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Grating Lobe Suppression for Distributed Digital
Subarrays Using Virtual Filling

Bo-Kai Feng, Student Member, IEEE, and David C. Jenn, Senior Member, IEEE

Abstract—A receiving array processing method is presented that
synthesizes the antenna response of a contiguous array from the
outputs of physically separated arrays of subarrays. It involves
filling the gaps between the subarrays with “virtual” elements, thus
forming a contiguous array. Therefore, the synthesized pattern has
no grating lobes, and amplitude tapering for sidelobe control can
be applied. The contiguous array’s response can be duplicated in
a number of directions limited by the total number of elements.
The directions of interest would normally be those of the desired
signals (main beam) and interference or clutter (low sidelobes).
The directions of arrival of the signals of interest must first be de-
termined before synthesizing the contiguous array response. The
modified matrix pencil method has been extended to handle the
problem of multiple subarrays for both single and multiple snap-
shots. The performance of the synthesis method is examined as
a function of signal-to-noise ratio (SNR) per element and various
array parameters.

Index Terms—Distributed subarray antennas, grating lobe
suppression, matrix pencil method, virtual elements.

I. INTRODUCTION

OMPLETE digital control of amplitude and phase at

the element level of an array allows great flexibility in
beamforming. Modern radar and communications systems are
incorporating phased arrays with wider bandwidths, allowing
for the possibility that several systems on the same platform
can share arrays. A system that incorporates distributed digital
subarrays (DDSAs) working cooperatively as a single array
(thus forming an array of subarrays) can potentially increase
the output signal-to-noise ratio (SNR) and provide better spatial
resolution compared to using the arrays individually. However,
even if the individual array patterns have no grating lobes,
conventional beamforming with periodic subarrays will have
an output response with grating lobes, which is unacceptable
for most applications.

Many methods have been employed to reduce the grating
lobes, but all have their limitations and disadvantages. A
common approach is to place subarray nulls at grating lobe
locations using overlapping subarrays [1], but this severely
limits the array geometry. Another approach is to rotate or
tilt the subarrays, thereby reducing the periodicity [2]. The
grating-lobe level varies as 20log(1/N), where N is the
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number of subarrays. To be effective, this method requires a
large number of subarrays. Random or fractal element spacings
within the subarrays and randomizing the number of elements
between subarrays have been used [3]. Again, large numbers of
elements and subarrays are needed for truly random behavior,
and only modest grating lobe suppression is achieved (for a
128-element linear array, the improvement is about 6 dB) [4].
Multiplicative beamforming has also been applied to suppress
grating lobes [5], but the resultant gain loss (average of 6 dB
loss) is the main drawback of this method [6].

Multiple signals that impinge on an array can be either de-
sired (e.g., radar target return) or undesired (e.g., interference
or clutter). If the subarrays are widely separated, then closely
spaced grating lobes occur, and there will be many angles where
an undesired signal has a large response when the main beam is
scanned.

In this letter, we propose virtual filling of the gaps between
the subarrays to eliminate the grating lobes on receiving so
that the response of a single large contiguous array is syn-
thesized. Therefore, no grating lobes will appear as long as
element spacing within all subarrays is less than one half of the
wavelength. Furthermore, amplitude tapering can be applied
to the synthesized array to reduce interference and clutter. The
output response for the synthetic array mimics the response of
a contiguous array so that the mainbeam is in the direction of
the desired signal and the interference is in a low sidelobe.

The virtual approach was recently suggested in [7] to fill
gaps in the array matrices for super-resolution direction-of-
arrival (DOA) estimation. They use minimum weighted
norm (MWN) and super spatially variant apodization (Super-
SVA) for virtual filling, which requires more computational
power and large numbers of snapshots. Also, degradation in
performance was observed for coherent signals. In [8] and [9],
virtual elements were used within a single array, but only single
source and noiseless cases were considered. Here, a method
is presented to estimate the virtual element weights from the
in-phase (7) and quadrature ((}) baseband signals received by
the real elements. When multiple signals are incident, the in-
formation needed to reconstruct the contiguous array response
is the DOAs, magnitudes, and phases.

In Section II, the DDSA model is introduced. Because
DOA estimation is crucial to synthesizing the virtual element
weights, Section III discusses how some modified “single snap-
shot” DOA algorithms perform with regard to this problem.
A multiple snapshot algorithm is also described in Section III.
In Section IV, we present formulas for estimating signal
amplitudes and phases based on the DOAs. The dependence
on element-level SNR of the synthesized array response is
formulated. Section V contains a summary and conclusions.
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Fig. 1. Linear distributed digital subarray model. Black filled dots are real el-
ements, and nonfilled dots are virtual elements.

II. DDSA MODEL

For simplicity, we consider a linear array of V identical sub-
arrays. Each subarray contains M elements that are equally
spaced d along the x-axis as shown in Fig. 1. The gap between
subarrays is D = hd, where h is an integer greater than zero
(i.e., the gap is an integer multiple of the element spacing as
shown in Fig. 1).

If the entire array is centered at the origin, the location of
element m in subarray n is

NM+(N-1)h+1
m— aald 5 Jh+ +(n—1)(M+h)|d

(n=1,2,...,N; m=1,2,...,M).

(D
If there are K’ < N M signals incident on the array from angles
fs (s =1,2,..., K) with complex voltages V,e/?+ the element

outputs can be expressed in phasor form (¢’ time dependence)
as

x(n,m) =

= P(n,m)d

K
A(n,m) = Z Vi exp(—jkP(n, m)dsin 0, + jos)
s=1

=I(n.m)+ jQ(n,m) 2)

where k = 2r /A () is wavelength).

III. DOA ESTIMATION AND EFFECT OF NOISE

For DOA estimation, only real elements are used. From mea-
surement of the 7 and () at the real elements, the signal parame-
ters § and V. e/%+ can be estimated. Thermal noise is accounted
for by adding a complex noise to the A(n,m) in (2). The noise
leads to an error in the parameter estimates, which in turn re-
sults in a distortion of the synthesized antenna response. Nu-
merous DOA estimation algorithms are available, but the matrix
pencil (MP) method performs particularly well for single-snap-
shot noisy data. It utilizes singular value decomposition (SVD)
to divide the matrix space into signal and noise subspaces. By
discarding the eigenvector corresponding to the noise signal, the
noise effect can be reduced and hence the estimation accuracy
can be improved. In principal, MP requires only a single snap-
shot, but it can be extended to multiple snapshots, thus resulting
in a lower root mean square error (RMSE) [10].

We propose an extension of the MP method that is tailored to
the DDSA by arranging the Hankel matrices of each subarray
from top to bottom sequentially. Let Y,, be the Hankel matrix
for subarray n
A(n, 1) A(n, L)
Y, = . .

A, M — L+ 1) Aln, M)

[(M—L4+D)]xL

)
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Fig.2. RMSE of DOA for one signal versus SNR per element for various num-
bers of subarrays. Each subarray has eight elements spaced .42\, and gaps are
equal to the subarray size.

so that for a single snapshot (SS)
Y,
Yss=| . “)
Yun [(M-L+1)N]xL
L is the pencil parameter that is selected between M /3 and M /2
for best noise reduction [11].
The multiple-snapshot MP can be considered as a concatena-
tion of multiple columns of single-snapshot MP. If Y, , is the
Hankel matrix for snapshotp (p = 1,2, ..., P) of subarray n

Y.,
Ap(n, 1) Ap(n, L)
A,(n.M — L+1) Ay(n, M) (M- L+1)x L
(5)
then for multiple snapshots (MS)
Y1 Y.r
Yus = : : - (6)
Yni1 Ynr

[(M-L+1)N]x(LP)

Note that computational time increases with the number of
snapshots. Some advantages of using multiple snapshots are to
stabilize the DOA estimation for a small number (one or two)
of subarrays with low SNR (0—4 dB). The RMSE of DOA esti-
mation tends to decrease as the number of snapshots increases.
However, in terms of DOA estimation, the average of multiple
single snapshots will provide more accurate results compared to
the multiple snapshot case as in (6).

After the matrices for the DDSA are formed, the standard MP
procedure for finding the DOAs of signals in the noisy environ-
ment is applied [12].

The improved performance of the angle estimates from the
modified matrix pencil method was verified using a Monte Carlo
simulation with 100 trials. First, a signal is incident from 30°
with phase 7 /5 radian onto a DDSA composed of five eight-
element linear arrays with an element spacing of 0.42A. The
spacing between subarrays is 3.36A. The advantage of using
the modified matrix pencil method can be observed in Fig. 2. It
can be seen that for one subarray (i.e., small N A{) at low SNR,



FENG AND JENN: GRATING LOBE SUPPRESSION FOR DISTRIBUTED DIGITAL SUBARRAYS USING VIRTUAL FILLING

0.454

—+— |-subarray
—8—2-subarrays
—¢—3-subarrays
—¥—4-subarrays
—— 5-subarrays

o
'S

=
w
&

0.25[ >

RMSE of DOA (degree)
o
(]

=
G

o

o
(=3
G

(=)
W
St
v

SNR (dB)

Fig. 3. RMSE of DOA for signal 1 versus SNR per element for various num-
bers of subarrays. Each subarray has 80 elements spaced 0.42A, and gaps are
equal to the subarray size.
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Fig. 4. RMSE of DOA for signal 2 versus SNR per element for various num-
bers of subarrays. Each subarray has 80 elements spaced 0.42X, and gaps are
equal to the subarray size.

the RMSE of the DOA is high. As expected, employing more
subarrays makes the estimates much more accurate.

Next, we increase the number of elements in the DDSAs from
8 to 80. The gaps are now 80d = 33.6) long. Also, the number
of signals is increased to two: one from 30° and a second from
31°. The phases of the signals are x/5 and —47 /5, respec-
tively. From the curves in Figs. 3 and 4, it can be seen that the
increasing the number DDSAs provides much smaller RMSE
even at low SNR (0 dB) for the two signals. If the fast Fourier
transform (FFT) method [13] were used at the subarray level, the
beamwidth would be too wide to resolve the two closely spaced
signals. Just as for the single-target case, using more subarrays
in the processing results in much more stable and accurate re-
sults, which is crucial for effective “filling.”

IV. SUBARRAY FILLING METHOD

The complex signal at the output of the elements can be
written in terms of the estimated angles as

K
Aln, 1) = Z Vs exp(—jkP(n, 1)dsin ;) exp(jds)

s=1

K
Aln, M) = Z Vs exp(—jkP(n, M)dsin 85) exp(jés).
s=1

O]
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Casting these in matrix form gives

E,V=A, ®)
where
efjk:P(n,l)dsin 01 efjkP(n,l)dsinOK
E, = : .
e—jkP('n,xM')d sin 61 6—;/kP(n:AI)d sin 8 i XK
)
Viel®t A(n, 1)
V= : and A, = :
Ve / ey Al M) /3y
(10)

To estimate signal magnitudes and phases, a least-squares
method can be used that employs all subarray element out-
puts [11]. They are assembled column-wise and solved to
obtain estimates of the complex signals V

A E \ A,
: =1 : : n
Vi Kx1 Ex NMxK An NMx1
Note that adding subarrays increases the total number of ele-
ments and thus the number of signals that can be handled.

Now the estimated signal magnitudes V; and phases ¢, can
be used to create virtual complex data to “fill” the gaps between
subarrays. Since an incident plane wave is assumed, an ampli-
tude equal to the real elements is used, along with a linear phase
based on the known or estimated DOA. The location of virtual
element r in gap ¢ (between subarrays ¢ and ¢ + 1) is

x(i,r)

(T (N-2)M 4 (N-Dht 1oy h)) ]

= Z(i,r)d (r=12,...,hi=1,2,...,.N - 1)

and the complex data for filling is given by the same formula as
for the real data in (2)

K
B(i,r) =Y Viexp(—jkZ(i,r)dsin8,) exp(jps).  (13)

s=1

Combining the real and virtual data gives the response of the
synthesized array

F=[(A1)ixa(Bi)ixn---

By 1)ixn(An)ixmlixvartv—1yn)  (14)

where the B partitions are compoed of the terms given by (13).
F represents the complex outputs of the synthesized array in the
K signal directions. Multiplying by the desired beamforming
weights and summing give the array response.

Consider a five-subarray DDSA with 30 elements in each
subarray and an element spacing of 0.42). The subarray length
is 12.6A. The gaps are also (arbitrarily) set to 12.6\. One unit
amplitude signal is incident from 0° with a phase of 7/5. A
second interference signal is coming in at 2.3° with a phase
—4w /5. The pattern is shown in Fig. 5 as the weights are
changed to scan the main beam in a region of direction cosine
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Fig. 5. Comparison of original and synthesized antenna responses of five sub-
arrays each with 30 elements, for signals of equal power (noiseless) incident
from 0° and 2.3°.
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Fig. 6. Comparison of original and synthesized antenna response after virtual
filling for an element level SNR of 6 dB with 20 dB sidelobe tapering.

TABLE 1
EXACT AND ESTIMATED SIGNAL PARAMETERS FOR VIRTUAL PROCESSING
Estimated Estimated
Actual :
Parameter (mean) (variance)
Signal 1 Signal 2 Signal 1 Signal 2 Signal 1 Signal 2
DOA 0 2.3 0.0356 2.2965 0.1808 0.2878
(degrees)
Amplitude 1 1 09630 | 09533 | 0002 | 0.0034
(Volts)
Phase | 6283 | 2.5133 | 06371 | 25045 | 0.0018 | 0.002
(radians)

space (sin #). A 20-dB Taylor amplitude distribution is applied.
As can be seen, the high response of the interfering signal
that occurs at grating lobe locations has been eliminated. The
synthesized array response in the direction of both signals is
the same as that of a contiguous array.

Fig. 6 shows the average synthesized array response for the
same case shown in Fig. 5, but with an SNR per element of 6 dB
(single snapshot). Table I summarizes the results of a Monte
Carlo simulation of 30 trials (equivalent to 30 single snapshots)
using (4) for the five-subarray two-signal case used to generate
Fig. 6.

The effectiveness of the virtual approach relies on having ac-
curate angle estimates for the signals of interest, which in turn
requires a high effective array SNR (i.e., large N M if the SNR
per element is low; high SNR if the total number of elements
NM is small). The SNR per element can be increased by adding

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 12,2013

a low noise amplifier or increasing the gain of the array element.
It is also possible to improve the DOA estimates with multiple
snapshots or by averaging multiple single snapshots.

V. SUMMARY AND CONCLUSION

Filling of the gaps between arrays with virtual elements for
the purpose of receiving processing allows a synthesized an-
tenna response that duplicates a contiguous array in a number of
directions that is limited by the total number of elements used
in the processing. We have neglected the effects of errors and
assumed that common time and frequency references are avail-
able to all subarrays.

As a first step, the signal amplitudes, phases, and DOAs must
be extracted from the real element I and () samples. The ex-
tracted signal parameters are used to generate / and () data
that would be provided by virtual elements filling the gaps be-
tween subarrays. Low sidelobes and interference rejection were
demonstrated for the virtual processed DDSA.

The matrix pencil method was found to be well suited for this
application. The MP technique was extended to handle multiple
subarrays, for either single or multiple snapshots. Multiple snap-
shots provide improved stability in a low-SNR situation. This
method can deal with coherent and noncoherent signals and re-
quires fewer snapshots for accurate DOA estimation.

The proposed filling method allows suppression of undesired
signals that would normally occur at grating lobe angles. It was
shown that, for high SNR, the response approaches that of a
contiguous array of the same extent.
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