
Operations Research Letters 42 (2014) 429–431
Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Modified policy iteration algorithms are not strongly polynomial for
discounted dynamic programming
Eugene A. Feinberg a,∗, Jefferson Huang a, Bruno Scherrer b,c
a Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA
b Inria, Villers-lès-Nancy, F-54600, France
c Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France

a r t i c l e i n f o

Article history:
Received 8 July 2014
Received in revised form
21 July 2014
Accepted 23 July 2014
Available online 1 August 2014

Keywords:
Markov decision process
Modified policy iteration
Strongly polynomial
Policy
Algorithm

a b s t r a c t

This note shows that the number of arithmetic operations required by any member of a broad class of
optimistic policy iteration algorithms to solve a deterministic discounted dynamic programming problem
with three states and four actions may grow arbitrarily. Therefore any such algorithm is not strongly
polynomial. In particular, the modified policy iteration and λ-policy iteration algorithms are not strongly
polynomial.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Value iteration (VI), policy iteration (PI), and linear program-
ming algorithms are three major methods for computing optimal
policies for Markov decision processes (MDPs) with expected to-
tal discounted rewards [8], [11, Ch. 6], also known under the name
of discounted dynamic programming. As is well-known, PI can be
viewed as an implementation of the simplexmethod applied to one
of the two major linear programs used to solve MDPs; see e.g. [8],
[11, Section 6.9]. Using these linear programs, Ye [16] proved that
both Howard’s [7] PI and the simplexmethodwith Dantzig’s pivot-
ing rule are strongly polynomial when the discount factor is fixed;
in other words, taking the discount factor to be a constant, the
number of arithmetic operations needed by these two algorithms
to return an optimal policy is bounded above by a polynomial
function of the number of state–action pairs m. Post and Ye [10]
subsequently showed that, if the MDP is deterministic, then the
simplexmethodwith Dantzig’s rule is strongly polynomial regard-
less of the discount factor. In contrast, Feinberg andHuang [5] used
a deterministic MDP to demonstrate that VI is not strongly poly-
nomial even when the discount factor is fixed. As was proved by
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Tseng [15], the VI algorithm isweakly polynomial, that is, the num-
ber of required arithmetic operations can be bounded above by a
polynomial inm and the total bit-size of the input data.

Each iteration of PI involves the solution of a system of linear
equations, whichmay be time consuming if the number of states is
large. Several methods have been proposed to deal with this issue
by combining the advantages of PI and VI. One approach is modi-
fied policy iteration (MPI), where the exact solutions are replaced
with estimates obtained via finite numbers of successive approxi-
mations; see Puterman and Shin [12]. Another approach isλ-policy
iteration (λPI), also called temporal difference-based policy itera-
tion; see Bertsekas and Tsitsiklis [2, Section 2.3.1]. Both of these
algorithms include VI and PI as special cases. In studying perfor-
mance bounds for approximate versions of λPI, Thiéry and Scher-
rer [14] considered a generalization of both MPI and λPI, which
they refer to as optimistic policy iteration (OPI). In this note, we
use a variant of Feinberg and Huang’s [5] example to show that a
generalization of OPI, which we call generalized optimistic policy it-
eration (G-OPI), is not strongly polynomial (Theorem 1). In particu-
lar, our result implies that VI,MPI,λPI, andOPI are also not strongly
polynomial (Corollary 2).

We remark that the results in Ye [16] have led to further devel-
opments. For instance, Hansen Miltersen and Zwick [6] improved
the iteration bound for Howard’s PI given in [16] by a factor of the
number of states n and showed that it also applies to the strategy
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iteration algorithm for two-player turn-based zero-sum stochas-
tic games. Scherrer [13] improved both the estimate in [6] for
Howard’s PI and the estimate in [16] for the simplex method by
a factor of ln(n), showing that if the discount factor is fixed then
Howard’s PI needs at most a linear number of iterations in m and
the simplex method with Dantzig’s rule needs at most a linear
number of iterations inmn. The results and analysis in Ye [16] have
also been applied in both more general and different contexts. Ki-
tahara and Mizuno [9] used the analysis in [16] to obtain a suffi-
cient condition for the simplex method to be strongly polynomial
for linear programs in general. In addition, Ye [16, Section 5] notes
that the analysis of discounted MDPs can be extended to transient
MDPs;Denardo [3] showed thatwith somemodifications, the anal-
ysis given in [16, Section 5] can yield a bound improved by a factor
of 2 for such MDPs. Finally, the results in [16] are relevant for cer-
tain MDPs under the average-reward criterion; see Feinberg and
Huang [4] and Akian and Gaubert [1].

2. Generalized optimistic policy iteration

In Section 2.1 we describe the discounted-reward criterion. In
Section 2.2,we formulate theG-OPI algorithmand state our results,
namely Theorem 1 and Corollary 2, which are proved in Section 3.

2.1. Discounted-reward criterion

Consider a discrete-time MDP with finite state set X, finite
nonempty sets of actions A(x) available at each x ∈ X, transition
probabilities p(y|x, a) for each x, y ∈ X and a ∈ A(x), and one-step
rewards r(x, a) for each x ∈ X and a ∈ A(x). Let m :=


x∈X |A(x)|

denote the total number of state–action pairs.
Herewe are interested inmaximizing expected infinite-horizon

discounted rewards. In particular, a policy is a mapping φ : X →
x∈X A(x) such that φ(x) ∈ A(x) for each x ∈ X. One may consider

more general policies, but for infinite-horizon discounted MDPs
with finite state and action sets it is sufficient to consider only poli-
cies of this form; see e.g. [11, p. 154]. Let F denote the set of all
policies. Also, given an initial state x ∈ X, let Pφ

x denote the proba-
bility distribution on the set of possible histories x0a0x1a1 . . . of the
process under the policy φ with x0 = x, and let Eφ

x be the expec-
tation operator associated with Pφ

x . Then, letting β ∈ (0, 1) denote
the discount factor, the expected total discounted reward earned
when the policy φ is used starting from state x ∈ X is

vβ(x, φ) := Eφ
x

∞
t=0

β t r(xt , at).

The goal is to find an optimal policy, i.e. a policy φ∗ such that
vβ(x, φ∗) = supφ∈F vβ(x, φ) for all x ∈ X. It is well-known that
if X and


x∈X A(x) are finite, then an optimal policy exists; see e.g.

[11, p. 154]. To describe the G-OPI algorithm, it will be convenient
to define the operators T and Tφ, φ ∈ F , on functions v : X → R
for each x ∈ X by

Tv(x) := max
a∈A(x)


r(x, a) + β


y∈X

p(y|x, a)v(y)


and

Tφv(x) := r(x, φ(x)) + β

y∈X

p(y|x, φ(x))v(y),

where for n = 1, 2, . . . , T 0
φv(x) := v(x) and T n

φv(x) := Tφ(T n−1
φ

v)(x).
Fig. 1. The solid arcs correspond to transitions associated with action 0, and the
dashed arc corresponds to action 1. The number next to each arc is the one-step
reward that taking the corresponding action earns.

2.2. The algorithm

Algorithm 1 (G-OPI). Let N denote the set of positive integers,
N̄ := N∪{+∞}, and let {Nj}

∞

j=1 be an N̄-valued stochastic sequence
with associated probability measure P and expectation operator
E. Then given V0 : X → R, set j = 1 and choose any policy φj

satisfying

TφjVj−1(x) = TVj−1(x) for each x ∈ X. (1)

If Vj−1(x) = TVj−1(x) for all x ∈ X, then φj is an optimal policy;
otherwise, set

Vj(x) = E

T
Nj

φj Vj−1(x)


for each x ∈ X, (2)

increase j by 1, and repeat starting from (1).

In the sequel, we assume that a strongly polynomial algorithm
exists for evaluating the expectation in (2) for each j ∈ N; other-
wise, it trivially follows that the G-OPI algorithm is not strongly
polynomial. The following statement, which is proved in Section 3,
is the main result of this note.

Theorem 1. If

P{Nj < +∞} > 0 for each j ∈ N,

then the number of iterations needed by the generalized optimistic
policy iteration algorithm to return the optimal policy may grow
arbitrarily quickly as the number of state–action pairs m increases,
which implies that the algorithm is not strongly polynomial.

The generalized optimistic policy iteration algorithm includes
VI, MPI, λPI, OPI, and Howard’s PI as special cases. In fact, we show
in Section 3 that Theorem 1 implies

Corollary 2. The value iteration, modified policy iteration, λ-policy
iteration, and optimistic policy iteration algorithms are not strongly
polynomial.

Note that Theorem 1 does not apply to Howard’s PI, under
which P{Nj = +∞} = 1 for each j ∈ N, and which is strongly
polynomial according to Ye [16].

3. Proofs

To prove Theorem 1, we shall consider the following example.

Example 1. Let the state set be X = {1, 2, 3}, and given a positive
integer k, let A(1) = {0, 1}, A(2) = {0}, and A(3) = {0} be the sets
of actions available at states 1, 2, and 3, respectively; hence the
number of state–action pairs m = 4. The transition probabilities
are p(2|1, 1) = p(3|1, 0) = p(2|2, 0) = p(3|3, 0) = 1. Finally,
the one-step rewards are r(1, 0) = r(2, 0) = 0, r(3, 0) = 1, and
r(1, 1) = R < β/(1 − β). Fig. 1 illustrates this MDP.

For thisMDP, each policy is characterized by the action selected
at state 1. If action 1 is selected, then the total discounted reward
starting from state 1 is R < β/(1 − β); if action 0 is selected, the
corresponding total discounted reward is β/(1− β). Hence action
0 is the optimal action at state 1. �
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Proof of Theorem 1. Apply the G-OPI algorithm to the MDP in
Example 1 with V0(1) = V0(2) = V0(3) = 0. From (2),

V1(3) = E

1 + β + · · · + βN1−1

+ βN1 · 0


= E

1 − βN1


/(1 − β)

=
1

1 − β
(1 − E[βN1 ])

and

V2(3) = E[1 + β + · · · + βN2−1
+ βN2V1(3)]

=
1

1 − β
(1 − E[βN2 ] + E[βN2(1 − E[βN1 ])])

=
1

1 − β
(1 − E[βN2 ]E[βN1 ]).

Hence by induction,

Vj(3) = E

1 + β + · · · + βNj−1

+ βNjVj−1(3)


=
1

1 − β


1 −

j
ℓ=1

E[βNℓ ]


for each j ∈ N.

This means the optimal action 0 at state 1 will be selected on
iteration j∗ only if

βVj∗−1(3) =
β

1 − β


1 −

j∗−1
ℓ=1

E[βNℓ ]


≥ R.

Suppose P{Nj < +∞} =


∞

n=1 P{Nj = n} > 0 for each j ∈ N.
Then P{Nj = n0} > 0 for some n0 ∈ N; since β > 0 and β+∞

= 0
this implies

E[βNj ] =

∞
n=1

βnP{Nj = n}

≥ βn0P{Nj = n0} > 0 for each j ∈ N.

It follows that

βVj(3) =
β

1 − β
·


1 −

j
ℓ=1

E[βNℓ ]



<
β

1 − β
for each j ∈ N.

Hence, for any k < ∞, R may be chosen such that for all j ≤ k,

β

1 − β
> R > βVj(3).

In other words, the number of iterations before the algorithm
switches to the optimal action 0 can be arbitrarily large. �

Proof of Corollary 2. The VI, MPI, λPI, and OPI algorithms differ
fromG-OPI only in how Vj is computed in (2). For VI, (2) is replaced
with

Vj(x) = TφjVj−1(x) for each x ∈ X,
so P{Nj < +∞} = P{Nj = 1} = 1 for all j ∈ N. For MPI, each Nj is
simply a constant nj ∈ N, so (2) can be written as

Vj(x) = T
nj
φjVj−1(x) for each x ∈ X

and P{Nj < +∞} = P{Nj = nj} = 1 for each j ∈ N. For λPI, each
Nj is an independent geometric random variable, i.e. for j ∈ N

P{Nj = n} = (1 − λj)λ
n−1
j , λj ∈ [0, 1), n ∈ N,

implying that P{Nj < +∞} = 1 for each j ∈ N. Finally, under the
OPI algorithm the distribution of each Nj is defined by a sequence
{λ

j
n}

∞

n=1 of nonnegative numbers satisfying


∞

n=1 λ
j
n = 1, where

P{Nj = n} = λj
n, n ∈ N;

hence P{Nj < +∞} =


∞

n=1 λ
j
n = 1 for all j ∈ N. Hence each of

these algorithms is an instance of G-OPI where P{Nj < +∞} > 0
for each j ∈ N. �
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