Overview of Antennas for UAVs

Prof. David Jenn
833 Dyer Road, Room 437
Monterey, CA 93943
(831) 656-2254
jenn@nps.navy.mil
http://web.nps.navy.mil/~jenn
Antenna Systems for UAVs

- Antennas are required for a wide variety of UAV systems.
- Antenna requirements depend on the specific platform and mission:
 > Radar/Electronic Warfare
 > Communications
 > Data links
 > GPS/geolocation
 > Other sensors (biological, chemical, etc.)

- Ground station antennas not addressed here.
UAV Antenna Issues

- For airborne applications:
 - Size, weight, power consumption
 - Power handling
 - Location on platform and required field of view (many systems compete for limited real estate)
 - Many systems operating over a wide frequency spectrum
 - Isolation and interference
 - Reliability and maintainability
 - Radomes (antenna enclosures or covers)
- Accommodate as many systems as possible to avoid operational restrictions
- Signatures must be controlled: radar cross section (RCS), infrared (IR), acoustic, and visible (camouflage)
- New architectures and technologies are being applied to UAVs
Antenna Performance Measures

- Gain, rule of thumb: \(G = \frac{4\pi Ae}{\lambda^2} \)
 - \(A = \) area, \(\lambda = \) wavelength
 - \(e = \) efficiency \((0 < e < 1)\)
- Field of view or beamwidth
 - usually half power, HPBW, \(\theta_B \)
- Polarization
- Sidelobe level
 - maximum
 - average
- Antenna noise temperature, \(T_A \)
- Operating bandwidth
 - instantaneous
 - tunable
- Radar cross section
 - in band
 - out of band
“New” Antenna Technologies for UAV Applications

• Some “new” concepts have been around since the 1960s, but have only recently become practical due to advances in computers and micro devices
• New technologies and architectures include:
 > Solid state (active antennas) > Adaptive
 > Conformal > Reconfigurable
 > Smart antennas > Multiple beams
 (“smart skins” or “living skins”) > Photonics
 > Superconductivity > Digital beamforming
 > Genetic algorithms > Fractal antennas
 > Wide band (shared apertures)
 > Frequency selective devices and surfaces
 > New and exotic materials

Note: Most of these terms are not precisely defined and they are not mutually exclusive. An antenna can fall into multiple categories.
Antenna Installation Options

- The choice may limit operation of the system or degrade its performance
-Externally mounted
 > structural/environmental stress
 > if non-retractable, always in view
 > if retracted, system unusable
- Conformal surface mounted
 > aerodynamic (low profile)
 > curvature complicates design and manufacture
- Radome enclosures
 > controlled environment
 > inefficient use of volume
 > radome loss
 > wider field of view (FOV)
 > includes “pods”
Motivation for Wide Bandwidth

- Bandwidth is the range of frequencies over which the antenna has “acceptable” performance.
- Trend is toward wide band wave forms:
 - low probability of intercept
 - frequency hopping
 - multiple channels (i.e., orthogonal frequency division multiplexing)
 - high resolution and data rates
- Shared aperture (multi-mission) antenna: a single antenna used for all EM sensors (radar, EW, comms, etc.)

Bandwidth, \(B = f_H - f_L \)

Center frequency, \(f_o = (f_H + f_L)/2 \)

• Definitions (not standardized)
 - narrow band: < 2%
 - wide band: 2-10%
 - ultra wide band: > 10%
Wide Bandwidth Approaches

- Single radiating structure that operates over the entire frequency band
 \[d_{\text{max}} > \frac{\lambda}{2} > d_{\text{min}} \]

- Collection of nested or integrated narrow band antennas

\[\Delta f_1 \quad \Delta f_2 \quad \vdots \quad \Delta f_N \]
Frequency Selective Surfaces (FSS)

• Example of a FSS element (tripoles)

• Band-stop frequency characteristic

• Applications:
 > stealth -- shield antennas at high out of band frequencies
 > antennas -- reflector antennas; array ground planes (below)

- Diode Length at Low Frequencies
- Diode Length at High Frequencies
- ≈ \(\lambda/4\) at High Frequencies
- ≈ \(\lambda/4\) at Low Frequencies

- High Frequency Feed Points
- Low Frequency Feed Points
Multiple Beams

- Multiple beams share the same aperture (they exist simultaneously)
- Cover large spatial volumes quickly
- Receiver on each beam (increases the system bandwidth)
- Beam coupling losses
- Increased complexity

![Diagram of antenna elements and beam patterns]
Active vs. Passive Antenna

- Receive architecture

- Can be applied to transmit antennas using power amplifiers
- Transmit and receive channels are packaged together to form T/R modules
Digital Beamforming (DBF)

\[y(t) = \sum_{n=1}^{N} w_n s_n(t) \]

- The complex signal \((I\text{ and } Q, \text{ or equivalently, amplitude and phase})\) are measured and fed to the computer.
- Element responses become array storage locations in the computer.
- The weights are added and the sums computed to find the array response.
- In principle any desired beam characteristic can be achieved, including multiple beams.
Digital Beamforming (DBF)

• Direct conversion to baseband is preferred, but high speed A/Ds are a problem
• Receive channel: (down conversion using two mixing stages)

• Transmit channel (up conversion using one mixing stage)
Conformal Antennas

- Conformal antenna apertures conform to the shape of the platform
- Typically applied to composite surfaces; the antenna beamforming network and circuitry are interlaced with the platform structure and skin
- Can be active antennas with processing embedded (i.e., adaptive or “smart”)
- Self-calibrating and fault isolation (errors and failures detected and compensated for or corrected)
- Can be re-configurable (portion of the aperture that is active can be changed)
- Infrared (IR) and other sensors can be integrated into the antenna
Mutual Coupling

- Elements in an array interact with each other (patterns of edge elements deviate from those in the center)
- Example: 10 element array (element 1 is at edge; element 5 at center)

Individual dipole element H-plane patterns (infinite ground plane)
Conformal Shapes

- Curvature must be considered in the design process, or pattern distortion occurs.
- Example below: finite ground plane, mutual coupling included.
Patch Antennas

- Lend themselves to printed circuit fabrication techniques
- Low profile - ideal for conformal antennas
- Circular or linear polarization determined by feed configuration
- Difficult to increase bandwidth beyond several percent
- Substrates support surface waves
- Lossy
- Feeding methods:
True Time Delay for Wide Band Scanning

For wideband scanning the phase shifter must provide true time delay

\[k = \frac{2\pi}{\lambda} = \frac{2\pi f}{c} \]

BEAM SCANNING USING CABLES TO PROVIDE "TRUE TIME DELAY"

BEAM SCANNING WITH PHASE SHIFTERS GIVES A PHASE THAT IS CONSTANT WITH FREQUENCY
Fiber Optic Beamforming

- Fiber optic beamforming architecture and T/R module
- Conversion loss from microwaves to light > 20 dB (as of 1998)
Photonic Time Delay Phase Shifters
Photonics for Reconfigurable Arrays

- High energy beams are used to produce conducting antenna-shaped regions (left)

- Laser excitation of the switch activates a particular portion of the aperture (below)
MMIC

- Monolithic microwave integrated circuit (MIMIC): All active and passive circuit elements, components, and interconnections are formed into the bulk or onto the surface, of a semi-insulating substrate by some deposition method (epitaxy, ion implantation, sputtering, evaporation, or diffusion)
- Technology developed in late 70s and 80s is now common manufacturing technique
- Advantages:
 > Potential low cost
 > Improved reliability and reproducibility
 > Compact and lightweight
 > Potentially broadband
 > Design flexibility and multiple functions on a chip
- Disadvantages:
 > Unfavorable device/chip area ratios
 > Circuit tuning not possible
 > Troubleshooting is a problem
 > Coupling/EMC problems
 > Difficulty in integrating high power sources
Smart Antennas

• Antennas with built-in multi-function capabilities and processing are often called smart antennas
• If they are conformal as well, they are known as smart skins
• Functions include:
 > Self-calibrating: adjust for changes in the physical environment (i.e., temperature)
 > Self-diagnostic (built-in test, BIT): sense when and where faults or failures have occurred
• Tests can be run continuously (time scheduled with other system functions) or run periodically
• If problems are diagnosed, actions include:
 > Limit operation or shutdown the system
 > Adapt to new conditions when processing, or reconfigure the antenna
T/R Module Concept

- Transmit and receive channels for each element are side by side
- Depth is a disadvantage, but module replacement easy

- F-15 radar
T/R Tile Concept

- Low profile
- A point failure requires that the entire tile be replaced

From paper by Gouker, Delisle and Duffy, *IEEE Trans on MTT*, vol 44, no. 11, Nov. 1996
Radomes

- Radome must be transparent in the operating band
- Protects the antenna from the environment
- The antenna pattern with a radome will always be different than that without a radome
- Radome effects on the antenna pattern:
 1. beam pointing error from refraction by the radome wall
 2. gain loss due to loss in the radome material and multiple reflections
 3. increased sidelobe level from multiple reflections
Superconductivity

- Reduces loss in feed lines (as much as 25 dB for a 16 element array operating at 60 GHz)

- Makes possible “super-directive” arrays
 > gain much higher than expected for the given array area
 > requires some feed lines to have very high current, and therefore P^2R losses are prohibitive in conventional conductors
Antenna Temperature

- Antenna noise temperature is specified in degrees Kelvin
- Indication of the noise power out of the antenna when no signal is present
- Depends on background radiation
- Especially important when very low signal power is expected
Example: Mini- and Micro-SAR

- **MicroSAR**
 - 0.3 m Resolution
 - 2 km Sensor Range
 - 1 lb Payload
 - Ka-band Radar Design
 - Innovative Motion Compensation
 - Suitable for mini UAVs
 - May be Further Miniaturized for MAVs

- **MiniSAR**
 - 0.1 m Resolution SAR
 - 10 km Sensor Range
 - MTI Mode
 - 15 lb Payload
 - Ku-Band

MiniSAR installed

http://www.imicrosensors.com/
Vertical Takeoff UAV

- USN VTUAV has multiple missions
- Use EM simulation codes to study
 > antenna placement
 > effect of nearby structure on patterns
 > interference with other systems

VTUAV mesh model

Pitch, roll, and yaw patterns
JSOW Captive Carry

- Problems similar to a UAV
 - blockage
 - radome losses

Gain specification
(dashed)

HPBW contour of captive antenna
(solid)