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Abstract
Recent developments in SCADA (Supervisory Control and
Data Acquisition) systems for physical infrastructure, such
as high pressure gas pipeline systems and electric grids, have
generated enormous amounts of time series data. This data
brings great opportunities for advanced knowledge discovery
and data mining methods to identify system failures faster
and earlier than operation experts. This paper presents our ef-
fort in collaboration with a utility company to solve a grand
challenge; namely, to use advanced data mining methods to
detect leaks on a high pressure gas transmission system. Leak
detection models with unsupervised learning tasks were de-
veloped analyzing billions of data records to identify leaks
of different sizes and impacts, with very low false positive
rates. In particular, our solution was able to identify small
leaks leading to rupture events. The model also identified
small leaks not identifiable with current detection systems.
Such high-fidelity early identification enables operation per-
sonnel to take preventive measures against possible catas-
trophic events. We then formulate several generic detection
methods with models derived from time series anomaly de-
tection methods. We show that our leak detection models are
superior to the SCADA alarm system, a mass balance model
and other generic time series anomaly detection models in
terms of both detection accuracy and computation time.

There are 91,000 miles of natural gas transmission and dis-
tribution pipelines across the United States. Natural gas
leaks pose grave threats to public safety, and can have sig-
nificant environmental and economic implications. In 2011,
according to (Markey 2013) gas distribution companies re-
ported releasing 69 billion cubic feet of natural gas into the
atmosphere, which is almost equal to annual gas consump-
tion of the state of Maine and is equal to the annual carbon
dioxide emissions of about six million automobiles. This gas
is primarily comprised of methane, which is a greenhouse
gas that is at least 21 times more potent than carbon dioxide.
Americans also remain at risk from gas explosions and other
safety hazards caused by leaky natural gas pipelines. From
2002 to 2012, almost 800 significant incidents occurred on
gas distribution pipelines, including several hundred explo-
sions, which resulted in 116 deaths, injured 465, and caused
more than $800 million in property damage. In view of this,
our objective is to use data to detect leaks in a complex
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high pressure natural gas transmission system in the Rocky
Mountain area near Denver, Colorado. This was made possi-
ble in part by recent developments in SCADA (Supervisory
Control and Data Acquisition) systems for physical infras-
tructure, such as high pressure gas pipeline networks and
electrical grids. Such SCADA systems generate and record
enormous amounts of data continuously. This data contains
valuable information on the operating conditions of such
physical systems, and can be used for anomaly detection.

There has been an extensive amount of effort in the realm
of leak detection research. Physical models, finite element
methods, and statistical models have been developed and
tested on synthetic data and small-scale data. More details
on existing methods can be found in the section of this paper
on Related Work. We note that none of the existing meth-
ods have been tested on real world operational data at the
scale we consider. In addition, there are many challenges
that arise from uncertainties in real measurements and oper-
ational data: 1. The measurements may be noisy and biased,
particularly those from the flow rate sensor. 2. There are
constant system operation and maintenance activities that
are not recorded, which should be accounted for in learn-
ing to detect leaks. 3. The gas in the transmission system
is compressible, which means the effects of operations, e.g.
changes in compressor pressure, take time to propagate in
the system; this needs to be captured by the leak detection
model. 4. The data is large-scale; there are thousands of sen-
sors in the system, and finding the most relevant ones is chal-
lenging in terms of feature selection, automatic or manual.

The key contributions of this paper are as follows:

• We propose an innovative and effective anomaly detection
solution for high pressure compressible natural gas trans-
mission networks, which identifies small leaks preceding
rupture events in a real system.

• We develop an effective approach that identifies small
leaks occurring over extended periods of time in a real
high pressure natural gas transmission system.

• We compare our method with a mass balance model and
several temporal anomaly detection methods on time se-
ries data in terms of detection accuracy and computation
time.

The rest of the paper is organized as follows. The Related
Work section reviews current approaches to gas leak detec-



tion and anomaly detection research on time series data. The
Model Setup section presents the formulation of the big leak
detection and small leak detection methods. We introduce
the formulation of methods for generic time series anomaly
detection in the Other Methods section, and provide experi-
mental results on synthetic data suggesting that they may be
useful for our leak detection task. The real application data
set for the high pressure natural gas transmission system is
introduced in the Application section, where the results on
leak detection using our methods and the generic anomaly
detection methods are summarized. We conclude our paper
with our findings and insights in the Conclusion.

Related Work
Two types of leaks of particular interest are ruptures
and small seeps. Ruptures are the most dangerous, with
paramount environmental impact and grave threats to public
safety that sometimes result in deaths. A number of methods
have been developed to detect such events, including acous-
tic monitoring, flow monitoring, and model-based methods.
It is fair to say that most methods will detect a rupture event,
as a rupture will result in significant deviations of system
characteristics, i.e., acoustic, flow, or pressure, compared to
normal operating conditions. However, the false alarm rate
is often high; in a real system, there were 15,058 alarms,
while the true positive rate was only 0.0199%.

In addition to non real-time inspection methods (Stearns
et al. 2005; Wang et al. 2001), two approaches to detecting
small seeps that do not necessarily lead to rupture events are
active real-time monitoring (Sivathanu 2003; Stearns et al.
2005) and model-based real-time monitoring.

Active real-time monitoring approaches include acous-
tic methods, optical methods, and flow/pressure monitoring.
However, a large number of acoustic/optical sensors is re-
quired to monitor a large pipeline system. Additional dis-
advantages include the high cost of implementation and the
high incidence of false alarms

Model-based methods constitute a rich research area.
(Dos Santos et al. 2011) modeled the pipeline as a Linear
Parameter Varying (LPV) System driven by the source node
massflow with the gas inventory variation in the pipe as the
scheduling parameter. It was found that the method is able to
detect leaks. (Wan et al. 2011) proposed a hierarchical leak
detection method with signal processing and support vec-
tor machine (SVM) based classification. The method was
validated in an experimental pipeline of 25m in length and
160mm in diameter. (Isa and Rajkumar 2009) employed
SVM, which was trained on a number of samples represent-
ing the presence of leaks of various sizes and locations in
a lab scale experimental rig. Model-based methods mainly
employ signal processing methods or Kalman filtering tech-
niques with or without a combination of classification meth-
ods; see e.g., (Ma, Yu, and Huo 2010; Martins and Seleghim
2010; bin Md Akib, Bin Saad, and Asirvadam 2011; Kim
and Lee 2009; Lay-Ekuakille, Vendramin, and Trotta 2009;
Bai, Yue, and Li 2005).

All of the previous studies were validated with lab-scale
setups and simulated leak events. And there is no previ-
ous work that employs a time series analysis point of view,

which is the foundation of our method. In particular, we con-
sider a well-studied framework for time series anomaly de-
tection that involves fitting a model to the data, and then con-
structing an anomaly score for new data (Chandola, Baner-
jee, and Kumar 2009, Section 7.1.2). For example, (Qiu et al.
2012) proposed such an approach based on learning Granger
causality graphs via L1-penalized regression. In (Takeishi
and Yairi 2014), the anomaly score is computed by exam-
ining local patterns in the series using ideas from sparse
coding and natural language processing. (Laptev, Amizadeh,
and Flint 2015) estimate the distribution of residuals rela-
tive to the model using kernel density estimation, quantify
changes in this distribution using Kullback-Leibler diver-
gence, and evaluate models based on moving averages, ex-
ponential smoothing, and Kalman filtering. Recently, (Jones
et al. 2016) proposed an approach based on efficiently rep-
resenting information about subsequences of the time series.

Model Setup
In this section, we describe in detail the models we devel-
oped for two tasks. The first task is to detect big leaks, which
usually lead to major rupture events. The second task is to
detect small seeps, which are more difficult to detect; such
events do not typically lead to a major rupture, but can lead
to the release of large amounts of gas if left undetected.

Big Leak Detection Model
The principal idea is to train a model using historical data,
which will capture the correlations between physical mea-
surements from connected stations under normal operating
conditions. The model is used to predict the value of a cho-
sen critical variable using other measurements at both the
same station and connected stations. Then, the deviation be-
tween the predicted values and the actual measurements can
be used to compute the likelihood of any anomalies, i.e.,
leaks. The critical variable we chose for the task of leak
detection is the compressor discharge pressure, given that
leaks may lead to pressure changes. Other reference mea-
surements used were flow and compressor operation condi-
tion measurements, namely the compressor fuel consump-
tion and compressor engine RPM (Revolutions Per Minute).
In addition, the temporal delays between measurements are
computed; as the fluid in the pipeline is compressible, there
are significant temporal delays in the system. For example,
if the compressor operates to increase the pressure, the pres-
sure at a downstream station may not see an instantaneous
pressure increase.

We now provide a detailed description of the method:
For a high pressure gas pipeline system there are n sta-

tions; the set of all stations is denoted by S = {S1, · · · , Sn}.
For station Si, i = 1, · · · , n, we take four types of mea-
surements, namely the pressure Si1, flow Si2, compressor
operation measurements Si3 (i.e., compressor RPM or com-
pressor fuel consumption), and the air temperature Ti. We
denote the set of stations downstream from Si by Ai, as is
shown in Figure 1.

As explained in the above section, there are delays (lag)
in response between upstream stations and downstream sta-



Figure 1: An illustrative gas pipeline system. The dashed
box encloses the stations that are downstream from station
Si.

tions. We first find the lags between connected stations and
critical variable

that maximizes the cross correlation function (CCF) be-
tween the time series corresponding to the critical variable
Si1(t), and the time series for the measurements Sjk(t)
(k = 1, 2, 3, j ∈ Ai) as follows:

Lijk = argmax
l

(ρSi1Sjk
(l)),

where:

ρSi1Sjk
(l) =

E[(Si1(t)− µSi1)(Sjk(t− l)− µSjk
)]

σSi1(t)σSjk(t−l)

The CCF is computed by using the fact that:

ρSi1Sjk
(l) = [IFFT (FFT (Si1)× FFT ∗(Sjk))]l

where FFT denotes the Fast Fourier Transform, IFFT de-
notes the Inverse Fast Fourier Transform, and the asterisk
denotes the complex conjugate. For Sjk (k = 1, 2, 3, j ∈
Ai), let SLijk

jk = [Sjk(t− Lijk), . . . , Sjk(t0 − Lijk)]. The
formulation of the leak detection model using a linear model
is as follows:

Si1 = [ Si2 Si3 S
Lijk

jk Ti ] · β (1)

where:

k = 1, 2, 3, j ∈ Ai,

β denotes the vector of regression coefficients.

The model is trained with a one-month moving window
of operational data. Then the model is used to infer the

critical variable of pressure measurement as Ŝt+h
i1 , where

h is the time window for the new data. Typically, h can
be the next 10 minutes, 30 minutes, or 1 hour, depending
on the frequency for leak detection tasks. The deviation be-
tween the predicted and measured pressure is calculated as:

rt+h
i = St+h

i1 − Ŝt+h
i1 . A multiple of the standard deviation

σr of the deviations is used as the event detection threshold.
The choice of the threshold is chosen based on the event
history of the location. In this study, the threshold was cho-
sen based on two leak events. The threshold values can vary
from station to station, and were generally at least 6× σr.

Small Leak Detection Model
The objective of the small leak detection model is to detect
leaks that do not cause significant changes in pressure, and
hence may not be discovered by SCADA alarms or even the
big leak detection model. We have developed a small leak
detection model based on the model described in Section
Big Leak Detection Model.

The hypothesis for the small leak detection model is that
a small leak will result in cumulative small changes in the
critical variable of pressure. Therefore, we employed the
CUSUM (CUmulative SUM) model to detect changes in
the calculated deviation of the critical pressure. CUSUM
is commonly used in quality control to detect deviations of
variables from benchmark values (Basseville, Nikiforov, and
others 1993). In our task, the variable is the critical variable
of pressure, and the benchmark values of the variable are

the predicted values Ŝt+h
i1 computed from (1). The differ-

ences between the measurement and the benchmark values
are cumulatively summed up. If there is no anomaly in the
system, the measurements do not deviate significantly from
the benchmark, so the measurements greater than the bench-
mark and those less than the benchmark average each other
out, and the CUSUM value should remain around the bench-
mark level. If a continuous anomaly occurs, the measure-
ment continuously deviates from the benchmark in the same
direction, resulting in a larger CUSUM value. The CUSUM
is defined by:

Upper Control Limit: C+
t = max(0, St

i1 − Ŝt
i1 + C+

t−1)

Lower Control Limit: C−
t = max(0, Ŝt

i1 − S
t
i1 + C−

t−1)

A small leak event is defined as time period when the
CUSUM valuesC+

t orC−
t exceed threshold values for more

than five days. The threshold values can vary from station to
station, but in general it should be larger than 6 × log(|C|),
where C is the control limit.

Other Methods
The leak detection problem can be generalized into a time
series anomaly detection problem. Here we formulate our
problem in this framework, without using expert-picked fea-
tures. Temporal dependencies between time series can often
be captured by a sparse Granger Causality model; see e.g.
(Arnold, Liu, and Abe 2007). However, several challenges
exist for the system we consider:

1. The number of time series in the system is very large,
and there are many non-informative and highly correlated
measurements, so being able to find the most relevant time
series among many is important.

2. The volume of the incoming data is huge. In most
SCADA systems, the data is sampled every 30 seconds,
which results in 2,880 data points per day, or 1.05 million
per year.

3. The nature of the physical system dictates non-linear
and lagged dependencies between the measurements. These
characteristics pose great challenges for effective anomaly
detection model development and on-line real-time detec-
tion.



In this section, the model training follows the same prin-
ciple as in the big leak detection model. We define the pres-
sure measurement as the critical variable, and all time se-
ries measurement from the same station and all the down-
stream stations are used as features. We consider several
non-linear modeling approaches. The effectiveness of these
methods for detecting dependencies between time series is
evaluated in Section Experiment,and in Section Results for
Other Methods.we compare them to the method proposed in
Section Big Leak Detection Model.

Formulation
We consider the following model formulation. For station
Si (i = 1, . . . , n), let Ki denote the number of time series
available at station Si, and let Kj denote the total number
of time series from station Sj (j ∈ Ai). The value of the
critical variable Si1(t) for station Si at time t is modeled as
a possibly non-linear function F of the values at time t of
the time series Sj1(t), . . . , Sj,Kj (t) available at station Sj

(j ∈ Ai) and the lagged values

St,L
j := [Sj,1(t− L), . . . , Sj,1(t− 1), . . . ,

Sj,Kj
(t− L), . . . , Sj,Kj

(t− 1)]

of the time series at the station Sj , j ∈ A1 connected to Si,
for a specified maximum lag L. Letting

Xi(t) := (Si,2(t), . . . , Si,Ki(t), S
t,L
j ) (j ∈ Ai)

it follows that we are modeling Si1(t) with F(Xi(t)).
In this study, we used four methods, namely: 1. linear re-

gression with L1 penalty, i.e., LASSO, 2. Elastic Net with
both L1 and L2 penalties; 3. Gradient Boosting Machines;
4. Gradient Boosting Machines with Huber loss; 5. Random
Forests.

Anomaly Detection Model
The models produced by each of the methods described in
this section can also be used for anomaly detection in the
way described at the end of Section Big Leak Detection
Model.First, for each station i a model F(Xi(t)) is fit to
the critical variable Si1(t) using one month of data, and the
residuals Si1(t)−F(Xi(t)) are computed. A normal distri-
bution is then fit to the residuals, and the threshold for event
detection is taken to be a multiple of the standard deviation
of this fitted distribution. The model can then be re-trained
as new data becomes available, according to a specified time
window h.

Experiments
We conducted numerical experiments on synthetic data with
known dependencies to compare the effectiveness of the
methods introduced in Section Other Methods in detecting
sparse non-linear temporal dependencies.

Synthetic Dataset To assess the extent to which our ap-
proach identifies time series that are actually relevant, we
applied each method to randomly generated synthetic data.
This data was generated as follows. Each “critical variable”
y(t) is taken to be a function of J time series corresponding

to normalized stock data; J was chosen randomly, and the
J stocks were chosen randomly out of a set of 10 stocks.
The functional form of the dependence between y(t) and
these J time series is then taken to be a sum of products
of transformations of lagged variables of the J time series,
plus Gaussian noise with mean zero and standard deviation
0.25. The number of terms in the sum and the number of fac-
tors in each product were each chosen randomly from the set
{1, 2, 3}, and each term in the sum has a coefficient that was
chosen randomly from {1, . . . , 5}. Also, the time series used
in each factor was chosen randomly from {1, . . . , J}, its
lag was chosen randomly from {1, . . . , 20}, and each trans-
formation was chosen randomly from the set of mappings
{x 7→ x, x 7→ x2, x 7→ sin(x), x 7→ cos(x), x 7→ ln(|x|)}.
For example, one of the generated series y(t) is given by

y(t) = 3x4(t− 15) ln(|x4(t− 14)|)x8(t− 2)

+ 4 cos(x1(t− 4)) + ε(t),
(2)

where x1, x4, x8 are time series of normalized stock data and
ε(t) denotes the Gaussian noise. Finally, 1000 observations
of y(t) are generated.

Performance evaluation We evaluated each of the meth-
ods described in Section Other Methodsusing its average F1-
score over 20 randomly generated critical variables y(t). A
given time series xj is actually relevant to y(t) if xj appears
in the equation defining the evolution of y(t); for example,
if y(t) is defined by (2) then the series x1, x4, x8 are actu-
ally relevant to y(t). Then for each method, a model is fit to
the data for y(t), where the regressors are the lagged vari-
ables for all 10 stocks up to a maximum lag of 20. Next, a
given time series xj is deemed to be relevant by the method
if αj ≥ α := 0.2. For a given method, letting tp denote
the number of true positives (i.e. the number of time series
deemed relevant by the method that are actually relevant),
letting fp denote the number of false positives, and letting
fn denote the number of false negatives, the precision of the
method is P := tp

tp+fp , and its recall is R := tp
tp+fn .

A method’s F1-score is the harmonic mean of its precision
and recall, i.e., F1 := 2 · PR

P+R .

Results The average F1-scores for each method, and their
corresponding standard errors, over 20 generated critical
variables are shown in Figure 2. The LASSO and Elastic Net
parameters were obtained using 3-fold cross-validation. The
results for gradient boosting with regression trees were ob-
tained with both the squared (GBM) and Huber (GBM+Hu-
ber) loss functions.

As expected, the more flexible non-parametric methods
significantly outperformed the linear methods on the highly
non-linear data. In addition, only slightly more time was
needed compared to the linear methods; see Figure 2. Over-
all, gradient boosting exhibited an attractive balance be-
tween performance and time requirements, and random for-
ests achieved much better performance than the linear meth-
ods while using a similar amount of time.

Application
The system under investigation consists of 24,000 miles of
natural gas pipeline, including 21,242 miles of distribution



(a) (b)

Figure 2: (A) Mean F1-scores over 20 runs, with standard
errors. (B) Total times (in seconds) needed to obtain the re-
sults.

(a) (b)

Figure 3: (A) The CCF between two stations. (B) The big
leak model output for the location 1.

and 2,301 miles of transmission pipelines, and about 40
compressor stations and distribution centers. The system has
extended lengths of pipelines exposed to harsh environments
in the mountains. In particular, they are subject to damage
from corrosion and landslides, which are the major causes
of leaks. The SCADA system contains 65,000 measurement
points (referred to as tags); the sampling frequency of the
data is 30 seconds. The total volume of data for the period
of 7 years is about 1.7 TB. We performed several data scop-
ing and processing procedures before applying the gas leak
detection model including smoothing, outlier removal, and
short spike removal on the raw data.

Big Leak Detection Results
The total number of leaks during the seven-year period was
three. The identities of the locations and leak incidence
times were not known by the authors before the development
of the detection models. 5 most important locations was de-
fined and the leak detection model was applied to these lo-
cations first. We present the detailed results for one location
(L2) and summarize the results for the three locations with
past leak events in this section.

Figure 3 illustrates the temporal delay between measure-
ments from two stations. The CCF peaks at a lag of 76,
which corresponds to 38 minutes. The big leak detection
model output for location 2 (L2) is shown in Figure 3. As
is shown, the model correctly captured the leak event, with
only 1 false positive event, whereas the false positive rate of
SCADA system is 4148, and 9 from the mass balance model.
We’d like to point out that the identified false positive event

Table 1: The event detection summaries of the big leak de-
tection model.

Location L1 L2 L3

# of event 1 1 0

SCADA
LT (hour) 0 0 -

F1 0.001 0.0004 -

FP 1664 4148 4775

Mass-Balance
LT (hour) 0.9 17 -

F1 0.11 0.18 -

FP 16 9 4

Our Model
LT (hour) 9 21 -

F1 0.18 0.67 -

FP 9 1 0

Note: LT – Lead Time, FP – False Positive. It is estimated that most of the false positives
correspond to maintenance activities. Since no accurate records of such activities were available, no

validation is provided.

was a valve replacement (eid=1). Thus in a real applica-
tion system, if such planned maintenance events were known
to the model, the false positive rate would be even smaller
The actual leak event (eid=2) that occurred on November
11th, 2012. And most importantly, the detection time of the
event was 21 hours before the rupture occurred. Shortly af-
ter midnight on Nov.11th, the compressors operated to ramp
up the pressure, and the model identified that the pressure
was not at the level where it should be. In fact, the residual
between the actual pressure and predicted pressure was 14
standard deviations away from its normal value, which only
happened twice in 7 years. Thus it is a very strong signal
of a severe anomaly in the system. 21 hours later, the leak
escalated to rupture, causing a rapid loss of pressure which
was caught by the SCADA alarm at 9:59PM. The rupture
event not only released a huge amount of gas into the at-
mosphere, but also impacted thousands of customers during
the cold winter weather. Such a rupture may have been pre-
vented if the leak was detected earlier. In addition to this
incidence, we summarize the event detection lead times and
F1-scores for our model, the SCADA alarms, and a mass-
balance model in Table 1. We want to point out that such a
big event can be detected by most models, even simple ones
such as those based on pressure monitoring or mass balance.
However, the value of our model lies in the sensitivity of the
detection model. Our model has shown superior capability
in detecting medium leaks leading to the rupture event.

Small Leak Detection Results
In this section, we present detailed results for the location
where there was a leak. The small leak was discovered by
the operation team during their annual line inspection in late
June 2010, when a helicopter was used to visually exam-
ine the pipelines for problems. It was found that the pipeline
was damaged by landslides, but since the damage did not
cause a significant pressure drop, it was left unnoticed for
a long period of time. The operation personnel then exam-
ined the SCADA records and estimated that the leak may



Table 2: The event detection summaries of the small leak
detection model.

Location L1 L2 L3

# of event 0 0 1

SCADA
LT (day) - - 0

F1 - - 0

FP 1665 4149 4775

Mass-Balance
LT (day) - - 80

F1 - - 0.4

FP 17 10 3

Our Model
LT (day) - - 73

F1 - - 1

FP 0 0 0

Note: LT – Lead Time, FP – False Positive. It is estimated that most of the false positives are some
maintanence activities. Since no accurate records of such activities were available, no validation

was provided.

have been present since April, which was later confirmed
by the CUSUM model. As is shown in Figure 4, starting on
April 17th 2010, the lower CUSUM value dropped below a
value that has a probability 1.38×10−24, which clearly indi-
cates the presence of an event in the system . The threshold
was chosen as log(C−) < 6 (i.e., C− < −403). Using the
threshold, the model identified the true event correctly. The
F1-scores and false positive rates for event detection for the
three locations are summarized in Table 2.

Figure 4: The lower CUSUM and upper CUSUM chart for
Location 3. It is shown that the lower CUSUM has exceeded
the threshold level (the lowest horizontal line).

Results for Other Methods
The other more generic anomaly detection methods de-
scribed in Section Other Methodswere applied location 1.
Location 1 is a more complex system, with more false
alarms reported by the big leak detection model. The data
for the year of 2008, which is when the leak event happened,
was used for this study. For location 1, there are 330 raw
measurements from the SCADA system. Some of the data
have near zero variance, and were filtered out. In the end,
52 measurements were used for the generic anomaly detec-
tion methods. The maximum lag used in the models was 50,
which resulted in a total of 2,600 features used.

Table 3: The event detection accuracy summary between
other method and big leak model.

Method Big
Leak

LASSO Elastic
Net

GBM GBM+
Huber

RF

F1-score 0.33 0.5 0.5 0.4 0.4 1

Lead Time(h) 8.85 8.68 8.31 -18.74 -0.56 -19.72

computation
Time (s)

30.79 148.45 306.91 807.28 830.93 1130.37

We summarize the leak detection performance in terms
of lead time and F1 -score in Table 3. It was found that the
LASSO and Elastic Net perform the best in terms of lead
time. They provided about the same lead time that we ob-
tained from the big leak detection model. We also compared
the features selected by the generic methods and the features
we selected in the big leak detection model; it was found
that about 3 out of 5 of the features in the big leak detection
model were also selected by the generic methods along with
other common features selected by most of the generic meth-
ods that were not used in the expert model. However, the
computation time for such generic models are much longer
than the proposed expert model, as is shown in Table 3.

Conclusion
In this paper, we presented two innovative and effective leak
detection models: the big leak detection model that identi-
fies medium size leaks preceding big rupture events, and the
small leak detection model that identifies small leaks last-
ing for extended periods of time. The models were tested
on a real high pressure natural gas transmission system. It
was found that the big leak detection models outperform the
SCADA alarms by over 180 times in terms of F1-scores.
And more importantly, the model provides a vital opportu-
nity for the prevention of catastrophic rupture events, by de-
tecting small / medium leaks preceding the rupture events.
Both the big leak and small leak detection models were
developed using carefully selected features. We then intro-
duced other methods that use all of the measurement data
in the SCADA system, and considered penalized regression
and non-linear methods for the task of big leak detection.
It was found that the LASSO and Elastic Net perform the
best in terms of detection lead times. However, the compu-
tation time for the other methods are much higher compared
to our big leak detection method. To conclude, we developed
a novel approach to addressing the task of detecting leaks in
high pressure gas transmission networks. The approach does
not require additional instrumentation or new sensing sys-
tems other than the existing SCADA system. The approach
has been proven better than the SCADA alarm system, a
mass balance model and other generic time series anomaly
detection models in terms of detection accuracy and compu-
tation time. Furthermore, while it is computationally more
expensive, the proposed time series based method is less de-
pendent on expert knowledge for model development, and
has less dependency on specific sensor instrumentation, and
could be useful in some circumstances.
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