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a b s t r a c t

This note provides a simple example demonstrating that, if exact computations are allowed, the number
of iterations required for the value iteration algorithm to find an optimal policy for discounted dynamic
programming problems may grow arbitrarily quickly with the size of the problem. In particular, the
number of iterations can be exponential in the number of actions. Thus, unlike policy iterations, the value
iteration algorithm is not strongly polynomial for discounted dynamic programming.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Value iterations, policy iterations, and linear programming are
three major methods for computing optimal policies for Markov
Decision Processes (MDPs)with expected total discounted rewards
[1], [3, Chapter 6], also known under the name of discounted
dynamic programming. As is well-known, policy iterations can
be viewed as implementations of the simplex method applied to
one of the two major linear programs used to solve MDPs; see
e.g., [1], [3, Section 6.9]. Ye [5] proved that policy iterations are
strongly polynomial when the discount factor is fixed. This note
shows that value iterations may not be strongly polynomial.

For value iteration, the best known upper bound on the
required number of iterations was obtained by Tseng [4] (see also
Littman [2] and Ye [5]) and is a polynomial in the number of states
n, the number of actions m, the number of bits B needed to write
down the problem data, and (1 − β)−1, where β ∈ (0, 1) is the
discount factor. Since the number of arithmetic operations needed
per iteration is at most a constant times n2m, this means that
the value iteration algorithm is weakly polynomial if the discount
factor is fixed.

This note provides a simple example that demonstrates that,
if exact computations are allowed, the number of operations
performed by the value iteration algorithm can grow arbitrarily
quickly as a function of the total number of available actions. In
particular, the running time can be exponential with respect to
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the total number of actionsm. Thus, unlike policy iterations, value
iterations are not strongly polynomial.

2. Example

Consider an arbitrary increasing sequence {Mi}
∞

i=1 of natural
numbers. Let the state space be X = {1, 2, 3}, and for a natural
number k let the action space be A = {0, 1, . . . , k}. Let A(1) =

A, A(2) = {0}, and A(3) = {0} be the sets of actions available
at states 1, 2, and 3, respectively. The transition probabilities are
p(2|1, i) = p(3|1, 0) = p(2|2, 0) = p(3|3, 0) = 1 for i = 1, . . . , k.
Finally, the one-step rewards are r(1, 0) = r(2, 0) = 0, r(3, 0) =

1, and

r(1, i) =
β

1 − β
(1 − exp(−Mi)), i = 1, . . . , k.

Fig. 1 illustrates such an MDP for k = 2.

2.1. Discounted-reward criterion

Herewe are interested inmaximizing expected infinite-horizon
discounted rewards. In particular, a policy is a mapping φ : X → A
such that φ(x) ∈ A(x) for each x ∈ X. It is possible to consider
more general policies, but for infinite-horizon discounted MDPs
with finite state and action sets it is sufficient to consider only
policies of this form; see e.g., [3, p. 154]. Let F denote the set of
all policies. Also, given an initial state x ∈ X, let Pφ

x denote the
probability distribution on the set of possible histories x0a0x1a1 · · ·

of the process under the policy φ with x0 = x, and let Eφ
x be the
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Fig. 1. Diagram of the MDP for k = 2. The solid arcs correspond to transitions
associated with action 0, and dashed arcs correspond to the remaining actions. The
number next to each arc is the reward associated with the corresponding action.

expectation operator associated with Pφ
x . Then the expected total

discounted reward earned when the policy φ is used starting in
state x ∈ X is

vβ(x, φ) = Eφ
x

∞
t=0

β t r(xt , at).

The goal is to find an optimal policy, that is, a policy φ∗ such
that vβ(x, φ∗) = supφ∈F vβ(x, φ) for all x ∈ X. It is well-
known that if X and A are finite, then an optimal policy exists; see
e.g., [3, p. 154].

For the above describedMDP each policy is defined by an action
selected at state 1. Note that if action i ∈ {1, . . . , k} is selected,
then the total discounted reward starting from state 1 is r(1, i); if
action 0 is selected, the corresponding total discounted reward is
β/(1 − β). Since

r(1, i) =
β

1 − β
(1 − exp(−Mi)) <

β

1 − β

for each i = 1, . . . , k, action 0 is the unique optimal action at state
1.

2.2. Running time of value iterations

We are interested in obtaining the optimal policy using value
iteration. In particular, set V0 ≡ 0, and for each x ∈ X and j =

0, 1, . . . let

Vj+1(x) = max
a∈A(x)


r(x, a) + β


y∈X

p(y|x, a)Vj(y)


,

and

φj+1(x) ∈ argmax
a∈A(x)


r(x, a) + β


y∈X

p(y|x, a)Vj(y)


.

Since the numbersMi increase in i, for j = 0, 1, . . .

Vj+1(1) = max


β(1 − β j)

1 − β
,
β(1 − exp(−Mk))

1 − β


,

Vj+1(2) = 0,

Vj+1(3) =
1 − β j+1

1 − β
,

which implies that

φj+1(1) =


k, if j < Mk/(− lnβ),
0, if j > Mk/(− lnβ).

Hence at least Mk/(− lnβ) iterations are needed to select the
optimal action 0 at state 1. Let Mk = 2k. Since the total number
of actionsm = k+ 3, at least C2m/(− lnβ) iterations are required
to obtain the optimal policy, where C = 2−3.
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