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Abstract

Deciding how to jointly schedule jobs and perform preventive maintenance

is a fundamental problem in flexible manufacturing systems, particularly those

arising in semiconductor manufacturing. At the same time, past work in this

area shows that, even when there is only one station and one type of job, identi-

fying policies that minimize the amount of work-in-process (WIP) is also a dif-

ficult problem. In this paper, we study a single-station version of this problem

wth two types of jobs, with the objective of minimizing average maintenance

costs plus the weighted average amount of WIP. We identify conditions under

which it suffices to schedule jobs according to both a server-state-dependent

version of the cµ-rule, and a static cµ-rule where the average service rates are

used. One of these conditions states that the ratio between the service rates

should remain constant as the server deteriorates. When this assumption does

not hold, scheduling with the cµ-rule can in fact lead to an unstable system;

we illustrate this using a simple example. On the other hand, we also present

numerical evidence that cµ-based scheduling performs well compared to other

scheduling rules, and relative to an “optimal” policy based on solving a Markov

decision process.



1 Introduction

The yield of a manufacturing process, defined as the fraction of output that is of suf-

ficient quality, is a key economic performance indicator; see e.g., [3]. In semiconduc-

tor manufacturing, yield improvement has been recognized as an effective means of

managing costs and sustaining profitability [2]. In particular, yield increases on the

order of even 1-2% can lead to significant savings in wafer manufacturing costs [9].

One of the key determinants of yield is the health of the machines processing

the jobs that eventually become finished products. As the underlying condition of

a given machine deteriorates, the increased frequency of significant process devia-

tions (as identified by, e.g., statistical process control procedures [24]) leads to more

re-work and tuning, which in turn reduces the rate at which good products are pro-

duced (i.e., the “service rate” of the machine). Eventually, it can become worthwhile

to take the deteriorated machine offline for maintenance, after which the service rate

is improved.

The need for good maintenance policies, and the increasing prevalance of sen-

sorized equipment in the semiconductor and other advanced manufacturing indus-

tries, has led to the emergence of condition-based maintenance (CBM) as a poten-

tially cost-effective alternative to more commonly used age or job-based mainte-

nance rules [8, 13]. At the same time, almost every machine used to process jobs in

the semiconductor manufacturing setting is flexible, in the sense that it can be used

to process more than one type of job. Hence a fundamental problem in semicon-

ductor manufacturing, and more generally in flexible manufacturing systems with

deteriorating equipment, is how to simultaneously (1) allocate jobs to flexible ma-

chines that deteriorate over time, and (2) perform preventive maintenance on those

machines.
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When there is a single operation to be performed, Kaufman and Lewis [17] show

the difficulty in developing control policies that use as inputs both the current work-

load in the system and the condition of the machine. This leaves a broad class of

manufacturing system configurations, which includes configurations arising in the

semiconductor industry, without guidance on how to consider the trade-offs be-

tween resource allocation and resource maintenance. In this paper, we consider the

question of joint maintenance and scheduling in a parallel queueing setting. When

there are two classes of jobs, the manager can decide to assign a single resource

(henceforth called a server) to either class, or to begin preventive maintenance. The

goal is to provide adequate service (in the form of minimizing weighted queue-

lengths) to each class, while noting that a deteriorated server works slower. Since

[17] shows in the single queue setting that the usual monotonicity properties of an

optimal control do not hold, there is little hope of finding simple solutions to the

scheduling/maintenance pairing. Instead, we seek insights into the following ques-

tions:

1. Given a choice between prioritizing scheduling or maintenance, where should

a decision-maker focus his/her efforts?

2. Under what conditions can classic scheduling/maintenance results be used to

create useful heuristics?

We provide an answer to both questions by presenting conditions under which

scheduling with a natural extension of the classic cµ-rule is without loss of opti-

mality (Theorem 5), and numerical results indicating that this heuristic performs

well more generally (Section 5).
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1.1 Related Literature

The two types of decisions described above, namely maintaining a deteriorating

machine and scheduling jobs in a queueing system, have typically been considered

separately in the literature. In particular, the majority of papers in the maintenance

literature do not consider the effect that the amount of work in the system (i.e., the

queue length) may have on optimal maintenance decisions; see e.g., the surveys

[18, 20, 22, 25]. Two papers where such effects are accounted for, via models that are

very closely related to the one presented in Section 2, are Kaufman and Lewis [17]

and Cai et al. [5], which we describe in more detail below. Moreover, while previ-

ous work such as that of Andradóttir et al. [1] and Wu et al. [26, 27] has accounted

for server failures in the context of queueing models of flexible manufacturing sys-

tems, with the exception of Cai et al. [5] we are not aware of any other work in this

area that combines scheduling with maintenance decisions. We note that there has

been recent work on joint scheduling and maintenance in the contexts of determinis-

tic scheduling [14], developing metaheuristics [7], and mixed-integer programming

that incorporates constraints specific to semiconductor manufacturing [6, 28].

Kaufman and Lewis [17] analyze the structure of optimal maintenance policies

for the server of an M/M/1 queue with only one type of job, where the service

rate deteriorates according to a pure-death process. In particular, [17, Example 3.6]

shows that the optimal policy under the average cost criterion may not be monotone

in the queue lengths. For certain deterioration levels it may be optimal to perform

maintenance when there are no queued jobs, not perform maintenance when there

are few queued jobs, and to perform maintenance for all sufficiently large queue

lengths. On the other hand, [17, Theorems 3.2, 4.2; Proposition 4.10] provide con-

ditions under which there is an optimal policy that is monotone in the state of the
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server. This means that there is an optimal policy with the following structure: For

each fixed number of queued jobs i, there is a threshold s∗i such that maintenance

is performed if and only if the deterioration level is worse than s∗i . Finally, numeri-

cal experiments are presented [17, Section 5] that illustrate some pitfalls associated

with using some simple and natural heuristics, underscoring the difficulty of the

problem.

Cai et al. [5] consider anM/G/1 queueing model with at most two types of jobs,

which is motivated by potential semiconductor manufacturing applications. In this

model, the service and deterioration dynamics differ from those in [17]. In particu-

lar, jobs cannot be preempted while they are being served, and deterioration events

can only occur when a service completion occurs. On the other hand, while in [17]

it is assumed that at each deterioration event the server moves to the “next-worse”

state with probability 1, the model in Cai et al. [5] allows the server to move, as

a result of a single deterioration event, to any state that is worse. For this model,

analogous results to the ones in [17] hold. Namely, the optimal policy may not be

monotone in the number of jobs [5, Section 5], but under certain conditions there

exists an optimal policy that is monotone in the state of the server [5, Theorems 3.3,

4.3]. In addition, for the case of two types of jobs, it is shown that it may be sub-

optimal to always prioritize a job type that seems, from a cost and deterioration

perspective, to be superior to the other [5, Section 4.2]. A monotonicity result [5,

Theorem 4.4] on the value function when one job type is superior to the other in the

aforementioned sense is also provided. Finally, numerical results [5, Sections 5,6]

are presented to illustrate the savings that an optimal joint scheduling and mainte-

nance policy can provide, relative to first-in first-out scheduling and maintenance

after a fixed number of jobs have been completed.

In this paper, we consider joint scheduling and maintenance in the context of a
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G/M/1 queue with two types of jobs1. As in Kaufman and Lewis [17], and in con-

trast to Cai et al. [5], we assume that jobs can be preempted by the decision-maker,

or interrupted by a failure event. We also consider deterioration dynamics that are

more general than those in [17], and which differ from those in [5]. In particular,

in [5] it is assumed that deterioration events must coincide with service comple-

tions, but that deterioration rates can depend on which type of job is worked on. In

contrast, we assume that deterioration events can happen at any time, but that the

deterioration rates are the same for both job types. While Cai et al. [5] argue that

work-dependent deterioration is important for certain semiconductor manufactur-

ing applications, Sloan and Shanthikumar [23] note that for some wafer fabrication

processes, such as in etch operations, it is reasonable to assume that deterioration

does not depend on the type of job.

1.2 Contributions and Outline

The main contributions of the paper are as follows. After presenting the schedul-

ing and maintenance model in Section 2, we consider the problem of scheduling in

the presence of a deteriorating server in Section 3, without preventive maintenance.

We provide a condition (Assumption CR) under which it is optimal to schedule the

jobs according to a static priority rule, when the service rates are modulated accord-

ing to a (possibly non-Markovian) point process; see Theorem 2 and Remark 3. In

addition, Example 1 shows that, when the conditions of Theorem 2 do not hold,

scheduling according to the aforementioned priority rule can in fact lead to an un-

stable system, in the sense that the average number of queued jobs grows to in-

finity. From the perspective of system design, this provides a strong incentive to

1All of our results extend to the case of a finite number of job classes
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invest in ensuring that Assumption CR below holds. Next, in Section 4 we return

to the joint scheduling and maintenance problem. We use the results in Section 3

to provide conditions under which it suffices to search for an optimal policy among

those that schedule according to a priority rule and that monotone in the state of

the server (Theorem 7). In Section 5, we provide numerical results indicating that

the priority-rule based scheduling policies considered in Section 4 can perform well

across a range of system parameters. The numerical results also underscore the

value of good maintenance policies, and of incorporating service rate information

in scheduling and maintenance policies. This latter point was also observed by Ira-

vani and Duenyas [16], in the context of a single job type. Finally, conclusions and

future research directions are presented in Section 6. Unless otherwise indicated,

proofs of stated results are provided in Appendix A.

2 Joint Scheduling and Maintenance Model

Two classes of jobs arrive randomly over time. Each arriving job requires a random

amount of work, and all incoming work is processed by a single server. The arrival

times of the jobs are modeled by independent point processes on R+ := [0,∞), while

the amount of work required by each arriving job is assumed to be exponentially

distributed with unit mean, independently of the other jobs. It is assumed that the

arrival process is regular, in the sense that with probability 1, there can be at most a

finite number of arrivals during any finite interval of time.

Jobs of the same class are homogeneous. However, both the cost incurred by a

waiting job and the time required to complete a job depend on the job’s class. For

k = 1, 2, the cost incurred by a waiting job of class k is assumed to accumulate

continuously at a constant rate ck.
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As time progresses, the health of the server deteriorates. This is modeled by as-

suming that when the server is able to perform work, it spends a random amount of

time in its current state s ∈ {0, 1, . . . ,S} before deteriorating to a state that is at least as

bad. In particular, lower numbered states indicate worse health. In addition, given

that a deterioration event has occured, the probability that the server then transi-

tions to state ` from its current state s is q(`|s), where q(`|s) = 0 if ` > s. Once the

server’s state reaches 0, it undergoes maintenance for a random amount of time, af-

ter which it returns to state S. We assume that the times at which the server changes

state are independent of both the amount and the nature of the work that the server

has completed. In particular, the random times at which the server changes state are

modeled by a point process on R+ that is independent of the arrival processes and

work requirements. Like the arrival processes, this process of deterioration times is

also assumed to be regular.

The rate at which the server can complete work of a given class depends on the

server’s health. If the state of the server is s, then the rate at which it can complete

work of class k is µsk. We assume that µ0
k = 0 < µ1

k 6 · · · 6 µSk < ∞ for each

class k = 1, 2. In other words, the server cannot complete any work while it is

undergoing maintenance (i.e., is in state 0), and higher-numbered states indicate

less deterioration.

For ease of exposition, the server is referred to as being online if its state is not 0,

and offline if its state is 0. In addition, the server is said to deteriorate if it transitions

from state s > 2 to ` > 1, and fails if it transitions to state 0 without the influence

of the decision-maker. Whenever a failure occurs, corrective maintenance (CM) is

initiated at cost Kc > 0. When the server is online, the decision-maker can initiate

preventive maintenance (PM), which is modeled as an instantaneous transition of the

server state to 0 at cost Kp > 0.
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In addition, when the server is online and there is a job in the system, the server

may be assigned to work on that job. Since jobs of the same class are assumed to

be homogeneous, we equate selecting a job to work on with selecting which class to

assign the server to.

The decision-maker is only able to exert control over the server at decision epochs,

which occur whenever one of the following events occurs:

• A job arrives and the server is online.

• A job is completed and the server is online.

• The server deteriorates or fails.

• The server comes back online (from state 0).

Accordingly, jobs that are currently in service may be preempted.

At each decision epoch, the decision-maker knows the current state of the sys-

tem, i.e., the number ik of jobs of each class k ∈ {1, 2} present and the state s ∈

{0, 1, . . . ,S} of the server. Let X := {0, 1, . . . }2 × {0, 1, . . . ,S} denote the set of all pos-

sible system states. In addition to the current state, the decision-maker also knows

the history of the system (i.e., the past queue lengths, server states, and event times)

up to the current decision epoch. In deciding whether to serve one of the classes

or initiate PM, the decision-maker follows a policy π that prescribes (possibly in a

randomized way) the action to take at each decision epoch, given the current state

and history of the system. We restrict attention to policies that are non-idling (i.e.,

never call for an online server to idle when there is work to do) and non-anticipative

(i.e., do not depend on future information). Let Π denote the set of all such policies.

Of particular interest are the deterministic stationary policies; under such a policy π,

the action π(x) is taken whenever the system is in state x ∈ X.
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We compare policies on the basis of the long-run average cost per unit time in-

curred from a given initial state. To define this optimality criterion, fix any π ∈ Π.

LetQπ1 (t) (resp. Qπ2 (t)) denote the number of jobs in class 1 (resp. 2), including those

in service, at time t. Also, let Sπ(t) denote the state of the server at time t under π,

and let Mπ
c (t) (resp. Mπ

p(t)) equal 1 if CM (resp. PM) is initiated at time t under π,

and let Mπ
c (t) (resp. Mπ

p(t)) equal 0 otherwise. Finally, for n = 1, 2, . . . let tπn denote

the nth decision epoch under π.

If the system is in state (i1, i2, s) ∈ X at time 0, then the long-run expected average

cost per unit time that is incurred by following the policy π is

wπ(i1, i2, s) := lim sup
T→∞

1
T

E

 ∑
n:tπn6T

[
KcM

π
c (t

π
n) +KpM

π
p(t

π
n)
]
+

∫T
0

2∑
k=1

ckQ
π
k(t) dt

∣∣∣∣
Qπ1 (0) = i1, Qπ2 (0) = i2, Sπ(0) = s

]
.

A policy π∗ ∈ Π is optimal if wπ∗(i1, i2, s) = minπ∈Πwπ(i1, i2, s) for every initial state

(i1, i2, s) ∈ X.

3 Scheduling Without Preventive Maintenance

We first consider the case where the decision-maker cannot perform PM, and can

only schedule jobs in the presence of a deteriorating server. In this setting, the

server can only go offline (i.e., enter state 0) via a failure. Note that, since preven-

tive maintenance is not permitted and the server state evolves independently of the

scheduling decisions, the maintenance costs are independent of the policy used. The

decision-maker’s objective is therefore to find a scheduling policy π that minimizes
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the weighted long-run average expected number of jobs in the system

lim sup
T→∞

1
T

E

[∫T
0

2∑
k=1

ckQ
π
k(t) dt

]
. (1)

in the presence of uncontrollable server deterioration.

3.1 cµ-Rules

Without server deterioration, it follows from [19, Theorem 2.1] that it is optimal to

schedule according to the cµ-rule. According to this rule, if the service rate for class

k jobs is µk, then priority is given to any class k∗ where ck∗µk∗ > ckµk for every class

k.

When the service rate depends on the state of the server, it is natural to consider

prioritizing the jobs according to a state-dependent cµ-rule. Namely, if the state of

the server is s, prioritize any class k∗ where ck∗µsk∗ > ckµ
s
k for every class k. Alter-

natively, letting ν(s) denote the long-run expected fraction of time that the server

spends in state s, one could employ the following average cµ-rule: Assign priority to

any class k∗ for which ck∗µ̄k∗ > ckµ̄k for every class k, where µ̄k :=
∑S
s=0 ν(s)µ

s
k is

the average service rate for class k jobs.

3.2 Instability of cµ-Rules

Observe that if c1µ
s
1 > c2µ

s
2 for every server state s, then both the state-dependent

and average cµ-rules described above would prioritize class 1, regardless of the

server state. While it is tempting to conjecture that prioritizing class 1 in this sit-

uation is optimal, the following example shows that doing so could in fact be very

suboptimal.
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Example 1. Suppose jobs of classes 1 and 2 arrive according to Poisson processes with rates

λ1 = 5 and λ2 = 0.8, respectively. There are only two server states, q(1|2) = 1, and the

inter-deterioration times are exponential with rate 1. The service rates are µ1
1 = µ2

1 = 10

and µs2 = s for s = 1, 2. Finally, corrective maintenance occurs instantaneously.

Under both the state-dependent and average cµ-rules, class 1 is given priority regardless

of the server state. Note that under this policy, the average service rate for class 2 jobs is

0.5(0.5 · 2 + 0.5 · 1) = 0.75 < 0.8 = λ2. This indicates that, regardless of the initial state,

the system is unstable and has infinite long-run expected average cost. A formal proof that

the system is unstable when class 1 is always prioritized is given in Appendix A.1.

On the other hand, consider the policy that prioritizes class s jobs when the server state is

s, for s = 1, 2. Since λ2 = 0.8 < (0.5)(2) = 1, this policy incurs a finite long-run expected

average cost regardless of the initial state. This can be proved by showing that the associated

fluid model is stable; see Appendix A.2 for details.

3.3 Optimality of cµ-Rules

The following condition guarantees that it is optimal to always prioritize one class

over the other.

Assumption CR (Constant Ratio). Every state s ∈ {1, . . . ,S} (i.e., where the server is

online) satisfies

µs−1
1 µs2 = µs1µ

s−1
2 . (2)

Assumption CR states that the ratio of the service rates for class 1 and class 2 jobs

remains constant as the server changes state. It can be interpreted as saying that the

different service capabilities of the flexible server are affected equally by deterioration.

Note that Assumption CR implies, but is not equivalent to, the condition that c1µ
s
1 >
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c2µ
s
2 for every server state s. For instance, Example 1 satisfies c1µ

s
1 > c2µ

s
2 for every

s ∈ {0, 1, . . . ,S}, but does not satisfy Assumption CR.

The following theorem, which is the main result of this section, states that As-

sumption CR guarantees the optimality of the state-dependent and average cµ-rules

described at the beginning of this section.

Theorem 2. If Assumption CR holds, then it is optimal to always prioritize one class over

the other. In particular, consider any server state s′ > 1. If

c1µ
s′
1 > (resp. 6) c2µ

s′
2 , (3)

then Assumption CR implies that (3) holds when s′ is replaced with any s ∈ {0, 1, . . . ,S},

and that it is optimal to prioritize class 1 (resp. 2).

Proof. We use Assumption CR to adapt the interchange argument in Nain [19, Proof

of Theorem 2.1] to our setting.

The first step is to show that, for every T > 0, the problem of minimizing the

finite-horizon expected weighted queue lengths

E

[∫T
0

2∑
k=1

ckQ
π
k(t) dt

]
(4)

can be reduced to a reward-maximization problem that is amenable to analysis via

an interchange argument. To do this, we define some processes of interest. Consider

any policy π ∈ Π and fixed time t ∈ [0,∞). Let Uπ(t) denote the job class that the

server is assigned to at time t under the policy π, and let2

aπk(t) := 1{Qπk(t−) > 0, Uπ(t) = k}, k = 1, 2.

2Given a function f : [0,∞)→ R, let f(t−) := limu↑t f(u) for t > 0.

12



Also, recalling that we are considering the case of no preventive maintenance, let

S(t) denote the state of the server at time t, and let

φπ(t) :=

∫ t
0

2∑
k=1

ckµ
S(u)
k aπk(u) du.

To reduce the problem of minimizing (1) to that of maximizing

E

[∫T
0
φπ(t) dt

]
, (5)

consider the queue-length processes Qπk(t), k = 1, 2, under π, and let Ak(t) denote

the cumulative number of class k arrivals during the time interval [0, t]. Using an

argument analogous to that in [19, Proof of Lemma 2.1] (replace µk with µS(u)k and

the fact that [4, Partial Result, p. 24] holds for Poisson processes with rates that

depend on S(t)),

E

[∫T
0

2∑
k=1

ckQ
π
k(t) dt

]
= E

[∫T
0

2∑
k=1

ck[Qk(0) +Ak(t)]

]
− E

[∫T
0
φπ(t) dt

]
. (6)

Since the first term on the right-hand side of (6) does not depend on π, it follows

that minimizing (4) is equivalent to maximizing E
[∫T

0 φ
π(t) dt

]
.

The next step is to show that the cµ-rule, denoted by πcµ, maximizes (5) for every

finite horizon T > 0, i.e., that

E

[∫T
0
φπcµ(t) dt

]
> E

[∫T
0
φπ(t) dt

]
. (7)

for all π ∈ Π and T > 0. To prove this, we use a slight modification of the sample-

path-based construction in [19, Proof of Theorem 2.1] to show that in fact,∫T
0
φπcµ(t) dt >

∫T
0
φπ(t) dt (8)

holds with probability 1 (written w.p.1).
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Noting that every policy is optimal if T = 0, fix π ∈ Π and T > 0. Suppose

Assumption CR holds, and assume the job classes are numbered so that c1µ
s
1 > c2µ

s
2

(see the comments following the definition of Assumption CR). Then the cµ-rule

stipulates that class 1 should be prioritized. Consider the random time

σπ := inf {t > 0 | Qπ1 (t−) > 0, Uπ(t) = 2} ,

which denotes the first time that the policy π does not follow the cµ-rule. If σπ > T

w.p.1, then (8) holds w.p.1., since in this case the policy π follows the cµ-rule during

[0, T ].

On the other hand, suppose σπ < T with positive probability, in which case there

is a positive probability with which π does not follow the cµ-rule during [0, T ]. Let

Task A denote the class 1 job that is assigned to the server at time σπ under the

cµ-rule and Task B be the class 2 job the server is assigned to under π.

Let Π∞ ⊃ Π denote the set of all possibly anticipative policies. We will now

construct a policy π+ ∈ Π∞ that follows the cµ-rule at time σπ and satisfies∫T
0
φπ+(t) dt >

∫T
0
φπ(t) dt w.p.1. (9)

First, for all times t ∈ [0,σπ), let π+ coincide with the cµ-rule. To define π+ for times

t > σπ, consider the random variable

σ∗π := min {TA, τπ} ,

where TA denotes the amount of time required to complete Task A when the server

state is S(σπ), and τπ := inf{t > σπ | U
π(t) 6= 2 or S(t) 6= S(σπ)} is the first time after

time σπ that either under π the server stops working on Task B or the server changes

state. Assume the policy π+ works on Task A during [σπ,σπ + σ∗π).
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To complete the “interchange” of Tasks A and B, we will complete the definition

of π+ so that after some time νπ, the number of queued jobs under both π+ and π

agree w.p.1. In particular, let νπ denote the time when Task A is completed under

the policy π. During [σπ + σ
∗
π,νπ), let π+ mimic the actions taken under π with the

following exception: Whenever π works on Task A, but Task A has already been

completed under π+, the latter policy works on Task B instead. Finally, let π+ mimic

the actions taken under π at all times t > νπ.

We claim that at time νπ, both the queue lengths and the amount of work re-

maining in the system are the same under both π and π+. To verify this, let

κ :=
µs−1

1
µs1

=
µs−1

2
µs2

, s > 1,

and let In = [θn, θ′n) denote the nth time interval in [σπ + σ
∗
π,νπ) during which π+

serves class 2 while π serves class 1 and the server state does not change. Observe

that under π+, the amount of work done on Task A during [σπ,σπ + σ∗π) is the same

as the amount of work done on this job during ∪nIn under π. Note that by Assump-

tion CR,

µrk = κ
s−rµsk, k = 1, 2, r, s > 1; (10)

this is because when r > s > 1,

µrk =
µrk

µr−1
k

· · ·
µ
r−(r−s−1)
k

µsk
= κs−rµsk,

and when s > r > 1,

µrk =
µrk

µr+1
k

· · ·
µ
r+(r−s−1)
k

µsk
= κs−rµsk.

Using (10), the amount of work done on Task A during [σπ,σπ + σ∗π) can be written

as

µ
S(σπ)
1 σ∗π =

∑
n

µ
S(θn)
1 (θ′n − θn) = µ

S(σπ)
1

∑
n

κS(σπ)−S(θn)(θ′n − θn). (11)
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From (11), we conclude that

σ∗π =
∑
n

κS(σπ)−S(θn)(θ′n − θn). (12)

Hence the amount of work that is done on Task B during ∪nIn under π+ is∑
n

µ
S(θn)
2 (θ′n − θn) = µ

S(σπ)
2

∑
n

κS(σπ)−S(θn)(θ′n − θn) = µ
S(σπ)
2 σ∗π,

which is precisely the amount of work done on Task B during [σπ,σπ + σ∗π) under

the original policy π. Since π+ selects exactly the same actions as π at all times

t ∈ [σπ + σ
∗
π,νπ) \ ∪nIn, it follows that both the queue lengths and the remaining

amount of work in the system at time νπ are the same under both π and π+.

Since the policies π and π+ couple at time νπ, the validity of (9) and the optimal-

ity of the cµ-rule for every finite horizon T can be proved by following [19, Proof

of Theorem 2.1] and using the preceding definitions of φπ(t), σ∗π, and the intervals

[θn, θ′n). It follows a fortiori that the cµ-rule is optimal under the average-cost crite-

rion (1).

Remark 3. The proof of Theorem 2 does not rely on the assumption that deterioration events

always send the server to a state that is worse. In particular, it holds when the service rates

are simply assumed to be modulated (not necessarily in a Markovian way) according to

the point process that describes the deterioration process. Hence the proof of Theorem 2

implies that, for a two-class G/M/1 queue with modulated service rates that satisfy As-

sumption CR, it is optimal to schedule according to the cµ-rule.

4 Scheduling with Preventive Maintenance

We now consider the problem of optimally making both scheduling and preventive

maintenance decisions. In Section 4.1, we provide conditions under which it suffices
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to schedule jobs according to the state-dependent cµ-rule, or the average cµ-rule,

described in Section 3.1. Then, in Section 4.2 we present conditions under which

optimal maintenance decisions are monotone in the state of the server. When the

conditions hold, these results simplify the computation of optimal policies. At the

same time, when one or more of the conditions do not hold, they suggest heuristics

that may still perform well. The performance of scheduling with the cµ-rule, when

the conditions of Theorem 4 in this section do not hold, is considered numerically

in Section 5.

4.1 Optimal Scheduling

In this section, a maintenance policy is a rule that stipulates, given the current state of

the system, whether or not to initiate maintenance. If maintenance is not initiated,

a scheduling policy determines which customer class (if any) should be served. The

set of all stationary deterministic maintenance policies is identified with the set of

all functions f : {0, 1, . . . }2 × {0, 1, . . . ,S} → {0, 1} where f(i1, i2, s) = 1 (resp. = 0)

if and only if the maintenance policy f calls for maintenance to be initiated (resp.

no maintenance) when the state is (i1, i2, s). Note that f(i1, i2, 0) = 1 for all i1, i2 ∈

{0, 1, . . . }.

According to Theorem 2 in Section 3, if the ratio between the service rates for

class 1 and class 2 jobs remains constant as the server changes state (i.e., Assump-

tion CR holds), then the cµ-rule is the optimal scheduling policy in the presence of a

deteriorating server that cannot be preventively maintained. In the context of joint

scheduling and maintenance, Theorem 2 can be generalized to Theorem 4 below. To

state this theorem, a maintenance policy f is said to be queue-oblivious if there exists

17



a function g : {0, 1, . . . ,S}→ {0, 1} satisfying

f(i, j, s) = g(s) for all (i, j, s) ∈ {0, 1, . . . }2 × {0, 1, . . . ,S}.

In other words, a queue-oblivious maintenance policy is stationary, determinis-

tic, and does not depend on any queue-length information. Examples of queue-

oblivious maintenance policies include server threshold policies (where the server is

maintained if and only if its state is below a certain threshold), job-based policies

(where the server is maintained whenever a certain fixed number of jobs have been

completed), and calendar-based policies (where the server is maintained whenever a

certain fixed amount of time has elapsed).

Proposition 4. Suppose Assumption CR holds. Then under any queue-oblivious mainte-

nance policy, it is optimal to prioritize one class over the other. In particular, consider any

server state s > 1, and assume that the current state is one in which the maintenance policy

calls for no maintenance. If

c1µ
s
1 > (resp. 6) c2µ

s
2, (13)

then Assumption CR implies that (13) holds for all s ∈ {0, 1, . . . ,S}, and it is optimal to

prioritize class 1 (resp. 2).

Proof. Under a queue-oblivious maintenance policy, the evolution of the server state

does not depend on how the jobs are served. The theorem then follows from the

proof of Theorem 2, which does not require any assumptions on where the server

state transitions to when deterioration events occur (see Remark 3).

Proposition 4 immediately implies the following theorem, which is the main re-

sult of this section.
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Theorem 5. If Assumption CR holds, and the decision-maker is restricted to queue-oblivious

maintenance policies, then it is without loss of optimality to only consider joint scheduling

and maintenance policies where jobs are scheduled according to the (static) priority policy

described in Theorem 4.

4.2 Optimal Maintenance Decisions

Up to this point, we have only assumed that the arrival processes for the two job

classes are described by independent point processes on R+. Under Assumption M

below, the problem can be formulated as a semi-Markov decision process (SMDP). The

main result in this section (Theorem 6) states that under this assumption and As-

sumption S below, the search for an optimal policy can be restricted to policies that

are monotone in the server’s health.

Assumption M (Markovian Arrivals and Deterioration).

(i) The point processes modeling the arrival times of jobs of class 1 and 2 are independent

Poisson processes with rates λ1 > 0 and λ2 > 0, respectively.

(ii) The server deteriorates according to a continuous-time Markov chain. In particular, if

its current state is s ∈ {1, . . . ,S}, then the time until the next deterioration event is

exponentially distributed with rate αs > 0.

(iii) The maintenance times (i.e., the times that the server spends in the offline state) are

independent and identically distributed with common distribution G(·) whose mean

1/α0 :=
∫∞

0 t dG(t) satisfies 0 < 1/α0 <∞.
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Assumption S (Stability).

(i) There is a server state s∗ ∈ {1, . . . ,S} satisfying

λ1∑S
s=s∗(µ

s
1/αs)

+
λ2∑S

s=s∗(µ
s
2/αs)

<
1

(1/α0) +
∑S
s=s∗(1/αs)

.

(ii) The server can only deteriorate to the next-worse state, i.e.,

q(s− 1|s) = 1 ∀s > 1.

A joint scheduling and maintenance policy is monotone in the server’s health if,

for every fixed number of class 1 and class 2 jobs in the system, PM is initiated

whenever the server’s health state is sufficiently low. The following proposition

states that under Assumptions M and S, one can restrict the search for an optimal

joint scheduling and maintenance policy to deterministic stationary policies that are

monotone in the server’s health. A proof is provided in Appendix A.3.

Proposition 6. Suppose Assumptions M and S hold. Then there exists an optimal joint

scheduling and maintenance policy that is deterministic, stationary, and monotone in the

server’s health.

Combining the conclusions of Propositions 4 and 6 leads to the following theo-

rem, which is the main result in this section.

Theorem 7. Suppose Assumptions CR, M, and S hold. Then there exists an optimal de-

terministic stationary policy that is both monotone in the server’s health and schedules jobs

according to the cµ-rule.

Remark 8. Under Assumptions M and S, there may not be an optimal policy that is mono-

tone in the queue lengths. In particular, letting Kc = Kp = 0, c1 = c2 = 1, λ1 = λ2 = 1,
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S = 4, µ1
1 = µ1

2 = 1/2, µ2
1 = µ2

2 = 1, µ3
1 = µ3

2 = 3/2, µ4
1 = µ4

2 = 2, and αs = 1/5

for s = 0, 1, 2, 3, 4, we obtain the model instance considered in [17, Example 3.6]. It was

shown in [17] that the optimal policy for this model is such that, for server state 2, initiating

maintenance is optimal when there are no jobs, not optimal when there are 1 to 11 jobs, and

optimal when there are more than 11 jobs.

5 Numerical Experiments

While we have only been able to prove the optimality of the cµ-rule within the

class of all joint scheduling and maintenance policies that are queue-oblivious, the

simulation results presented in this section suggest that using the cµ-rule remains

nearly optimal when the assumptions of Theorem 4 are violated. Moreover, the

results of the experiments illustrate the significant savings that good maintenance

policies can provide, under a variety of scheduling policies.

5.1 Assumptions

Our primary objectives in performing the simulation experiments are to investigate,

with the criterion of minimizing the average number of jobs in the system,

• the performance of various scheduling policies and

• the savings that good preventive maintenance can provide,

relative to an optimal policy that is computed via dynamic programming. To this

end, we consider the following version of the scheduling and maintenance model

described in Section 2 that satisfies Assumptions M and S. Jobs of class 1 and 2

arrive according to independent Poisson processes with rates λ1 and λ2. When it
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is able to process jobs, the single server can be in the “deteriorated” or “like-new”

states, denoted respectively by server states 1 and 2. Hence the set of possible server

states is {0, 1, 2}. The (exponential) deterioration rates are denoted by α1 and α2, and

the maintenance times are assumed to be iid exponential with rate α0. As before, the

respective (exponential) service rates will be denoted by µ1
1,µ2

1 and µ1
2,µ2

2. Finally,

since we focus on the criterion of minimizing the average number of jobs in the

system, we assume that the holding cost rates are c1 = c2 = 1, and that there are no

fixed maintenance costs. The latter means that the cost of performing maintenance

is equal to the holding costs incurred during a maintenance interval.

Two utilization levels under no (preventive) maintenance are considered: 75%

(which is a typical target equipment utilization level in semiconductor wafer fabs

[15, p. 62]) and 90%. For a given utilization level

ρ =
λ1

µ̄1
+
λ2

µ̄2
, (14)

where

µ̄k =

2∑
s=0

µsk/αs∑2
s=0(1/αs)

is the average service rate for class k jobs. The model parameters were generated in

the following way. First, the service rates µ1
1,µ2

1,µ1
2,µ2

2, the maintenance/deterioration

rates α0,α1,α2, and the ratios λ1/λ2 were selected using a Plackett-Burman exper-

imental design. The arrival rates were generated using (14). The parameters for

each of the 12 systems that were simulated are presented in Table 1 below. The rates

are given in jobs per hour. Observe that systems 3, 4, 5, 6, 9, and 12 do not satisfy

Assumption CR.
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System Utilization (λ1, λ2) (µ1
1,µ1

2), (µ
2
1,µ2

2) α0 α1 α2

1 0.75 (0.82, 0.82) (2,2), (4,4) 0.33 0.083 0.067

2 0.75 (0.87, 0.87) (4.8,3.2), (6,4) 0.5 0.083 0.1

3 0.75 (0.98,1.5) (2, 4.8), (4, 6) 0.5 0.13 0.067

4 0.75 (1.03, 1.03) (3,3.2), (6,4) 0.33 0.13 0.1

5 0.75 (1.19,0.79) (3.2,3), (4, 6) 0.5 0.13 0.1

6 0.75 (1.3, 1.3) (4.8,3), (6,6) 0.33 0.083 0.067

7 0.9 (0.82, 0.82) (2,2), (4,4) 0.5 0.083 0.1

8 0.9 (0.89,1.3) (3.2,4.8), (4,6) 0.33 0.083 0.1

9 0.9 (1.1,1.6) (4.8,2), (6,4) 0.5 0.13 0.067

10 0.9 (1.4,0.96) (3.2, 3.2), (4,4) 0.33 0.13 0.067

11 0.9 (1.5,1.5) (3,3), (6,6) 0.33 0.13 0.1

12 0.9 (1.8,1.2) (3,4.8), (6,6) 0.5 0.083 0.067

Table 1: Parameters of the Simulated Models

5.2 Policies

The following scheduling policies were evaluated for the systems described in Sec-

tion 5.1.

MDP-Based Scheduling (DP): This is the optimal scheduling policy for the discrete-

time MDP with finite state and action sets obtained by truncating and uniformizing

the original continuous-time MDP.

cµ-Rule (CMU): This is the (possibly dynamic) priority rule described in Section 3,

where class 1 (resp. 2) is prioritized, when the server state is s, if c1µ
s
1 > (resp. 6)

c2µ
s
2.
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Average cµ-Rule (ACMU): This is the (static) priority rule where class 1 (resp. 2)

is prioritized if c1µ̄1 > (resp. 6) c2µ̄2.

Longest-Queue-First (LQF): Under this scheduling policy, the longest queue is

always served first.

Each of these scheduling policies was considered under both “optimal” mainte-

nance (denoted by OM) and no maintenance. We consider the DP-OM policy where

preventive maintenance is allowed, and the DP policy where no preventive main-

tenance is performed. In addition, letting S stand for CMU, ACMU, or LQF, we

consider both the S-OM policy obtained by fixing the scheduling policy S and solv-

ing the corresponding MDP where only maintenance decisions need to be made,

and the S policy under which there is no preventive maintenance.

5.3 Results

For each of the parameter settings in Table 1, an average over 50 replications of a

5-year simulation time horizon was used to estimate the expected average number

of queued jobs under each of the policies described in Section 5.2. These estimates

are presented in Tables 2 and 3 below, with 95% confidence intervals.

5.3.1 Scheduling Without Preventive Maintenance

We first consider the case of scheduling without preventive maintenance. The sys-

tems where Assumption CR does not hold are indicated with boldface System IDs.

Recall that in this setting, it was proved in Section 3 that, if Assumption CR

holds, then the state-dependent and average cµ-rules become the same static prior-

ity policy, and that this policy is optimal. The results for the systems where Assump-
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System ID DP CMU ACMU LQF

1 4154 ± 108 4326 ± 204 4235 ± 156 4107 ± 119

2 1099 ± 35 1121 ± 31 1092 ± 31 1144 ± 26

3 2440 ± 78 2342 ± 60 2424 ± 57 2800 ± 77

4 3251 ± 109 3274 ± 78 3263 ± 79 3549 ± 90

5 1982 ± 62 1966 ± 56 2033 ± 51 2185 ± 83

6 2331 ± 38 2323 ± 71 2394 ± 95 2533 ± 119

7 4092 ± 139 4174 ± 103 4022 ± 60 4043 ± 172

8 2388 ± 72 2376 ± 81 2389 ± 40 2601 ± 32

9 5501 ± 196 5633 ± 182 5534 ± 182 6898 ± 249

10 5801 ± 102 5832 ± 187 5904 ± 162 5887 ± 226

11 8618 ± 219 8258 ± 269 8374 ± 200 8636 ± 293

12 2796 ± 65 2947 ± 65 3030 ± 62 3246 ± 100

Table 2: Average Queue Lengths with 95% Confidence Intervals: Scheduling With-

out Preventive Maintenance

tion CR holds (namely, those with a System ID of 1, 2, 7, 8, 10, or 11) are consistent

with this theoretical result. Moreover, with the exception of system 12, scheduling

according to the cµ-rule (CMU) or the average cµ-rule (ACMU) is not significantly

worse than the scheduling policy DP obtained by solving an MDP.

In addition, while LQF performs comparably to DP and CMU under some sys-

tem parameters (namely, for systems 1, 2, 5, 7, 10, and 11), it is significantly worse in

the remaining cases (namely, for systems 3, 4, 6, 8, 9, and 12). Moreover, the perfor-

mance of LQF tends to exhibit more variability than DP and the policies based on

the cµ-rule. A natural reason for this is that LQF does not take the service rates for

the different job types and server states into account. This means that an accumula-
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tion of jobs with a low service rate can cause LQF to become “stuck” serving those

jobs, while other jobs with higher service rates accumulate. This lends support to

the idea that service-rate information is important to developing good scheduling

policies.

5.3.2 Scheduling With Preventive Maintenance

Next, we consider jointly making scheduling and preventive maintenance decisions.

The simulation results are presented in Table 3 below. As was done in Table 2,

95% confidence intervals are provided and the systems that do not satisfy Assump-

tion CR are indicated by boldface System IDs.

As was the case with the CMU policy in Section 5.3.1, the CMU-OM and ACMU-

OM policies track the performance of the MDP-based policy DP-OM in all cases ex-

cept System 12, which does not satisfy Assumption CR. Moreover, we again see that

LQF-based scheduling generally leads to worse and more variable performance.

Hence, in both the cases of no preventive maintenance and optimal preventive

maintenance, the simulation results suggest that using cµ-based scheduling often

results in nearly-optimal performance, when minimizing the queue lengths is the

primary objective. A caveat, of course, is that this is only a heuristic, and system 12

provides an example where it may be comparable to using the more naı̈ve longest-

queue-first scheduling rule.

Finally observe that, with the addition of optimal preventive maintenance, sig-

nificant gains in performance were realized in systems 1, 3, 5, 7, 9, 11, and 12, where

systems 3, 5, 9, and 12 do not satisfy Assumption CR. For systems 2, 4, 6, 8, and

10, where systems 4 and 6 do not satisfy Assumption CR, the results indicate that

good scheduling is more important, as optimal preventive maintenance does not

26



System ID DP-OM CMU-OM ACMU-OM LQF-OM

1 2630 ± 118 2590 ± 63 2731 ± 51 4230 ± 108

2 1092 ± 21 1093 ± 22 1104 ± 25 1143 ± 34

3 1744 ± 41 1753 ± 49 1760 ± 65 2813 ± 80

4 3236 ± 121 3210 ± 117 3233 ± 118 3523 ± 74

5 1718 ± 64 1770 ± 38 1755 ± 50 1950 ± 37

6 2268 ± 114 2375 ± 79 2428 ± 110 2427 ± 101

7 2009 ± 63 2042 ± 58 2051 ± 39 2025 ± 54

8 2346 ± 55 2365 ± 63 2484 ± 50 2597 ± 51

9 2903 ± 45 2944 ± 93 2878 ± 75 3295 ± 106

10 5786 ± 247 5755 ± 134 5926 ± 137 5899 ± 221

11 5378 ± 191 5497 ± 171 5483 ± 166 5430 ± 247

12 1790 ± 61 1903 ± 53 1911 ± 54 1916 ± 72

Table 3: Average Queue Lengths with 95% Confidence Intervals: Scheduling with

Optimal Preventive Maintenance

reduce the average queue lengths by a significant amount. The reason for this is not

apparent to us, as the parameter settings for both groups vary across the range of

values that were considered. While we have provided conditions in Sections 3 and

4 under which scheduling based on the cµ-rule is optimal, identifying conditions

under which most of the performance gains will be due to scheduling or preventive

maintenance remains a worthwhile future research direction.
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6 Conclusion

In this work, we used a queueing control model to study the problem of how to

jointly allocate work and perform preventive maintenance for a flexible server. We

identified a condition (Assumption CR) under which it is optimal to schedule ac-

cording to a state-dependent cµ-rule, as well as an average cµ-rule where the mean

service rates are used, when preventive maintenance is not possible (Theorem 2).

When Assumption CR does not hold, using these cµ-based scheduling rules may

result in an unstable system (Example 1), but our numerical results indicate that it

is still possible for such scheduling rules to perform well without Assumption CR

(Section 5.3.1).

We then used Theorem 2 to show that, when the preventive maintenance policies

are restricted to be age-based, calendar-based, or more generally independent of the

queue lengths, it is without loss of optimality to use the aforementioned cµ-based

scheduling rules (Theorem 5). In the context of semiconductor manufacturing, the

implementation of condition-based maintenance is still very much on the cutting-

edge of current research (see e.g., Djurdjanovic [13]), and that age/job-based preven-

tive maintenance policies remain very relevant to practice (see e.g., Yao et al. [28]).

Regarding the structure of preventive maintenance policies, we were able to prove

that under assumptions analogous to those considered in Kaufman and Lewis [17]

for one job class, the monotonicity property of optimal maintenance policies iden-

tified in [17, Theorem 3.2] is preserved when there are two job types. In particular,

there exists an optimal joint scheduling and maintenance policy where, for each

fixed number of class-1 and class-2 jobs, the maintenance decisions are based on a

threshold on the server state.

Finally, we presented the results of numerical experiments that compared the
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performance of cµ-based scheduling with a more naı̈ve scheduling rule (longest-

queue-first) and with scheduling based on solving an MDP (Section 5). We ob-

served that, regardless of whether preventive maintenance was performed, the cµ-

based scheduling rules are competitive with MDP-based scheduling. Moreover, the

worse and more variable performance of longest-queue-first scheduling illustrated

the value of incorporating service-rate information. On the other hand, the nu-

merical experiments did not suggest an easy distinction between situations where

scheduling has more of a performance impact than preventive maintenance, or vice

versa. A better understanding of this distinction, as well as other research directions

described in Section 6.1 below, is left for future work.

6.1 Future Work

Our work suggests a number of promising research directions.

Optimality Conditions for the cµ-Rule: Assumption CR, which only involves the

service rates, does not depend on the deterioration dynamics of the server. For sit-

uations where Assumption CR is too strong, it would be worthwhile to identify

conditions on the deterioration process under which cµ-based scheduling remains

optimal. Moreover, it may be possible to relax the queue-obliviousness of mainte-

nance policies in Theorem 4. Finally, it would be interesting to determine whether

there are any guarantees on the optimality of cµ-based scheduling as a function of

some measure of the degree to which Assumption CR is violated.

Good and Implementable Maintenance Policies: The focus of this paper has been

on identifying conditions under which it suffices to follow a simple policy for the

scheduling decisions. This of course leaves open the question of how maintenance
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policies should be derived. As was pointed out in Kaufman and Lewis [17], the opti-

mal MDP-based policies can be very complicated. It would therefore be worthwhile

to develop maintenance heuristics that both perform well across system parameters

of interest, and that are easy to implement.

Relaxing Modeling Assumptions: In many applications, including some in semi-

conductor manufacturing [5, 7], the assumption that the server deteriorates inde-

pendently of the work it performs is too strong. It would also be of interest to con-

sider multiple servers and/or stations, or to assume that the server state is only

partially observable.
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A Appendix

A.1 Instability of Statically Prioritizing Class 1 in Example 1

Consider the (non-idling) policy that always prioritizes class 1 when the server is

online. To show that this policy is unstable, in the sense that it incurs an infinite long-

run expected average cost regardless of the initial state, we consider its associated

fluid model.

Let Tk,s(t) denote the total amount of time during [0, t] that the server has spent

serving class k jobs while it is in state s, and suppose Q1(0) = Q2(0) = 0. Argu-

ments analogous to those in [11, p. 753] (replace k with k, s) imply that for every

sequence {qn,n > 0} such that qn → ∞ there exists a subsequence {qm,m > 0}

such that limm→∞ Tk,s(qmt)/qm =: Tk,s(t) exists for k = 1, 2, s = 1, 2, and t > 0.

According to [11, Proposition 3.1], the associated scaled queue lengths Qk(t) :=

limm→∞Qk(qmt)/qm, k = 1, 2, satisfy

Qk(t) = λkt− µ
1
kTk,1(t) − µ

2
kTk,2(t), k = 1, 2, t > 0, (15)

where λ1 = 5, λ2 = 0.8, µ1
1 = µ2

1 = 10, µ1
2 = 1, and µ2

2 = 2. In what follows,

we will require derivatives of Tk,s(t) and Qk(t), for k = 1, 2 and s = 1, 2. For t >

s > 0, Tk,s(t) − Tk,s(s) 6 t− s, so Tk,s(t) is Lipschitz continuous. Hence, by (15),

Qk(t) is also Lipschitz continuous. As a result, the required derivatives exist almost

everywhere.

Since class 1 is prioritized in states s = 1, 2, and the server is always online

(corrective maintenance occurs instantaneously), the server is always busy at class

1 whenever class 1 jobs are present. As a result,

Q1(t) > 0 =⇒ d

dt
T1,1(t) +

d

dt
T1,2(t) = 1 =⇒ d

dt
Q1(t) = −5 < 0. (16)
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Note that for a nonnegative continuous function f(t), if d
dtf(t) < 0 whenever f(t) >

0, then if f(t0) = 0 for some t0 > 0, f(t) = 0 for all t > t0. As Q1(0) = 0, it

then follows from (16) and the continuity ofQ1(t) thatQ1(t) = 0 for all t > 0 which,

according to (15), implies that d
dtT1,1(t)+

d
dtT1,2(t) =

1
2 .As the service rates for server

1 and the server deterioration rates in states s = 1, 2 are identical,

d

dt
T1,1(t) =

d

dt
T1,2(t) =

1
4

. (17)

Letting 1{·} denote the indicator function, we have that

T1,s(v) + T2,s(v) 6
∫v

0
1{S(u) = s}du

and taking the fluid limit of both sides yields

T1,s(t) + T2,s(t) 6
t

2
.

Thus,
d

dt
T1,s(t) +

d

dt
T2,s(t) 6

1
2

, s = 1, 2. (18)

Combining (15), (17), and (18), we conclude that

d

dt
Q2(t) = 0.8 − (1)

d

dt
T2,1(t) − (2)

d

dt
T2,2(t)

> 0.8 − (1)
(

1
2
−
d

dt
T1,1(t)

)
− (2)

(
1
2
−
d

dt
T1,2(t)

)
= 0.05 > 0.

According to [11, Theorem 3.2], this implies that statically prioritizing class 1 is un-

stable.

A.2 Existence of a Stable Policy in Example 1

Consider the policy that prioritizes class s when the server state is s, for s = 1, 2. To

show that this policy incurs a finite long-run expected average cost regardless of the

35



initial state, by [12, Theorem 4.1] it suffices to show that its associated fluid model

is stable in the sense that it drains and remains empty after a finite amount of time

[10].

To define the fluid model, again consider the function Tk,s(t) defined in Ap-

pendix A.1, and let q = Q1(0) +Q2(0). Any limit point as q → ∞ of the scaled

process (
Q1(qt)

q
,
Q2(qt)

q
,
T1,1(qt)

q
,
T2,1(qt)

q
,
T1,2(qt)

q
,
T2,2(qt)

q

)
is called a fluid limit of the original system. Every fluid limit

(
Q1(t),Q2(t), T1,1(t), T1,2(t), T2,1(t), T2,2(t)

)
satisfies a set of differential equations known as the fluid model. For the system in

Example 1 under the proposed policy, the fluid model is:

d

dt
Q1(t) = λ1 − µ

1
1
d

dt
T1,1(t) − µ

2
1
d

dt
T1,2(t), (19)

d

dt
Q2(t) = λ2 − µ

1
2
d

dt
T2,1(t) − µ

2
2
d

dt
T2,2(t), (20)

where λ1 = 5, λ2 = 0.8, µ1
1 = µ2

1 = 10, µ1
2 = 1, and µ2

2 = 2.

We now show that, under the proposed policy, every fluid limit is stable. In other

words, for every fluid limit there exists a finite time te > 0 such thatQ1(t) = Q2(t) =

0 for all t > te. First, recall that the deterioration rates are equal to 1, and that CM

occurs instantaneously. An argument similar to that used to derive (18) yields

Q1(t) +Q2(t) > 0 =⇒ d

dt

[
T1,s(t) + T2,s(t)

]
=

1
2
∀s ∈ {1, 2}. (21)

Recall that class 2 is prioritized when s = 2. Hence, according to (21),

Q2(t) > 0 =⇒ d

dt
T2,2(t) =

1
2

. (22)
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Combining (20) with (22), and recalling that d
dtT2,1(t) > 0 for all t, we conclude that

Q2(t) > 0 =⇒ d

dt
Q2(t) 6 λ2 − 1 < 0, (23)

since λ2 = 0.8 < 1. So, as Q2(te) = 0 for te = Q2(0)/(1 − λ2), this with (23) yields

Q2(t) = 0, t > te. (24)

Next, we consider what happens to the fluid in queue 1 after queue 2 has drained.

In general, since class 1 is prioritized when the server state s = 1, we know from (21)

that d
dtT1,1(t) =

1
2 whenever Q1(t) > 0. According to (19), this means

Q1(t) > 0 =⇒ d

dt
Q1(t) = 5 − 10 · d

dt
T1,2(t). (25)

On the other hand, suppose t > te. From (24), we know that d
dtQ2(t) = 0. Moreover,

since class 1 is prioritized when s = 1, we also know that d
dtT2,1(t) = 0. In light of

(20), these two observations imply that d
dtT2,2(t) =

λ2
2 . According to (21) and the fact

that λ2 < 1, this means
d

dt
T1,2(t) =

1 − λ2

2
> 0. (26)

We therefore conclude from (25) that

t > t0 and Q1(t) > 0 =⇒ d

dt
Q1(t) < 0. (27)

In summary, (24) and (27) imply that both queues drain and remain empty after a

finite amount of time, i.e., that the fluid model is stable.

A.3 Proof of Theorem 6

In this section, we assume that Assumptions M and S hold. Under Assumption M,

the joint scheduling and maintenance model described in Section 2 is a semi-Markov
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decision process (SMDP); for background on SMDPs, see e.g., Sennott [21] and the

references therein.

An SMDP is defined by the following objects:

1. the state set X,

2. sets of available actions A(x) for each x ∈ X,

3. transition probabilities p(y|x,a) for each x,y ∈ X and a ∈ A(x),

4. distributions F(·|x,a,y) for the time spent in each state x ∈ X given that action

a ∈ A(x) is taken and the next state of the process is y ∈ X,

5. immediate costs D(x,a) and cost rates d(x,a) for each x ∈ X and a ∈ A(x).

Recalling that we are only considering nonidling policies, for the joint scheduling

and maintenance problem the above objects are defined as follows.

1. X = {0, 1, . . . }2 × {0, 1, . . . ,S};

2. letting k = 0, 1, 2 respectively denote idling, serving class 1, and serving class

2, and letting PM and CM respectively denote initiating preventive and cor-

rective maintenance, for (i1, i2, s) ∈ X let

A(i1, i2, s) =



{CM}, if s = 0;

{0,PM}, if i1, i2 = 0, s > 1;

{1,PM}, if i1 > 1, i2 = 0, s > 1;

{2,PM}, if i1 = 0, i2 > 1, s > 1;

{1, 2,PM}, if i1, i2 > 1, s > 1;

(28)
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3. for (i1, i2, s),y ∈ X and a ∈ A(i1, i2, s), letting ek be the vector in R3 where
the kth entry is a 1 and all other are zero and µs0 ≡ 0, and recalling that by
Assumption M(iii) the maintenance times are iid with distribution G(·),

p(y|(i1, i2, s),a) =



∫∞
0
e−λ1t(λ1t)

n1

n1!
e−λ2t(λ2t)

n2

n2! dG(t)

if s = 0,a = CM,y = (i1 +n1, i2 +n2,S)

or s > 1,a = PM,y = (i1 +n1, i2 +n2,S);

λ1
λ1+λ2+µ

s
k+αs

if s > 1,a = k,y = (i1 + 1, i2, s);

λ2
λ1+λ2+µ

s
k+αs

if s > 1,a = k,y = (i1, i2 + 1, s);

αs
λ1+λ2+µ

s
k+αs

if s > 1,a = k,y = (i1, i2, s− 1);

µsk
λ1+λ2+µ

s
k+αs

if s > 1,a = k,y = (i1, i2, s) − ek;

4. for (i1, i2, s),y := (j1, j2,u) ∈ X and a ∈ A(x),

F(t | (i1, i2, s),a,y) =



G(t) if s = 0,a = CM, j1 > i1, j2 > i2,u = S

or s > 1,a = PM, j1 > i1, j2 > i2,u = S;

1 − e−λ1t if s > 1,a ∈ {0, 1, 2}, (j1, j2,u) = (i1 + 1, i2, s);

1 − e−λ2t if s > 1,a ∈ {0, 1, 2}, (j1, j2,u) = (i1, i2 + 1, s);

1 − e−αst if s > 1,a ∈ {0, 1, 2}, (j1, j2,u) = (i1, i2, s− 1);

1 − e−µ
s
1t if s > 1,a = 1, (j1, j2,u) = (i1 − 1, i2, s);

1 − e−µ
s
2t if s > 1,a = 2, (j1, j2,u) = (i1, i2 − 1, s);

5. for (i1, i2, s) ∈ X and a ∈ A(i1, i2, s),

D((i1, i2, s),a) =


Kc if a = CM;

Kp if a = PM;

0 otherwise;

and

d((i1, i2, s),a) = c1i1 + c2i2.
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It is useful to consider discounting the expected total cost incurred over an infi-

nite horizon. In particular, given a discount rate β > 0, the expected β-discounted cost

incurred from the initial state (i1, i2, s) ∈ X under the policy π ∈ Π is

vπβ(i1, i2, s) := E

 ∑
n:tπn6t

e−βt
π
n
[
KcM

π
c (t

π
n) +KpM

π
p(t

π
n)
]
+

∫∞
0
e−βt

2∑
k=1

ckQ
π
k(t) dt

∣∣∣∣∣ Qπ1 (0) = i1, Qπ2 (0) = i2, Sπ(0) = s

]
.

Moreover, a policy π∗ is β-optimal if vπ∗β (x) = infπ∈Π vπβ(x) =: vβ(x) for all x ∈ X.

Definition 9. A function v : X→ R is monotone in the system state if

i1 6 i′1, i2 6 i′2, s > s′ =⇒ v(i1, i2, s) 6 v(i′1, i′2, s′).

A straightforward adaptation of the sample-path argument in [17, Proof of Propo-

sition 3.3] can be used to prove the following useful monotonicity property of vβ.

Proposition 10. The value function vβ is monotone in the system state.

Lemma 11. Assumptions M and S imply that the hypotheses of [21, Theorem 2, Proposi-

tion 4] hold.

Proof. The hypotheses of [21, Theorem 2] consist of [21, Assumptions 1-5].

1. For t > 0, x,y ∈ X, and a ∈ A(x), let

H(t|x,a) :=
∑
y∈X

p(y|x,a)F(t|x,a,y).

The first assumption states that there exist ε, δ > 0 such that

1 −H(δ|x,a) > ε ∀x ∈ X, a ∈ A(x). (29)
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First, recall that according to Assumption M(iii), 1/α0 =
∫∞

0 tdG(t) > 0. This

implies that there exists a δ∗ > 0 such that 1 −G(δ∗) > 0. Moreover, letting

γ := max{λ1, λ2,α1, . . . ,αB,µ1
1, . . . ,µS1 ,µ1

2, . . . ,µS2} > 0

and

ε∗ := min{1 −G(δ∗), e−γδ
∗
} > 0,

it follows that (29) holds with ε = ε∗ and δ = δ∗.

2. For x ∈ X and a ∈ A(x), let

τ(x,a) :=
∑
y∈X

p(y|x,a)
∫∞

0
tdF(t|x,a,y). (30)

The second assumption states that there exists a constant B <∞ such that

τ(x,a) 6 B ∀x ∈ X, a ∈ A(x). (31)

Letting

γ := min{λ1, λ2,α1, . . . ,αB,µ1
1, . . . ,µS1 ,µ1

2, . . . ,µS2} > 0

and

B∗ := max{1/α0, 1/γ} <∞,

it follows that (31) holds with B = B∗.

3. The third assumption states that

vβ(x) <∞ ∀β > 0, x ∈ X. (32)

According to [21, Remark 1], a sufficient condition for (32) to hold is the exis-

tence of a policy π such that

wπ(x) <∞ ∀x ∈ X. (33)
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Let s∗ be a state that satisfies Assumption S(i). By analyzing a fluid model

analogous to the one in [17, Proof of Proposition 3.1], it can be shown that (33)

is satisfied by any policy that initiates PM whenever the server state is less

than s∗, and otherwise does not idle an online server if the system is nonempty.

Hence (32) holds.

4. Let 0 := (0, 0,S), and

hβ(x) := vβ(x) − vβ(0), x ∈ X.

The fourth assumption states that there exists a β0 > 0 and M : X → [0,∞)

such that

hβ(x) 6M(x) ∀β ∈ (0,β0), x ∈ X (34)

and

∃a(x) ∈ A(x) such that
∑
y∈X

p(y|x,a(x))M(y) <∞ ∀x ∈ X. (35)

Let Xπ(t) := (Qπ1 (t),Q
π
2 (t),S

π(t)) denote the state of the system at time t under

the policy π. For z ∈ X, let τπz := inf{t > 0 | Xπ(t) = z} and, for x,y ∈ X, let

Cπ(x,y) := E

 ∑
n:tπn6τπy

[
KcM

π
c (t

π
n) +KpM

π
p(t

π
n)+

∫τπy
0

2∑
k=1

ckQ
π
k(t) dt

∣∣∣∣∣Xπ(0) = x
]

.

denote the expected total cost incurred up to a first passage from x to y under

the policy π. According to [21, Remark 1], a sufficient condition for (34) and

(35) to hold for some β0 > 0, M : X → [0,∞) is the existence of a stationary

policy ϕ such that

Cϕ(x, 0) <∞ ∀x ∈ X. (36)

Let s∗ be a state that satisfies Assumption S(i), and let ϕs∗ be any stationary

policy that initiates PM whenever the server state is less than s∗, and other-

wise does not idle an online server if the system is nonempty. By analyzing
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a fluid model analogous to the one in [17, Proof of Proposition 3.1], it can be

shown thatϕs∗ satisfies (33), and that the embedded state process underϕs∗ is

a unichain Markov chain where the set of states {(i, j, s) | s∗ 6 s 6 S} is the er-

godic class and the remaining states are transient. By [21, Lemma 2], it follows

that (36) holds with ϕ = ϕs∗ . Hence there exist β0 > 0 and M : X → [0,∞)

such that (34) and (35) hold.

5. The fifth assumption states that there exist a β0 > 0 and N > 0 such that

−N 6 hβ(x) ∀β ∈ (0,β0), x ∈ X. (37)

Since hβ(x) = vβ(x) − vβ(0) for x ∈ X, and 0 = (0, 0,S), it follows from Propo-

sition 10 that (37) holds with N = 0 and any β0 > 0.

Next, the hypotheses of [21, Proposition 4] consist of [21, Assumptions 1-5] and

the following assumption: there exist ε > 0 and a finite set G ⊂ X such that

min
a∈A(x)

d(x,a) >
B(g+ ε)

infx,a τ(x,a)
∀x ∈ X \G (38)

where g is a constant from [21, Theorem 2], and infx,a τ(x,a) > 0 by [21, Lemma 1].

Recalling that

d((i1, i2, s),a) = c1i1 + c2i2, (i1, i2, s) ∈ X, a ∈ A(i1, i2, s),

consider any ε∗ > 0 and let

G∗ :=

{
(i1, 0, s) ∈ X

∣∣∣∣ i1 < ⌊ B(g+ ε∗)

c1 infx,a τ(x,a)

⌋}
.

Then |G∗| <∞, and (38) holds with ε∗ = ε and G∗ = G.
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For f : X→ R, x ∈ X, and a ∈ A(x), let

Taβf(x) := D(x,a) + d(x,a)
∑
y∈X

p(y|x,a)
∫∞

0

∫ t
0
e−βu du dF(t|x,a,y)

+
∑
y∈X

p(y|x,a)
∫∞

0
e−βt dF(t|x,a,y) f(y)

Theorem 12. Under Assumptions M and S, the following statements hold.

(i) The value function vβ satisfies the discounted-cost optimality equation (DCOE)

vβ(x) = min
a∈A(x)

Taβvβ(x) ∀x ∈ X. (39)

(ii) For every β > 0 there exists a β-optimal deterministic stationary policy πβ.

(iii) A deterministic stationary policy π is β-optimal if and only if

π(x) ∈ arg min
a∈A(x)

Taβvβ(x) ∀x ∈ X.

(iv) Every β-optimal deterministic stationary policy is monotone in the server state.

Proof. According to Lemma 11, [21, Assumptions 1,3] hold, which implies that state-

ments (i)-(iii) hold by [21, Theorem 1].

Next, suppose that it is not β-optimal to perform PM in state (i1, i2, s). Then by

statement (iii),

TPMβ vβ(i1, i2, s) > vβ(i1, i2, s).

Since PM incurs the same fixed cost whenever it is initiated, and the subsequent

maintenance times are iid, it follows from Proposition 10 that

TPMβ vβ(i1, i2, s+ 1) = TPMβ vβ(i1, i2, s) > vβ(i1, i2, s) > vβ(i1, i2, s+ 1).

By statement (iii), this implies that it is also not β-optimal to perform PM in state

(i1, i2, s+ 1). Hence statement (iv) holds.
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Proof of Theorem 6. Lemma 11 implies that [21, Theorem 2, Proposition 4] hold for

the SMDP formulated in this section. In particular, [21, Theorem 2, Proposition 4]

state that there exists a deterministic stationary optimal policy π∗ that is a limit point

of a sequence of β-optimal deterministic stationary policies. Since the action sets

are finite, it follows that π∗ is actually β-optimal for some β > 0. According to

Theorem 12(iv), π∗ is monotone in the server state.
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