are used generate I and Q samples that would
be provided by virtual elements filling the gaps between dis-
tributed subarrays. Low sidelobes, interference rejection, and
an improved two-way pattern with an ultralow sidelobe level
were demonstrated for the virtual processed DDSA.
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