
Recent Progress on the Complexity of Solving Markov
Decision Processes

Jefferson Huang

1 Introduction

The complexity of algorithms for solving Markov Decision Processes (MDPs)
with finite state and action spaces has seen renewed interest in recent years. New
strongly polynomial bounds have been obtained for some classical algorithms,
while others have been shown to have worst case exponential complexity. In
addition, new strongly polynomial algorithms have been developed. We survey
these results, and identify directions for further work.

In the following subsections, we define the model, the two optimality crite-
ria we consider (discounted and average rewards), the classical value iteration,
policy iteration algorithms, and how to find an optimal policy via linear pro-
gramming. In Section 2, we review the literature on the complexity of algorithms
for sovling discounted and average-reward problems. Finally, in Section 3 we
consider some directions for further work.

1.1 Model Definition

Let X = {1, 2, . . . , n} denote the state space, and let A = {1, 2, . . . ,m} denote
the action space. For x ∈ X, let A(x) be the nonempty set of actions available
at state x. At each time step t ∈ {0, 1, . . . }, the process is in some state x ∈ X.
If the action a ∈ A(x) is performed, a one-step reward r(x, a) is earned and the
process transitions to state y ∈ X with probability p(y|x, a). Given an initial
state x0 ∈ X, at time t > 0 a particular history ht = x0a0x1a1 . . . at−1xt of the
process will have been realized, where xk and ak ∈ A(xk) is the state and action
taken at time k, respectively. A trajectory is a sequence x0a0x1a1

1.2 Optimality Criteria

A policy is any rule that prescribes how actions should be selected under any
realization of the process. For example, a policy may stipulate that given the
history ht of the process, the action a ∈ A(xt) should be performed with prob-
ability π(a|ht); such a policy is a randomized policy, and is the most general
kind of policy considered here. The set of all such policies is denoted by ΠR.
Of particular note for finite state and action MDPs is the set ΠS of stationary
policies, where φ ∈ ΠS is a mapping from X into A such that φ(x) ∈ A(x) for
each x ∈ X; under φ, the action φ(x) is performed whenever the process is in
state x. Note that ΠS can be viewed as a subset of ΠR.

1

To evaluate a given policy π ∈ ΠR, a criterion f is selected, which assigns a
number f(x, π) to each initial state x ∈ X. The policy π∗ is optimal at state x if
f(x, π∗) = supπ∈ΠR f(x, π); an optimal policy is optimal at every initial state.

Two commonly used criteria are the infinite-horizon total discounted reward
and the long-run expected average reward per unit time. In particular, let Eπx
denote the expectation operator associated with the probability distribution on
the set of possible trajectories of the process with initial state x. Then, given the
discount factor β ∈ [0, 1), the infinite-horizon total discounted reward earned by
starting in state x and following the policy π is

vβ(x, π) = Eπx
∞∑
t=0

βtr(xt, at),

and the corresponding long-run average reward per unit time, also called the
gain, is

g(x, π) = lim inf
N→∞

Eπx
1

N

N−1∑
t=0

r(xt, at).

It is well-known that, if the state and action spaces are finite, then there
is a stationary optimal policy under both the discounted and average-reward
criteria; see e.g. Puterman [22, pg. 154, 451]. In particular, the value function
Vβ(x) , supπ∈ΠR vβ(x, π) and vβ(x, φ) for any φ ∈ ΠS uniquely satisfy

Vβ(x) = max
a∈A(x)

{r(x, a) + β
∑
y∈X

p(y|x, a)Vβ(y)} , TVβ(x), x ∈ X, (1)

and

vβ(x, φ) = r(x, φ(x)) + β
∑
y∈X

p(y|x, a)vβ(y, φ)} , Tφvβ(x, φ), x ∈ X, (2)

respectively. Hence any stationary policy φ∗ satisfying Tφ∗Vβ = TVβ is such
that vβ(x, φ∗) = Vβ(x) for all x ∈ X, i.e. is optimal. Equation (1) is called the
optimality equation for the discounted-reward criterion.

For the average-reward criterion, there exists a stationary policy φ∗ such
that, for some real-valued functions g∗ and h∗ on the state space,

g∗(x) =
∑
y∈X

p(y|x, φ∗(x))g∗(y) = max
a∈A(x)

{
∑
y∈X

p(y|x, a)g∗(y)}, x ∈ X, (3)

and
g∗(x) + h∗(x) = r(x, φ∗(x)) +

∑
y∈X

p(y|x, φ∗(x))h∗(y)

= max
a∈A(x)

{r(x, a) +
∑
y∈X

p(y|x, a)h∗(y)}, x ∈ X;
(4)

further, any such φ∗ is optimal. In particular, g∗(x) = supπ∈ΠR g(x, π) for each
x ∈ X. Equations (3) and (4) are called the canonical equations.

2

1.3 Solution Methods

Three classical methods for finding an optimal policy are value iteration, policy
iteration, and solving an associated linear programming problem.

1.3.1 Value Iteration: Discounted Rewards

Recall from (1) that for any real-valued function u on X, the operator T is given
by

Tu(x) = max
a∈A(x)

{r(x, a) + β
∑
y∈X

p(y|x, a)u(y)}, x ∈ X.

It is well-known that T is a contraction mapping with modulus β on the space of
real-valued functions on X with respect to the max-norm defined for u : X→ R
by ‖u‖ = maxx∈X |u(x)|. In other words, for any real-valued functions u, u′ on
X, ‖Tu−Tu′‖ ≤ β‖u−u′‖. This can be proved by applying T to the inequalites
u(x) ≤ u′(x) + ‖u − u′‖ and u′(x) ≤ u(x) + ‖u − u′‖, x ∈ X, and noting that
T (u+ c) = Tu+ βc for any constant c and Tu ≥ Tv if u ≥ v.

Since the space of real-valued functions on X can be identified with Rn, which
is complete under the max-norm, the Banach fixed-point theorem implies that
T has a unique fixed point V ∗, i.e. V ∗ : X → R uniquely satisfies V ∗ = TV ∗.
Further, given any function u : X→ R,

‖V ∗ − Tnu‖ ≤ βn

1− β
‖Tu− u‖, n = 1, 2, . . . , (5)

i.e. the sequence {Tnu}n≥0 converges geometrically in max-norm to V ∗. Since
Vβ satisfies Vβ = TVβ , we have V ∗ = Vβ , and (5) immediately suggests a means
of obtaining an arbitrarily good approximation of Vβ and a corresponding policy:

Algorithm 1 Value Iteration

1: Select a function u : X→ R, and select a stopping condition.
2: repeat
3: Let u = Tu.
4: until The stopping condition is met.
5: Let ψ be any stationary policy satisfying Tψu = Tu.

There are a number of stopping conditions that provide a lower bound on
the performance of the policy ψ obtained via value iteration; see e.g. [22, §6.3 &
§6.6]. In fact, one can show that after a finite number of iterations, ψ must be
optimal. In particular, letting vφ(x) , vβ(x, φ) for φ ∈ ΠS and x ∈ X, this can
be done by first verifying that if value iteration is terminated after N iterations,
then

‖Vβ − vψ‖ ≤
2βN

(1− β)2
‖Tu− u‖.

3

The proof is completed by noting that, since X and A are finite, the set F− of
nonoptimal stationary policies is finite; hence after any number N of iterations
satisfying

2βN

(1− β)2
‖Tu− u‖ < min

φ∈F−
‖Vβ − vφ‖,

the returned policy ψ is optimal. The fact that β ∈ [0, 1) ensures that the
requisite number of iterations is finite.

1.3.2 Value Iteration: Average Rewards

We only briefly describe value iteration under the average reward criterion,
since it is not considered in any of the results described in the sequel. Here
value iteration is as in Algorithm 1, except that the operator T is replaced with
U , defined for u : X→ R as

Uu(x) = max
a∈A(x)

{r(x, a) +
∑
y∈X

p(y|x, a)u(y)}, x ∈ X.

Under certain conditions, the difference Un+1u(x) − Unu(x) converges to the
optimal gain g∗(x) for each x ∈ X and stopping conditions exist that provide a
lower bound on the performance of ψ. One such condition is that the MDP is
both unichain and aperiodic, i.e. every stationary policy induces an aperiodic
Markov chain with a single recurrent class; see e.g. [22, §8.5, §9.4, & §9.5.3].

1.3.3 Policy Iteration: Discounted Rewards

Recall that for any stationary policy φ, the function vβ(x, φ) uniquely satisfies

vβ(x, φ) = r(x, φ(x)) + β
∑
y∈X

p(y|x, φ(x))vβ(y, φ) , Tφvβ(x, φ), x ∈ X.

One way to show this is to consider the system of equations u = Tφu. Letting

rφ(x) , r(x, φ(x)) and letting Pφ denote the transition matrix of the Markov
chain induced by φ, we can rewrite u = Tφu as (I − βPφ)u = rφ, where I is the
n× n identity matrix. Since βtP tφ tends to a zero matrix as t→∞, the matrix

I − βPφ is invertible, and (I − βPφ)−1 =
∑∞
t=0 β

tP tφ; this is because

(I − βPφ)

N−1∑
t=0

βtP tφ = I − βNPNφ

tends to I as N → ∞, which means that the determinant of I − βPφ cannot
be zero. Hence u = (I − βPφ)−1rφ =

∑∞
t=0 β

tP tφrφ = vφ, and so vφ uniquely
satisfies vφ = Tφvφ.

Another way is to first show that Tφ is a contraction mapping on the space
of real-valued functions on X, and then to show that vφ satisfies vφ = Tφvφ by
conditioning on the first transition under φ. Invoking the Banach fixed-point

4

theorem in turn ensures the uniqueness of vφ, and also implies that for any
u : X→ R the sequence {Tnφ u}∞n=0 converges geometrically in max-norm to vφ.

A benefit of the contraction mapping approach is that it can be used to
justify a means of deciding whether a given stationary policy can be improved,
which forms the basis of the policy iteration algorithm to be described below.
In particular, suppose the stationary policy φ is such that

Tψvφ(x∗) > vφ(x∗), for some ψ ∈ ΠS and x∗ ∈ X. (6)

Noting that since Tφ is a monotone operator, T kψvφ(x∗) > vφ(x∗) for some

k ∈ N implies T k+1
ψ vφ(x∗) ≥ Tψvφ(x∗) > vφ(x∗), we have by induction that

Tnψ vφ(x∗) > vφ(x∗) for each n ∈ N. Since limn→∞ Tnψ vφ(x∗) = vψ(x∗) by the
Banach fixed point theorem, this means that vψ(x∗) > vφ(x∗), i.e. using ψ from
the initial state x∗ is strictly better than using φ.

On the other hand, suppose that φ∗ is such that

Tφvφ∗(x) ≤ vφ∗(x), for all φ ∈ ΠS and x ∈ X, (7)

i.e. Tvφ∗ = vφ∗ . Then since Vβ is the unique fixed point of T , φ∗ is optimal.
Conditions (6) and (7) suggest that, to find an optimal stationary policy, one

can start with any φ ∈ ΠS and iteratively try to improve it by checking if (6)
holds; if not, condition (7) holds, implying that the current policy is optimal.
This process is referred to as the policy iteration algorithm:

Algorithm 2 Policy Iteration

1: Select any φ ∈ ΠS .
2: while ‖Tvφ − vφ‖ > 0 do
3: Let ψ be any policy satisfying Tψvφ > vφ.
4: Set φ = ψ.

The monotonicity of T implies that the condition in line 2 above holds iff.
Tvφ(x∗) > vφ(x∗) for some x∗ ∈ X, which holds iff. condition (6) holds. This is
because if Tvφ(x∗) < vφ(x∗), then Tnvφ(x∗) < vφ(x∗) would hold for all n ∈ N,
implying that supπ∈ΠR v(x∗, π) = Vβ(x∗) < vφ(x∗), a contradiction. Also, note
that in line 3 we may have a choice as to which policy ψ to use; as we will see
in Section 1.3.5 below, using the policy iteration algorithm with a certain rule
for selecting the improved policy ψ is equivalent to using the simplex method
with a certain pivoting rule to solve a certain linear program.

Like the value iteration algorithm (Algorithm 1), the policy iteration algo-
rithm is guaranteed to produce an optimal policy in a finite number of iterations.
This can be seen by recalling that if the current policy φ is updated to ψ, then
vψ > vφ and hence φ 6= ψ; this implies that the number of policy updates can
be at most the number of stationary policies, which is finite because the number
of states and actions is finite.

Further, if each updated policy ψ in line 3 of Algorithm 2 is selected so
that Tψvφ = Tvφ, in which case the algorithm becomes the classical Howard’s

5

policy iteration algorithm [11, p. 84], then the rate of convergence to an optimal
policy is geometric. In particular, letting φk be the kth policy produced by the
algorithm, we have Tφk+1vφk = Tvφk ≥ vφk , which by induction implies that
Tnφk+1vφk ≥ Tvφk for every n ∈ N. Letting n → ∞, this means vφk+1 ≥ Tvφk

on each iteration k; by induction, this implies that the kth policy produced
by the algorithm satisfies vφk ≥ T kvφ0 , where φ0 is the initial policy. Hence
‖Vβ − vφk‖ ≤ ‖Vβ − T kvφ0‖ ≤ βk‖Vβ − vφ0‖. This property of Howard’s policy
iteration plays a key role in Meister & Holzbaur’s [18] proof that Howard’s policy
iteration takes (weakly) polynomial time. It was also used in Hansen et al.’s [9]
and Scherrer’s [23] recent approaches to improving Ye’s [27] proof that, given
a fixed discount factor, Howard’s policy iteration algorithm runs in strongly
polynomial time. More will be said about this in Section 2.3.1 below.

Finally, we remark that Howard’s policy iteration algorithm is also equivalent
to using Newton’s method to solve the functional equation Tu − u = 0. This
representation can be used to prove the convergence of Howard’s policy iteration
algorithm in more general settings; see e.g. Puterman [22, §6.4.3-6.4.4].

1.3.4 Policy Iteration: Average Rewards

As was alluded to in the description of value iteration for average-reward MDPs
in Section 1.3.2, the structure of the Markov chains induced by the stationary
policies for the MDP plays a more prominent role here than in discounted-
reward problems. Under certain conditions, the analysis of and algorithms for
solving average-reward MDPs can be simplified, while in others a more elaborate
analysis is needed. Except for the results of Zadorojniy et al. [28] and Even &
Zadorojniy [3], which pertain to controlled random walks, and Melekopoglou
& Condon [19], which involves an example under which the optimal policy is
optimal under both criteria, all of the results described in the sequel apply to
MDPs that are unichain, i.e. the Markov chain associated with every stationary
policy consists of a single recurrent class and a possibly empty set of transient
states. We can also assume without loss of generality that the Markov chain
induced by every stationary policy is aperiodic, since an MDP with periodic
stationary policies can be transformed in a way that makes all stationary policies
aperiodic and perserves the set of optimal policies; see e.g. Puterman [22, §8.5.4].

Under the unichain condition, the gain under every stationary policy is con-
stant. This is because, under this condition, the Cesàro limit

lim
N→∞

1

N

N−1∑
t=0

P t = P ∗

of any n × n transition matrix P has identical rows, each of which gives the
stationary distribution of P . Hence for any stationary policy φ, letting gφ(x) =
g(x, φ) and rφ(x) = r(x, φ(x)) for x ∈ X and letting Pφ denote the transition

6

matrix associated with φ and P ∗φ its corresponding Cesàro limit, we have that

gφ = lim
N→∞

1

N

N−1∑
t=0

P tφrφ = P ∗φrφ

is constant; hence for unichain MDPs, we’ll simply let gφ , gφ(x), x ∈ X. Since
there exists an optimal stationary policy, this implies that the optimal gain g∗

is also constant. Hence the first canonical equation (3) is redundant, and we’re
left with the unichain optimality equation

g∗ + h∗(x) = r(x, φ∗(x)) +
∑
y∈X

p(y|x, φ∗(x))h∗(y)

= max
a∈A(x)

{r(x, a) +
∑
y∈X

p(y|x, a)h∗(y)}, x ∈ X.
(8)

Before describing the policy iteration algorithm for unichain average-reward
MDPs, we first consider how to evaluate the gain of a given stationary policy.
To this end, let φ ∈ ΠS , let e denote the vector of all ones, and suppose the
constant c and the vector u satisfy

ce+ (I − Pφ)u = rφ. (9)

Then, since P ∗φPφ = P ∗φ and P ∗φ is row stochastic (because each row of P ∗φ
defines the stationary distribution of Pφ), multiplying both sides of (9) by P ∗φ
gives ce = P ∗φrφ = gφe, and hence c = gφ. Hence to determine the gain gφ of any

φ ∈ ΠS , it suffices to find any pair (c, u) satisfying (9). To verify that a solution
exists for any φ ∈ ΠS , one can either set u(x0) = 0 for some x0 ∈ X and solve for
the remaining variables, or check that c = gφ and u = (Zφ−P ∗φ)rφ , hφ, where

Zφ , (I − Pφ + P ∗φ)−1 is the fundamental matrix associated with φ, satisfies
(9). Incidentally, the vector hφ is called the bias of φ. In particular, here the
expected total reward earned in n steps under φ starting from state x can be
written as

ngφ + hφ(x) + o(1),

where o(1) is a function that goes to zero as n→∞; hence the bias can be used
to differentiate between policies with the same gain, and in fact can be used
to demonstrate that the policy iteration algorithm described below terminates
after a finite number of iterations.

We now describe the policy iteration algorithm for unichain average-reward
MDPs. Recall that the operator U is defined for u : X→ R as

Uu(x) = max
a∈A(x)

{r(x, a) +
∑
y∈X

p(y|x, a)u(y)}, x ∈ X.

Also, for φ ∈ ΠS define Uφ for u : X→ R by

Uφu(x) = r(x, φ(x)) +
∑
y∈X

p(y|x, φ(x))u(y).

7

Algorithm 3 Policy Iteration (Unichain MDP, Average Rewards)

1: Select any φ ∈ ΠS .
2: Evaluate φ by finding any (gφ, uφ) satisfying gφe+ uφ = rφ + Pφuφ.
3: while Uuφ > gφe+ uφ do
4: Let ψ be any policy satisfying Uψuφ > gφ + uφ.
5: Set φ = ψ.

The policy iteration algorithm is given below:
It can be shown (see e.g. Puterman [22, §8.6.2-8.6.3]) that the gain of succes-

sive policies generated by Algorithm 3 monotonically increases, and that gψ = gφ
implies that hψ > hφ, where hφ is the bias of the policy φ. Since the number of
stationary policies is finite when the number of states and actions is finite, this
means that the algorithm terminates after a finite number of iterations.

In particular, at termination we have Uuψ ≤ gψe+ uψ, which means that

Uφuψ = rφ + Pφuψ ≤ gψe+ uψ, for all φ ∈ ΠS .

Multiplying both sides by P ∗φ , we see that this means gφe = P ∗φrφ ≤ gψe for

all φ ∈ ΠS . Since a stationary average-reward optimal policy exists when the
number of states and actions is finite, this in turn implies that the terminal
policy ψ is optimal.

Note that, analogously to policy iteration for discounted-reward MDPs, we
may have a choice as to the updated policy ψ to use in line 4 of Algorithm 3. In
fact, given a rule for selecting ψ, it turns out that policy iteration for unichain
average-reward MDPs is also equivalent to applying the simplex method with a
certain pivoting rule to a certain linear program.

1.3.5 Linear Programming: Discounted Rewards

We now turn to the linear programming (LP) formulation of the problem of
finding an optimal policy for discounted-reward MDPs. To begin, suppose the
vector v ∈ Rn satisfies

v(x) ≥ r(x, a) + β
∑
y∈X

p(y|x, a)v(y), for all x ∈ X, a ∈ A(x);

such a vector v is called β-superharmonic. Then v ≥ Tv, which implies by
induction that v ≥ Tnv for all n ∈ N. The Banach fixed-point theorem in
turn implies that v ≥ Vβ ; since Vβ = TVβ , it follows that the value function is
the smallest β-superharmonic vector. Hence to find Vβ , we can solve the linear
program min{

∑
x∈X v(x) : v is β-superharmonic}. Letting e denote the vector

of all ones, letting the m× n matrices J and P be defined by [J]xa,y = δxy (δxy
is defined to be 1 if x = y and 0 otherwise) and [P]xa,y = p(y|x, a), and letting
the m-vector r be defined by [r]xa = r(x, a), this LP can be written as

minimize eT v

such that (J − βP)v ≥ r,
(Dβ)

8

where the superscript T denotes the transpose, and all vectors are assumed to
be column vectors unless stated otherwise. It turns out that the policy iteration
algorithm for discounted-reward MDPs can be viewed as applying a simplex
method to the dual of (Dβ)

maximize ρT r

such that ρT (J − βP) = eT ,

ρ ≥ 0.

(Pβ)

In particular, first note that any stationary policy φ furnishes us with an initial
feasible basis for (Pβ); selecting the rows of J−βP corresponding to the actions
used by φ, we obtain the nonsingular matrix I−βPβ , and letting ρφ denote the
vector containing the components of ρ corresponding to the actions selected by
φ,

ρφ = (I − βPTφ)−1e =

∞∑
t=0

βt(PTφ)te ≥ β0(PTφ)0e = e > 0. (10)

Next, letting rφ denote the vector containing the elements of r corresponding
to the actions selected by φ, the corresponding reduced cost vector cφ is given
by

cφ = r − (J − βP)(I − βPφ)−1rφ.

Since (I − βPφ)−1rφ = vφ, this means

cφ(x, a) = r(x, a)−
∑
y∈X

(δxy − βp(y|x, a))vφ(y)

= r(x, a) + β
∑
y∈X

p(y|x, a)vφ(y)− vφ(x), for x ∈ X, a ∈ A(x).

Hence cφ(x, a) > 0 (i.e. the nonbasic variable ρ(x, a) is eligible to enter the
basis) iff. Tvφ(x) ≥ r(x, a) +

∑
y∈X p(y|x, a)vφ(y) > vφ(x) (i.e. the policy φ can

be improved by setting ψ(x) = a). Further, cφ(x, a) ≤ 0 for all x ∈ X and
a ∈ A(x) (i.e. the basic feasible solution induced by φ is optimal) iff. Tvφ = vφ
(i.e. φ is optimal). Further, one can show that there is a 1-1 correspondence
between the set of basic feasible solutions to (Pβ) and the set of stationary
policies; see e.g. Puterman [22, §6.9.2]. Recalling that the updated policy ψ in
the policy iteration algorithm may update the action in more than one state,
it follows that we are justified in performing block pivots when applying the
simplex method to (Pβ).

1.3.6 Linear Programming: Average Rewards

We now consider the LP formulation of the problem of finding an optimal policy
for unichain average-reward MDPs. Analogously to the discounted case, the
value g is superharmonic if there exists a vector u ∈ Rn such that

g + u(x) ≥ r(x, a) +
∑
y∈X

p(y|x, a)u(y), for all x ∈ X, a ∈ A(x).

9

Since the unichain optimality equation (8) has a solution (g∗, h∗), where g∗ is
the optimal gain, it follows that g∗ is the solution to the linear program

minimize g

such that g + u(x)−
∑
y∈X

p(y|x, a)u(y) ≥ r(x, a), x ∈ X, a ∈ A(x). (D)

The dual of (D) is

maximize
∑
x∈X

∑
a∈A(x)

r(x, a)ρ(x, a)

such that
∑
x∈X

∑
a∈A(x)

(δxy − p(y|x, a))ρ(x, a) = 0, y ∈ X,

∑
x∈X

∑
a∈A(x)

ρ(x, a) = 1,

ρ(x, a) ≥ 0, x ∈ X, a ∈ A(x).

(P)

Here every stationary policy φ corresponds to a basic feasible solution ρφ to
(P) by letting ρ(x, φ(x)) be basic for each x ∈ X and letting the remaining
variables be nonbasic. The vector of basic variable values bφ = [ρφ(x, φ(x))]x∈X
corresponding to such a basic feasible solution is then precisely the stationary
distribution of the Markov chain with transition matrix Pφ. This is because bφ
is a solution to bT (I − Pφ) = 0 such that bT e = 1, whose unique solution is the
stationary distribution of Pφ if the MDP is unichain and aperiodic. However,
unlike the discounted case, there is no 1-1 correspondence between basic feasible
solutions and stationary policies; see e.g. Puterman [22, §8.8.2]. The connection
between the simplex method applied to (P) also requires the use of a modified
rule for exiting basic variables; see e.g. Denardo [2].

2 Review of Complexity Results

Under both the discounted and average-reward criteria, the problem of finding
an optimal policy is tractable. Since both problems can be formulated as linear
programs, they can both be solved in polynomial time (see e.g. Khachiyan [14]
and Karmarkar [13]). In fact, it was known at least since the late 1980s
that under the discounted-reward criterion, both Howard’s policy iteration and
value iteration also return an optimal policy in polynomial time (Meister &
Holzbaur [18] and Tseng [24], respectively). Also of note is that in 1987, Pa-
padimitriou & Tsitsiklis [20] showed that the problem of finding an optimal
policy under both the discounted and average-reward criteria is P-complete, by
showing that it is P-hard via a reduction from the circuit value problem. This
means that there does not exist an efficient parallel algorithm1 for solving these

1i.e. takes time polynomial in the logarithm of the bit-size of the input using a number of
processors polynomial in the bit-size of the input.

10

two problems unless there is one for every problem in P; whether or not the
latter is true is unknown.

Hence, interest has since turned towards the possiblity of strongly polyno-
mial algorithms, defined in Section 2.1 below, for finding optimal policies under
both the discounted and average-reward criteria. In recent years there have
been both positive and negative results. On the one hand, for certain problems
new strongly polynomial algorithms have been developed (Zadorojniy et al. [28],
Ye [26]) and variants of policy iteration were shown to run in strongly polyno-
mial time (Ye [27], Even & Zadorojniy [3], Hansen et al. [9], Post & Ye [21],
Feinberg & Huang [5], Scherrer [23], Akian & Gaubert [1]). On the other hand,
Feinberg & Huang [6] showed that under the discounted-reward criterion value
iteration is not strongly polynomial, and problems were constructed that forced
certain variants of policy iteration to take an exponential number of iterations
(Melekopoglou & Condon [19], Fearnley [4], Hollanders et al. [10]). These results
are described in the following sections.

2.1 Strongly Polynomial Algorithms

An algorithm for finding an optimal policy for an MDP is polynomial if the
number of arithmetic operations needed to return an optimal policy is bounded
by a polynomial in the total number of actions m and the bit-size L of the
input data; note that since the set of actions A(x) available at any given state
is assumed to be nonempty, the number of states n is never larger than m. If
the number of arithmetic operations needed is bounded by a polynomial only
in m, then the algorithm is strongly polynomial. A polynomial algorithm that
is not strongly polynomial is called weakly polynomial.

2.2 Value Iteration

The two results we describe below pertain to the complexity of value iteration
under the discounted-reward criterion.

2.2.1 Positive Results

On the positive side, Tseng [24] showed in 1990 that if the discount factor β and
transition probabilities p(y|x, a) are rational numbers and the one-step rewards
r(x, a) are all integers, then value iteration is guaranteed to return an optimal
policy after a weakly polynomial number of iterations for a fixed discount factor.

In particular, let uk denote the kth vector generated by value iteration (Al-
gorithm 1), where u0 denotes the initial vector, and let δ be the smallest positive
integer such that for all x, y ∈ X and a ∈ A(x), δβ and δp(y|x, a) are integers,
|r(x, a)| ≤ δ, and |u0(x)| ≤ δ. Then, letting K , maxx,a |r(x, a)|, after

k ≤ k̂ =

⌈
log(2δ2n+2nn(‖u0‖+K/(1− β)))

log(1/β)

⌉
(11)

11

iterations, any stationary policy ψ satisfying Tψu
k = Tuk is such that TψVβ =

Vβ ; since vψ is the unique fixed point of Tψ, this means Vβ = vψ, i.e. ψ is
optimal. Since both ‖u0‖ and K are at most δ, and at most a constant times
mn log(δ) bits are needed to write down the input data, the iteration bound
(11) is weakly polynomial for a fixed discount factor. The proof of the bound
(11) involves showing that if ‖Vβ − uk‖ < 1/(2δ2n+2nn) and a ∈ A(x) is not an
optimal action, then ψ(x) 6= a.

2.2.2 Negative Results

While Tseng showed that for discounted rewards, value iteration returns an
optimal policy in weakly polynomial time given rational input data, Feinberg &
Huang [6] showed via a simple 3-state example that if the inputs are not assumed
to be rational, then the number of arithmetic operations needed to return an
optimal policy can grow arbitrarily quickly as a function of the number of actions
m. This implies that the algorithm is not strongly polynomial.

Since the example is very simple, we describe it in detail below. Consider
an arbitrary increasing sequence {Mi}∞i=1 of natural numbers. Let the state
space be X = {1, 2, 3}, and for a natural number k let the action space be
A = {0, 1, . . . , `}. Let A(1) = A, A(2) = {0} and A(3) = {0} be the sets of
actions available at states 1, 2, and 3, respectively. The transition probabilities
are given by p(2|1, i) = p(3|1, 0) = p(2|2, 0) = p(3|3, 0) = 1 for i = 1, . . . , k.
Finally, the one-step rewards are given by r(1, 0) = r(2, 0) = 0, r(3, 0) = 1, and

r(1, i) =
β

1− β
(1− exp(−Mi)), i = 1, . . . , `.

Figure 1 below illustrates such an MDP for ` = 2.

2 1 3

r(1, 1)

r(1, 2)

0
0 1

Figure 1: The solid arcs correspond to transitions associated with action 0, and
dashed arcs correspond to the remaining actions. The number next to each arc
is the reward associated with the corresponding action.

For this MDP each policy is defined by an action selected at state 1. Note
that if action i ∈ {1, . . . , `} is selected, then the total discounted reward starting
from state 1 is simply r(1, i); if action 0 is selected, the corresponding total
discounted reward is β/(1− β). Since

r(1, i) =
β

1− β
(1− exp(−Mi)) <

β

1− β

for each i = 1, . . . , `, action 0 is the unique optimal action in state 1.

12

Now, setting u0 ≡ 0, for k = 0, 1, . . . , we have

uk+1(x) = Tuk(x) = max
a∈A(x)

{r(x, a) + β
∑
y∈X

p(y|x, a)uk(y)}, x ∈ X,

and letting ψk denote the policy obtained if the algorithm terminates after k
iterations, we have that Tφkuk = Tuk = uk+1, i.e.

ψk(x) ∈ arg max
a∈A(x)

{r(x, a) + β
∑
y∈X

p(y|x, a)uk(y)}, x ∈ X.

For this MDP, since the Mi’s are increasing in i, we have for k = 0, 1, . . .

uk+1(1) = max

{
β(1− βk)

1− β
,
β(1− exp(−M`))

1− β

}
uk+1(2) = 0,

uk+1(3) =
1− βk+1

1− β
,

which means that

ψk(1) =

{
`, if k < M`/(− lnβ),

0, if k > M`/(− lnβ).

Hence more than Mk/(− lnβ) iterations are needed to select the optimal action
0 in state 1. For example, if Mk = 2k, then since there are a total of m = k+ 3
actions, at least C · 2m/(− lnβ) iterations are needed, where C = 2−3.

2.3 Policy Iteration

The majority of the complexity results considered here pertain to the policy
iteration algorithm, to which we now turn.

2.3.1 Positive Results

Meister & Holzbaur [18] showed in 1986 that given rational input data, Howard’s
policy iteration algorithm is weakly polynomial. In particular, recalling that
L denotes the bit-size of the input data, the number of iterations needed to
return an optimal policy is at most a constant times n logL/ log(1/β). Since
each iteration involves solving the linear system (I − βPφ)u = rφ for some
φ ∈ ΠS and finding a policy ψ such that Tψvφ = Tvφ, which can be done with
O(n3 +n2m) arithmetic operations, the algorithm is weakly polynomial. As was
noted in Section 1.3.3, their proof depends on the observation that the sequence
of policies {φk}k≥0 generated by the algorithm is such that

‖Vβ − vφk+1‖ ≤ β‖Vβ − vφk‖,

13

which, since vφk ≤ vφk+1 ≤ Vβ and recalling that K = maxx,a |r(x, a)|, implies
that

‖vφk+1 − vφk‖ ≤ βk 2K

1− β
. (12)

Next, they show that if vφk+1 6= vφk , then

‖vφk+1 − vφk‖ ≥ 1

N2n−1(1− β)2(1 + β)2n−2
, (13)

where N is the greatest common denominator of the βp(y|x, a)’s. The result
follows by using (12) and (13) to bound the number of iterations until we have
vφk+1 = vφk , i.e. until the algorithm terminates with an optimal policy.

For the next two decades, a polynomial iteration bound for policy iteration
independent of the bit-size L of the input remained elusive. In 1999, Mansour
& Singh [17] showed that Howard’s policy iteration takes O(mn/n) iterations
to obtain an optimal policy on a problem with at most m actions per state; this
is still the best-known bound that is independent of both the discount factor β
and L, but is only modestly better than the trivial bound of O(mn).

A breakthrough finally came in 2011, when Ye [27] used the linear program-
ming formulation of the problem to show that both Howard’s policy iteration
and the simplex method using Dantzig’s classic pivoting rule need at most

(m− n)

(
1 +

n

1− β
log

(
n2

1− β

))
(14)

iterations to return an optimal policy for discounted-reward MDPs. Since each
iteration of policy iteration/the simplex method can be done in O(n3 + mn)
arithmetic operations (actually, using the revised simplex method, basis updates
can be done using O(n2) arithmetic operations), this showed for the first time
that Howard’s policy iteration algorithm and the simplex method with Dantzig’s
pivoting rule solve discounted-reward MDPs with a fixed discount factor in
strongly polynomial time. It is interesting to note that in 1972, Klee & Minty [16]
showed that the simplex method with Dantzig’s rule can require an exponential
number of iterations to solve an LP in general.

We now describe the approach Ye used to show that the iteration bound (14)
holds. The proof was carried out by considering the behavior of the simplex
method on the LP

maximize ρT r

such that ρT (J − βP) = eT ,

ρ ≥ 0.

(Pβ)

First, he notes that every feasible ρ satisfies

eT ρ =
n

1− β
, (15)

and that the values of the basic variables ρφ of any basic feasible solution satisfy

ρφ = (I − βPTφ)−1e =

∞∑
t=0

βt(PTφ)te ≥ β0(PTφ)0e = e > 0.

14

Letting

∆φ , max
x,a
{cφ(x, a) = r(x, a) + β

∑
y∈X

p(y|x, a)vφ(y)− vφ(x)},

the fact that ρφ ≥ e implies that under both Howard’s policy iteration and the
simplex method with Dantzig’s pivoting rule, the updated policy ψ improves
on the objective value ρTφ rφ of the current policy φ by at least ∆φ. This and

(15) are used to show that if φ0 is the initial policy and φk is the kth policy
generated by Howard’s policy iteration or the simplex method with Dantzig’s
pivoting rule, and z∗ is the optimal objective function value of the LP (Pβ),
then

z∗ − ρTφkrφk

z∗ − ρTφ0rφ0

≤
(

1− 1− β
n

)k
. (16)

Then, using strong duality and a well-known strict complementarity result for
LPs, he shows that if φ0 is nonoptimal, then for some x0 ∈ X it is never optimal
to use the action φ0(x0) and that, if φk still uses the action φ0(x0) in state x0,
then

1 ≤ ρφk(x0, φ
k(x0)) ≤ n2

1− β
z∗ − ρTφkrφk

z∗ − ρTφ0rφ0

, (17)

where we recall that the inequality on the left holds for any basic variable for
the LP (Pβ). The bound (14) follows by using (16) and (17) to show that if
φ0 is nonoptimal then some nonoptimal action is permanently eliminated from
consideration after at most

n

1− β
log

(
n2

1− β

)
(18)

iterations, and noting that because an optimal policy exists there are at most
m− n non-optimal actions that need to be eliminated.

In early 2013, Hansen Miltersen & Zwick [9] improved the iteration bound
(14) for Howard’s policy iteration to

(m− n)

(
1 +

1

1− β
log

(
n

1− β

))
, (19)

and also showed that the same bound applies to the related strategy iteration
algorithm for solving discounted two-player turn-based zero-sum games. They
do this by improving Ye’s estimate (18) of the number of iterations needed in
order for a nonoptimal action to be permanently eliminated to

1

1− β
log

(
n

1− β

)
using the property that, if φ0 is the initial policy, then the kth policy generated
by Howard’s policy iteration algorithm satisfies

‖Vβ − vφk‖ ≤ βk‖Vβ − vφk‖.

15

Around the same time, Post & Ye [21] showed that for deterministic MDPs,
the number of iterations required by the simplex method with Dantzig’s pivoting
rule to find an optimal policy is strongly polynomial irrespective of the discount
factor. In particular, the time required is proportional to n3m2 log2 n. They
also showed that if each action involves a distinct discount factor, then the
required number of iterations is proportional to n5m3 log2 n. Noting that a
stationary policy for a deterministic MDP consists of a set of paths and cycles
over the states, their analysis involves showing that after a polynomial number
of iterations, either a new cycle is created or the algorithm terminates, and
then showing that whenever a new cycle is created significant progress towards
finding the optimal policy is made.

Ye’s result that Howard’s policy iteration and the simplex method with
Dantzig’s pivoting rule is strongly polynomial for a fixed discount factor has
also been used to show that certain average-reward problems. In particular,
Feinberg & Huang [5] showed in 2013 that if there is a state to which the
process transitions with probability at least γ > 0 under any action, then an
average-reward optimal policy can be found in strongly polynomial time for a
fixed γ. This is because such a problem can be reduced to a discounted-reward
problem with discount factor β = 1 − γ by setting the transition probabilities
to p̃, where

p̃(j|i, a) =

{
p(j|i, a)/(1− γ), if j 6= i∗,

(p(i∗|i, a)− γ)/(1− γ), if j = i∗,

and keeping the state space, action spaces, and rewards the same. Noting that
the original MDP is unichain, it is easily verified that applying the unichain
policy iteration algorithm for average-reward MDPs to the original MDP, where
uφ is determined in each step by setting uφ(`) = 0 for some ` ∈ X, is in
fact equivalent to applying policy iteration to the associated discounted-reward
problem.

Another improvement to the iteration bound for Howard’s policy iteration
algorithm for discounted-reward MDPs, as well as for the simplex method with
Dantzig’s pivoting rule, came in the middle of 2013 when Scherrer [23] showed
that Howard’s policy iteration needs at most

(m− n)

(
1 +

1

1− β
log

(
1

1− β

))
iterations, while the simplex method with Dantzig’s pivoting rule needs at most

n(m− n)

(
1 +

2

1− β
log

(
1

1− β

))
iterations. We describe his proof of the bound for Howard’s policy iteration
below; his proof of the bound for the simplex method is more involved. First,
he shows that if φ0 is the initial policy, then the kth policy φk satisfies

‖Vβ − TφkVβ‖ ≤
βk

1− β
‖Vβ − Tφ0Vβ‖. (20)

16

Then, he notes that if φ0 is not optimal, then Vβ 6= Tφ0Vβ , and so there exists
a state x0 such that

Vβ(x0)− Tφ0Vβ(x0) = ‖Vβ − Tφ0Vβ‖ > 0.

In particular, the action selected by φ0 in state x0 is not optimal, because it is
not conserving. From (20), we immediately have that the kth policy generated
after φ0 is such that

Vβ(x0)− TφkVβ(x0) ≤ βk

1− β
(Vβ(x0)− TφkVβ(x0)),

which means that if k > log(1/(1 − β))/(1 − β), then φk(x0) 6= φ0(x0), i.e.
the nonoptimal action selected by φ0 in state x0 will not be used again after
log(1/(1− β))/(1− β) iterations.

Most recently, Akian & Gaubert [1] used methods from nonlinear Perron-
Frobenius theory to show that, if the MDP has a state that is recurrent under
every stationary policy, then Howard’s policy iteration algorithm terminates in
strongly polynomial time. Their proof involved applying a transformation that
does not affect the sequnce of policies generated by the algorithm.

2.3.2 Negative Results

On the negative side, Melekopoglou & Condon [19] showed in 1994 that four
pivoting rules for the simplex method, in particular the least-index rule and the
best improvement rule, can require a number of iterations exponential in the
number of states to obtain the optimal policy under both the discounted and
average-reward criteria.

In addition, in 2010 Fearnley [4] exhibited a unichain MDP on which the
policy iteration algorithm for average rewards takes an exponential number
of iterations. The example is quite elaborate, and involves associating each
stationary policy with the state of a binary counter and showing that policy
iteration must consider each state of the binary counter before arriving at the
optimal policy.

Most recently, Hollanders Delvenne & Jungers [10] showed in 2012 how
Fearnley’s example could be adapted to show, via a suitable perturbation, that
Howard’s policy iteration algorithm can take an exponential number of itera-
tions if the discount factor is part of the input.

2.4 Other Algorithms

We note that, in addition to the new complexity results for classical algorithms,
two new algorithms have recently been developed. One was an interior-point
method proposed by Ye [26] in 2005 for discounted-reward MDPs, and was the
first strongly polynomial time algorithm for this problem when the discount
factor is fixed. Its iteration bound, however, was worse than the bound for
policy iteration obtained by Ye [27] in 2011.

17

Another new algorithm was developed by Zadorojniy Even & Schwartz [28]
in 2009 for solving controlled random walks under both the discounted and
average-reward criteria. The total running time under both criteria was shown
to be at most a constant times n4m2, where m is the maximum number of
actions per state. In 2012, Even & Zadorojniy [3] showed that this algorithm
is in fact the simplex method with the Gass-Saaty shadow vertex pivoting rule,
and using this representation were able to improve the running time by a factor
of n.

3 Future Directions

We now describe some possible directions for future research.

3.1 The Majorant Condition

In this section we consider the average-reward criterion. A condition on the
transition function that is related to the condition considered in Feinberg &
Huang [5] is where there exists a number q(y) for each state y such that

q(y) ≥ p(y|x, a) ∀x, y ∈ X, a ∈ A(x) and
∑
y∈X

q(y) < 2.

We’ll say that an MDP satisfying this condition has a majorant. Once fact
about such an MDP is that it is unichain; this is because if some stationary
policy has more than one recurrent class, then the sum above has to be at least
2 if the condition on the left is satisfied.

Another fact that makes such an MDP attractive is that it shares some sim-
ilarities with the discounted-reward problem. For instance, to find an optimal
policy it suffices to find the fixed point of a contraction mapping. In particular,
let β ,

∑
y∈X q(y) − 1, let p̃(y|x, a) = β−1(q(y) − p(y|x, a)) for each x, y ∈ X

and a ∈ A(x), and let the operator U be defined for u : X→ R as

Uu(x) = max
a∈A(x)

{r(x, a)− β
∑
y∈X

p̃(y|x, a)u(y)}, x ∈ X.

Using the same technique used in the discounted case, one can show that U is a
contraction mapping with modulus β, which implies that it has a unique fixed
point u∗, i.e.

u∗(x) = max
a∈A(x)

{r(x, a)− β
∑
y∈X

p(y|x, a)u∗(y)}, x ∈ X.

Using the definition of β, this can be rewritten as∑
y∈X

q(y)u∗(y) + u∗(x) = max
a∈A(x)

{r(x, a) +
∑
y∈X

p(y|x, a)u∗(y)}, x ∈ X, (21)

18

which shows that (
∑
y∈X q(y)u∗(y), u∗) satisfies the unichain optimality equa-

tions. Hence if the MDP has a majorant, to find an optimal policy it suf-
fices to find the unique u∗ such that u∗ = Uu∗; the optimal gain is then
g∗ =

∑
y∈X q(y)u∗(y), and any policy attaining the maximum on the right-hand

side of (21) is optimal.
Of course, in this case value iteration is applicable, and has the same con-

vergence rate as in the discounted case. Also, one can show that given any
stationary policy φ, the system∑

y∈X
q(y)u(y) + u(x) = r(x, φ(x)) +

∑
y∈X

p(y|x, φ(x))u(y)

has a unique solution uφ, and that the gain under φ is gφ =
∑
y∈X q(y)uφ(y).

From this we obtain a version of policy iteration that follows the general version
for unichain MDPs given above, except we perform a “value determination”
step analogously to the discounted case to get uφ. In fact, using β and p̃ defined
above, this corresponds to running policy iteration for discounted-reward MDPs
using a negative discount factor. A possibility would then be to try and adapt
Scherrer’s [23] proof technique to obtain a bound on the running time of policy
iteration for such a problem.

One can also write down a linear program for this problem, which resembles
the primal LP in the discounted case:

maximize
∑
x∈X

∑
a∈A(x)

r(x, a)ρ(x, a)

such that
∑

a∈A(y)

ρ(y, a) +
∑
x∈X

∑
a∈A(x)

(q(y)− p(y|x, a))ρ(x, a) = q(y), y ∈ X,

ρ(x, a) ≥ 0, x ∈ X, a ∈ A(x).

One possiblity that immediately suggests itself is to try and modify Ye’s ap-
proach to apply to this LP, in particular to find a postive lower bound on the
values any positive basic variable; following Kitahara & Mizuno’s [15] general-
ization of Ye’s [27] technique, and demonstrating that Dantzig’s pivoting rule
does not cycle on this LP by linking it with unichain policy iteration, this would
provide a bound analogous to Ye’s on the number of iterations needed. Another
approach is to somehow split the variables in such a way that the value of any
positive basic variable is bounded below by a positive number.

One aspect of this problem that may suggest that policy iteration/linear
programming may perform poorly is that there may not be a state that is
recurrent under all stationary policies; in particular, this means that the result
of Akian & Gaubert [1] is not applicable. For example, in the following MDP
has a majorant, but every state is transient under some stationary policy: let
X = {1, 2, 3}, A = {1, 2} = A(1) = A(2) = A(3), and let

19

p(1|1, 1) = 1/2, p(2|1, 1) = 1/2, p(3|1, 1) = 0;
p(1|1, 2) = 1/2, p(2|1, 2) = 0, p(3|1, 2) = 1/2;
p(1|2, 1) = 0, p(2|2, 1) = 1/2, p(3|2, 1) = 1/2;
p(1|2, 2) = 1/2, p(2|2, 2) = 1/2, p(3|2, 2) = 0;
p(1|3, 1) = 0, p(2|3, 1) = 1/2, p(3|3, 1) = 1/2;
p(1|3, 2) = 1/2, p(2|3, 2) = 0, p(3|3, 2) = 1/2.

A majorant for this MDP is q(1) = q(2) = q(3) = 1/2, but state 1 is transient
under the policy φ(1) = φ(2) = φ(3) = 1 and states 2 and 3 are transient under
the policy φ(1) = 1 & φ(2) = φ(3) = 2. Of course, an MDP with a majorant on
which policy iteration takes exponential time would be of interest; we note that
Fearnley’s [4] example does not have a majorant.

3.2 Communicating MDPs

Another possibility is to investigate the implications of the condition that the
MDP is communicating, i.e. where for every pair x, y of states there is a sta-
tionary policy φ such that x is accessible from y under φ in n ≥ 1 steps. One
suggestion that the communicating condition may be desirable from a com-
plexity standpoint is that checking whether an MDP is communicating can be
done in polynomial time, as was shown by Kallenberg [12], while Tsitsiklis [25]
showed that checking whether an MDP is unichain is NP-hard.

3.3 Complexity of Simplex Pivoting Rules

We have already seen that the choice of a pivoting rule for the simplex method
can have important consequences for the performance of the algorithm on certain
kinds of MDPs, e.g. the Gass-Saaty rule makes the simplex method strongly
polynomial for controlled random walks [3] and Dantzig’s rule makees it strongly
polynomial when the discount factor is fixed [27], while the least index and best
improvement rules can be exponential [19]. In addition, the LP formulation
of an MDPs was recently used by Friedmann [7] to obtain a subexponential
lower bound for Zadeh’s pivoting rule, and by Friedmann Hansen & Zwick [8]
to obtain subexponential lower bounds for two randomized pivoting rules.

References

[1] M. Akian and S. Gaubert. Policy iteration for perfect information stochastic
mean payoff games with bounded first return times is strongly polynomial.
Preprint, 2013. http://arxiv.org/abs/1310.4953v1.

[2] E. Denardo. A markov decision problem. In T. C. Hu and S. M. Robinson,
editors, Mathematical Programming, pages 33–68. Academic Press, New
York, 1973.

20

http://arxiv.org/abs/1310.4953v1

[3] G. Even and A. Zadorojniy. Strong polynomiality of the gass-saaty shadow-
vertex pivoting rule for controlled random walks. Annals of Operations
Research, 201:159–167, 2012.

[4] J. Fearnley. Exponential lower bounds for policy iteration. In S. Abramsky
et al., editor, Automata, Languages and Programming; 37th International
Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 551–562.
Springer, Berlin, 2010.

[5] E. A. Feinberg and J. Huang. Strong polynomiality of policy iterations
for average-cost mdps modeling replacement and maintenance problems.
Operations Research Letters, 41:249–251, 2013.

[6] E. A. Feinberg and J. Huang. The value iteration algorithm is not strongly
polynomial for discounted dynamic programming. Operations Research Let-
ters, 2014. http://dx.doi.org/10.1016/j.orl.2013.12.011.

[7] O. Friedmann. A subexponential lower bound for zadehs pivoting rule for
solving linear programs and games. In O. Gunluk and G. J. Woeginger,
editors, Integer Programming and Combinatoral Optimization, pages 192–
206. Springer, 2011.

[8] O. Friedmann, T. D. Hansen, and U. Zwick. Subexponential lower bounds
for randomized pivoting rules for the simplex algorithm. Proceedings of the
43rd annual ACM symposium on Theory of computing, 2011.

[9] T. D. Hansen, P. B. Miltersen, and U. Zwick. Strategy iteration is strongly
polynomial for 2-player turn-based stochastic games with a constant dis-
count factor. Journal of the ACM, 60(1):Article 1, 16 pages, 2013.

[10] R. Hollanders, J. Delvenne, and R. M. Jungers. The complexity of policy
iteration is exponential for discounted markov decision processes. Decision
and Control (CDC), 2012 IEEE 51st Annual Conference on., 2012.

[11] R. A. Howard. Dynamic Programming and Markov Processes. The MIT
Press, Cambridge, MA, 1960.

[12] L. C. M. Kallenberg. Classification problems in mdps. In Z. Hou et al.,
editor, Markov Processes and Controlled Markov Chains, pages 151–165.
Kluwer Academic Publishers, 2002.

[13] N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

[14] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady
Akademiia Nauk SSSR, 244:1086–1093, 1979.

[15] T. Kitahara and S. Mizuno. A bound for the number of different basic
solutions generated by the simplex method. Mathematical Programming,
137:579–586, 2011.

21

http://dx.doi.org/10.1016/j.orl.2013.12.011

[16] V. Klee and G. J. Minty. How good is the simplex method? In O. Shisha,
editor, Inequalities-III, pages 159–175. Academic Press, New York, 1972.

[17] Y. Mansour and S. Singh. On the complexity of policy iteration. Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence, pages
401–408, 1999.

[18] U. Meister and U. Holzbaur. A polynomial time bound for howard’s policy
improvement algorithm. OR Spektrum, 8:37–40, 1986.

[19] M. Melekopoglou and A. Condon. On the complexity of the policy im-
provement algorithm for markov decision processes. ORSA Journal on
Computing, 6(2):188–192, 1994.

[20] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[21] I. Post and Y. Ye. The simplex method is strongly polynomial for deter-
ministic markov decision processes. to appear in Mathematics of Operations
Research, 2014.

[22] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, 1994.

[23] B. Scherrer. Improved and generalized upper bounds on the complexity of
policy iteration. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 26, pages 386–394. NIPS Foundation, Inc., 2013.

[24] P. Tseng. Solving h-horizon, stationary markov decision problems in time
proportional to log(h). Operations Research Letters, 9:287–297, 1990.

[25] J. N. Tsitsiklis. Np-hardness of checking the unichain condition in average
cost mdps. Operations Research Letters, 35:319–323, 2007.

[26] Y. Ye. A new complexity result on solving the markov decision problem.
Mathematics of Operations Research, 30(3):733–749, 2005.

[27] Y. Ye. The simplex and policy-iteration methods are strongly polynomial
for the markov decision problem with a fixed discount rate. Mathematics
of Operations Research, 36(4):593–603, 2011.

[28] A. Zadorojniy, G. Even, and A. Shwartz. A strongly polynomial algorithm
for controlled queues. Mathematics of Operations Research, 34(4):992–1007,
2009.

22

	Introduction
	Model Definition
	Optimality Criteria
	Solution Methods
	Value Iteration: Discounted Rewards
	Value Iteration: Average Rewards
	Policy Iteration: Discounted Rewards
	Policy Iteration: Average Rewards
	Linear Programming: Discounted Rewards
	Linear Programming: Average Rewards

	Review of Complexity Results
	Strongly Polynomial Algorithms
	Value Iteration
	Positive Results
	Negative Results

	Policy Iteration
	Positive Results
	Negative Results

	Other Algorithms

	Future Directions
	The Majorant Condition
	Communicating MDPs
	Complexity of Simplex Pivoting Rules

