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a b s t r a c t

This note considers an average-cost Markov Decision Process (MDP) with finite state and action sets and
satisfying the additional condition that there is a state towhich the system jumps fromany state andunder
any action with a positive probability. The main result is that the policy iteration algorithm is strongly
polynomial for such MDPs, which are often used to model replacement and maintenance problems.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Linear programming is one of the major and most efficient
methods for solving discounted and average-cost Markov Decision
Processes (MDPs) with finite state and action sets [5,8]. Therefore,
these problems can be solved in (weakly) polynomial time [7,6].
For each of these two criteria, another solution method, policy
iteration algorithms, can be viewed as a version of the simplex
method applied to one of the two major linear programs used to
solve MDPs; see, for example, [4,5], or [8].

Typically minimization of average costs per unit time is a more
difficult problem than minimization of total discounted costs.
Ye [11] provided a strongly polynomial algorithm for finding
discount-optimal policies. More recently, Ye [12] proved that pol-
icy iterations find discount-optimal policies in strongly polynomial
time with the bound depending on the discount factor. For aver-
age costs per unit time Zadorojniy et al. [13] constructed a strongly
polynomial algorithm for finding optimal average-cost policies for
certain birth and death processes.

In this note, we consider an average-cost MDP with a special
state to which the process moves with a fixed positive probability
from each state under each action. Such problems arise in replace-
ment and preventive maintenance problems, where the special
state corresponds to machine breaks, replacements, or repairs. For
manyparticular replacement andmaintenance problems, there are
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explicit formulas for optimal policies; see e.g., [1]. For a fixed failure
probability, the results of this paper imply that all such problems
can be solved in strongly polynomial time.

Ross [10,9] studied such problems in the context of infinite-
state MDPs and showed that they can be reduced to discounted
problems. Gubenko & Štatland [2] and Dynkin & Yushkevich [1]
considered for infinite state spaces a generalization of such
problems, which were called problems with minorants in Dynkin
& Yushkevich [1].

In this note, we show that Howard’s policy iteration algorithm
and the simple policy iteration algorithm are strongly polynomial
for such average-cost MDPs. In fact this is true because, under the
reduction introduced by Ross [10], a policy iteration algorithm for
average-cost problems becomes a policy iteration algorithm for
discounted-cost problems.

2. Definitions

Consider a discrete-time MDP with a finite state space I and
finite nonempty action sets A(i), i ∈ I . If the process is in a state
i and an action a ∈ A(i) is chosen then a one-step cost c(i, a) is
incurred and the process transitions to a state j ∈ I with probability
p(j|i, a). Let m = |I| denote the total number of states, and let n =

i∈I |A(i)| denote the total number of actions. Of course,m ≤ n.
A stationary policy is a mapping φ : I →


i∈I A(i); under the

stationary policy φ the controller always selects action φ(i) when
the system is in state i ∈ I . Let F denote the set of all such policies.

Given a policy φ ∈ F and an initial state i ∈ I , let Pφi denote
the probability distribution on the set of possible histories i0a0i1
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a1 . . . of the process under the policy φ with i0 = i. Let Eφi denote
the expectation operator associated with Pφi .

In this note, we study MDPs satisfying the following condition.

Assumption 1. There is a state i∗ ∈ I such that p(i∗|i, a) > 0 for
all a ∈ A(i), i ∈ I.

If Assumption 1 holds, then p(i∗|i, a) ≥ γ for all i ∈ I and a ∈

A(i) for some γ > 0. Note that it takes O(mn) operations to check
whether the MDP satisfies Assumption 1 and to find the largest
possible γ .

Any stationary policy defines a Markov chain with the state
space I . Assumption 1 implies that under any stationary policy
this Markov chain has one recurrent class. Such MDPs are called
unichain.

Average-cost criterion. For this criterion, the goal is to minimize the
long-run expected average costs per unit time. In particular, for a
given initial state i ∈ I and stationary policy φ, let

vφ(i) = lim sup
n→∞

Eφi


1
n

n−1
t=0

c(it , at)


.

If the MDP is unichain, then vφ(i) = vφ(j) for all i, j ∈ I and for all
stationary policies φ. Therefore, we shall write vφ instead of vφ(i).
Let v = infφ∈F v

φ . Wewould like to find a policy φ∗ that is average-
cost optimal, i.e. such that vφ

∗

= v.
It is well known for unichain MDPs that, if we fix b(ℓ) = 0 for

one arbitrarily chosen state ℓ ∈ I , the equation

g + b(i) = c(i, φ(i))+


j∈I

p(j|i, φ(i))b(j), (1)

i ∈ I , has a unique solution (gφ, bφ), and gφ = vφ [3]. In addition,
there exists a stationary policy φ such that

vφ + bφ(i) = min
a∈A(i)


c(i, a)+


j∈I

p(j|i, a)bφ(j)


(2)

for all i ∈ I . Such a policy is average-cost optimal.

Polynomial algorithms. An algorithm for finding an optimal policy
for an MDP is polynomial if the number of arithmetic operations
needed to return an optimal policy is bounded by a polynomial
in the number of actions n and the bit-size of the (rational) input
data. If the number of arithmetic operations needed is bounded by
a polynomial only in n, then the algorithm is strongly polynomial.
A polynomial algorithm that is not strongly polynomial is called
weakly polynomial.

BothKhachiyan’s ellipsoidmethod [7] andKarmarkar’s interior-
point algorithm [6] can be used to solve linear programs to find
stationary optimal policies for discounted- and average-costMDPs.
However, as the number of arithmetic operations required by these
algorithms is bounded by a polynomial dependent on the bit-size
of the input data, these algorithms are weakly polynomial.

3. Policy iteration for average-cost MDPs

Howard’s policy iteration algorithm for unichain average-cost
MDPs [3] proceeds as follows.

1. Start with any stationary policy φ.
2. Fix any state ℓ ∈ I , set bφ(ℓ) = 0, and then determine gφ = vφ

and bφ(i) by solving Eq. (1).
3. For each i ∈ I , set ψ(i) = φ(i) if Eq. (2) holds for state i; other-
wise, let ψ(i) ∈ A(i) be such that

c(i, ψ(i))+


j∈I

p(j|i, ψ(i))bφ(j)

= min
a∈A(i)


c(i, a)+


j∈I

p(j|i, a)bφ(j)


. (3)

4. If ψ(i) = φ(i) for all i ∈ I , the policy φ is optimal; otherwise,
replace φ with ψ and return to step 2.

We remark that the policy iteration algorithm is the simplex
methodwith block pivoting applied to the linear program [4, Chap-
ter 4]

minimize

i∈I


a∈A(i)

c(i, a)xi,a

subject to

a∈A(j)

xj,a −


i∈I


a∈A(i)

p(j|i, a)xi,a = 0, j ∈ I,
i∈I


a∈A(i)

xi,a = 1,

xi,a ≥ 0 for all a ∈ A(i), i ∈ I.

A variant of the policy iteration algorithm described above,
called simple policy iteration, only updates the policy at a single
state. In particular, the policy is updated at a state i∗ for which the
difference∆φi between the right-hand side of (3) and (vφ+bφ(i)) is
minimal among all i ∈ I . This corresponds to the simplex method
with Dantzig’s pivoting rule applied to the above LP; see Kallen-
berg [4, Chapter 4].

Theorem 1. If Assumption 1 holds, then Howard’s and simple policy
iteration algorithms for average-cost MDPs are strongly polynomial.
In particular, they both terminate in O(m(n − m)γ−1 log(m2γ−1))
iterations,where the number of arithmetic operations in each iteration
is bounded by a polynomial in the total number of actions n.

4. Discounted-cost criterion

To prove Theorem 1, consider the discounted-cost criterion.
Given an initial state i, a policy φ, and a discount factor β ∈ [0, 1),
let

v
φ
β (i) = Eφi


∞
t=0

β tc(it , at)


,

and let vβ(i) = infφ∈F v
φ
β (i), i ∈ I. A policy φ∗ is called β-optimal if

v
φ∗

β (i) = vβ(i) for all i ∈ I.
It is well known that the equation

u(i) = c(i, φ(i))+ β

j∈I

p(j|i, φ(i))u(j), (4)

i ∈ I , has the unique finite solution u(i) = v
φ
β (i). In addition, there

exists a stationary policy φ such that

v
φ
β (i) = min

a∈A(i)


c(i, a)+ β


j∈I

p(j|i, a)vφβ (j)


, (5)

and it is well-known that a stationary policy φ is β-optimal if and
only if (5) holds.

We remark that it is also possible to considermore general poli-
cies than stationary ones. However, for discounted and average-
cost MDPs with finite state and action sets, stationary policies are
optimal within the set of all policies [8].
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For discounted MDPs, Howard’s policy iteration algorithm [3]
proceeds as follows.

1. Start with any stationary policy φ.
2. Determine u(i) = v

φ
β (i), i ∈ I , by solving Eq. (4).

3. For each i ∈ I , set ψ(i) = φ(i) if Eq. (5) holds for state i;
otherwise, let ψ(i) ∈ A(i) be such that

c(i, ψ(i))+ β

j∈I

p(j|i, ψ(i))vφβ (j)

= min
a∈A(i)


c(i, a)+ β


j∈I

p(j|i, a)vφβ (j)


. (6)

4. If ψ(i) = φ(i) for all i ∈ I , the policy φ is optimal; otherwise,
replace φ with ψ and return to step 2.

Simple policy iteration for the discounted-cost criterion is de-
fined analogously to the average-cost criterion version,with∆φi (β)
defined as the difference between the right-hand side of (6)
and vφβ (i). Ye [12] showed that both simple policy iteration and
Howard’s policy iteration algorithm are strongly polynomial with
the upper bound on the number of iterations depending on the
discount factor β . In particular, both algorithms terminate after
O(m(n − m)(1 − β)−1 log(m2(1 − β)−1)) iterations, where each
iteration requires a number of arithmetic operations bounded by a
polynomial in n.

5. Ross’s reduction and proof of Theorem 1

Following Ross [10], set β = 1 − γ and

p̃(j|i, a) =


p(j|i, a)/(1 − γ ), if j ≠ i∗,
(p(i∗|i, a)− γ )/(1 − γ ), if j = i∗.

Consider a discounted-costMDPwith discount factorβ , state space
I , action sets A(i), costs c(i, a), and transition probabilities p̃(j|i, a),
where i, j ∈ I and a ∈ A(i).

Let i ∈ I and φ ∈ F . Recall that for the average-cost MDP,

∆
φ

i = min
a∈A(i)


c(i, a)+


j∈I

p(j|i, a)bφ(j)


− (vφ + bφ(i)).

For the discounted MDP obtained from Ross’s reduction, let

∆̃
φ

i (β) = min
a∈A(i)


c(i, a)+ β


j∈I

p̃(j|i, a)vφβ (j)


− v

φ
β (i).

Lemma 2. Let Assumption 1 hold. Then for each stationary policy φ
and for each state i ∈ I , the following statements hold:

(i) the set of actions minimizing the right-hand side of (3) coincides
with the set of actions minimizing the right-hand side of (6) for
the discounted MDP obtained via Ross’s reduction of the original
MDP;

(ii) ∆φi = ∆̃
φ

i (β) for all φ ∈ F , i ∈ I , where β = 1 − γ .

Proof. The solution to (4) obtained in step 2 of Howard’s policy
iteration algorithm for the discounted MDP is vφβ (i), i ∈ I . Since
u = v

φ
β , (4) is equivalent to

γ v
φ
β (i

∗)+ v
φ
β (i) = c(i, φ(i))+


j∈I

p(j|i, φ(i))vφβ (j),
i ∈ I . Thus vφ = γ v
φ
β (i

∗) and bφ(i) = v
φ
β (i) − v

φ
β (ℓ), where ℓ is

any fixed state from I , satisfies (2) with bφ(ℓ) = 0; by uniqueness,
this is the solution obtained in step 2 of Howard’s policy iteration
algorithm for the original average-cost MDP.

Observe that


j∈I p(j|i, a)b
φ(j) and β


j∈I p̃(j|i, a)v

φ
β (j) differ

by γ vφβ (i
∗) − v

φ
β (l), which does not depend on i. This implies (i).

Statement (ii) holds because

∆
φ

i = min
a∈A(i)


c(i, a)+ β


j∈I

p̃(j|i, a)vφβ (j)


− v

φ
β (i)

= min
a∈A(i)


c(i, a)+


j∈I

p(j|i, a)vφβ (j)


− γ v

φ
β (i

∗)− v
φ
β (i)

= min
a∈A(i)


c(i, a)+


j∈I

p(j|i, a)bφ(j)


− vφ − bφ(i)

= ∆̃
φ

i (β). �

Proof of Theorem 1. Lemma 2(i) implies that, given an average-
costMDP satisfyingAssumption 1, there is a one-to-one correspon-
dence between sequences of policies generated byHoward’s policy
iteration algorithm and sequences generated by Howard’s policy
iteration algorithm for the discounted MDP obtained via Ross’s re-
duction. In view of Lemma 2(ii), this is also true for the simple pol-
icy iteration algorithms. Hence the iteration bound established by
Ye [12, Theorem 4.2 & Corollary 4.1] also applies to Howard’s and
the simple policy iteration algorithms applied to an average-cost
MDP satisfying Assumption 1.
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