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Outline of the (Mini-)Course

1. Examples of SCM1 Problems Where MDPs2 Were Useful

2. The MDP Model

3. Performance Measures

4. Performance Evaluation

5. Optimization

6. Additional Topics

1SCM = Supply Chain Management
2MDPs = Markov Decision Processes
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Sourcing from Multiple Suppliers

I Demand for one product over time
I Two procurement options (Dual-Sourcing):

1. “Regular” Source: cheaper, slower shipping
2. “Expedited” Source: more expensive, faster shipping

I Revenue from sales
I Costs:

1. Ordering Cost (cost to place an order)
2. Holding Cost (cost of ordering too much)
3. Shortage Cost (cost of ordering too little)

How should the two sourcing options be used?

G. Allon, J. A. Van Mieghem, (2010) Global Dual Sourcing: Tailored Base-Surge Allocation to Near- and Offshore
Production. Management Science 56(1):110-124.

S. Veeraraghavan, A. Scheller-Wolf, (2008) Now or Later: A Simple Policy for Effective Dual Sourcing in
Capacitated Systems. Operations Research 56(4):850-864.

L. Xin, D. A. Goldberg (2018) Asymptotic Optimality of Tailored Base-Surge Policies in Dual-Sourcing Inventory
Systems. Management Science 64(1):437-452.
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Routing Inventory to Customers

I Demand for one product over time
I Demands originate from different locations

I Delivery vehicles have limited carrying capacity

I Costs:

1. Ordering Cost (cost to place an order)
2. Holding Cost (cost of ordering too much)
3. Shortage Cost (cost of ordering too little)

How should the vehicles be stocked and routed?

D. Adelman, (2004) A Price-Directed Approach to Stochastic Inventory/Routing. Operations Research
52(4):499-514.
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Deciding What Assortment of Products to Sell

I Demands for a finite number S of products in each period

I Finite number of selling periods
I At the start of each period, select N out of the S products to

offer for that period

1. Revenue from sales
2. Costs to switch between assortments

What product assortments should be offered, and when?

F. Caro, J. Gallien, (2007) Dynamic Assortment with Demand Learning for Seasonal Consumer Goods.
Management Science 53(2):276-292.
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Common Features of the Problems

1. Decisions are made over time.
I Once every period

2. Decisions can be based on observations.
I Current inventory position (on-hand + on-order - backorders)
I Past sales of different products

3. Depending on the observations, certain actions make more sense
than others.

I No infinite or negative order quantities
I Can’t load vehicles beyond their capacity
I Limited shelf space

4. Each action has a reward.
I Revenue - Costs (ordering, holding, backordering)
I Switching between assortments

5. Taking an action will affect what you observe next.
I Next period’s inventory position
I Amounts of each product sold
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Part 1

The Markov Decision Process (MDP) Model

MDP Model Performance Measures Performance Evaluation Optimization Additional Topics 6/55



Markov Decision Process (MDP) Model

At each time t = 1, 2, . . . ,

1. observe the current state xt ∈ X

2. select an action at ∈ A(xt)

3. earn a reward r(xt , at)

4. the next state is xt+1 with probability p(xt+1|xt , at)
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Example: Single-Sourcing

Periodically procure a single product to sell.

In each period, the following sequence of events occurs:

1. Place an order, which arrives instantaneously.

I Per-unit ordering cost is c .

2. The demand for that period is revealed, satisfied from on-hand
inventory.

I Each unit sold earns p.
I Each unsold unit is assessed a holding cost h.
I Each unsatisfied unit of demand is assessed a shortage cost b.

The demands are independent and identically distributed (iid) between
periods.
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Example: Single-Sourcing

State Set:
X = R

I State is the current net inventory level (on-hand minus backorders)

Action Sets:
A(x) = [0,∞) =: R+

I Action is the quantity ordered
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Example: Single-Sourcing

One-Step Rewards:

Since we’ll focus on expected costs, we let r(x , a) be the expected reward
earned when action a is taken in state x .

r(x , a) = −ca + pE[min{D, x + a}]

− hE[(x + a − D)+] − bE[(D − x − a)+]

Transition Probabilities:

Let FD denote the distribution of D.

If the current state is x , and action a is taken, the next state is on the
interval [a, b] ∈ R with probability

p([a, b]|x , a) =

∫
R
1{x + a − u ∈ [a, b]} dFD(u)
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Example: Dual-Sourcing

LR = lead time for the regular source > 1

LE = lead time for the expedited source > 1

In each period, the following sequence of events occurs:

1. Place desired orders with the regular supplier and the expedited
supplier.

2. Receive (1) the order placed LR periods ago from the regular
supplier, and (2) the order placed LE periods ago from the
expedited supplier.

3. The demand for that period is revealed, and satisfied from on-hand
inventory.

Suppose that the demands D are iid between periods, and that we want
to minimize expected costs.
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Example: Dual-Sourcing

State Set:

X = R× RLR
+ × RLE

+

I State [i , (y1, . . . , yLR
), (z1, . . . , zLE

)] means::

I current inventory level is i ∈ R
I for j = 1, . . . , LR , an order of yj units from the regular source

was placed j periods ago
I for j = 1, . . . , LE an order of zj units from the expedited source

was placed j periods ago

Action Sets:
A(x) = R+ × R+ for all x ∈ X

I Amounts to order from each source
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Example: Dual-Sourcing

p = per-unit selling price

cR = per-unit ordering cost for the regular source

cE = per-unit ordering cost for the expedited source

h = cost to hold 1 unit in inventory for 1 period

b = per-unit backordering cost

One-Step Rewards:

For x = [i , (y1, . . . , yLR
), (z1, . . . , zLE

)] ∈ X and a = [aR , aE ] ∈ A(x),

r(x , a) = −cRaR − cEaE

+ pE[min{D, i + yLR
+ zLE

}]

− hE[(i + yLR
+ zLE

− D)+]

− bE[(D − i − yLR
− zLE

)+]
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Example: Dual-Sourcing

Recall that demand D is iid between periods.

I Suppose the demand is discrete, and that pd := P{D = d}.

Transition Probabilities:

For x = [i , (y1, . . . , yLR
), (z1, . . . , zLE

)] ∈ X and a = [aR , aE ] ∈ A(x), the
next state is

y = [i + yLR
+ zLE

− d , (aR , y1, . . . , yLR−1), (aE , z1, . . . , zLE−1)]

with probability

p(y |x , a) = pd .
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Selecting Actions

We assume the decision-maker follows a policy for selecting actions.

A policy is a rule for selecting actions.

I Let π denote a policy.

If π is used, actions are selected as follows:

if the history up to time t is x0 . . . xt−1at−1xt

then select action at ∈ A(xt) with probability πt(at |x0 . . . xt−1at−1xt).

I In general, policies may be randomized and history-dependent.
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Important Classes of Policies

Markov Policies

I Actions are selected based on the current time and current state
only:

πt(at |x0 . . . xt−1at−1xt) = πt(at |xt)

Stationary Policies

I Actions are selected based on the current state only:

πt(at |x0 . . . xt−1at−1xt) = π(at |xt)

Deterministic Stationary Policies

I Indentified with functions ϕ : X→ ∪x∈XA(x) where ϕ(x) ∈ A(x)
for all x ∈ X.

I Whenever the current state is x ∈ X, select action ϕ(x).
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Example: Single-Sourcing

Some possible policies:

I Base-Stock Policy: Whenever the current net inventory level is less
than s, order up to s.

I (s,S)-Policy: Whenever the current net inventory level is less than
s, order up to S .

Both of these are deterministic stationary policies.
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Example: Dual-Sourcing

IP = inventory position

= (inventory level) + (all orders to arrive in the next LR periods)

Some possible policies:

I Fixed Ratio Base-Stock Policy: Whenever IP < x , order αR(x − IP)
from the regular source and αE (x − IP) from the expedited source,
where αR + αE = 1.

I Tailored Base-Surge Policy: In each period, order the same amount
from the regular source. Whenever the IP < x , order up to x from
the expedited source.

I Dual-Index Policy: Use one base-stock level with IP for ordering
from the regular source, and use another base-stock level with

IPE = (inventory lv.) + (all orders to arrive in next LE periods)

for ordering from the expedited source.
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Part 2

Performance Measures
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Performance Measure: Finite-Horizon Total Reward

Eπx = expectation given that the initial state is x and the policy π is used

T = time horizon > 1

Xt = state at time t

At = action taken at time t

Finite-Horizon Expected Total Reward:

V πT (x) := Eπx
T−1∑
t=0

r(Xt ,At), x ∈ X
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Performance Measure: Discounted Total Reward

Eπx = expectation given that the initial state is x and the policy π is used

β = discount factor (between 0 and 1)

Xt = state at time t

At = action taken at time t

Infinite-Horizon Expected Discounted Total Reward:

vπβ(x) := Eπx
∞∑
t=0

βtr(Xt ,At), x ∈ X
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Performance Measure: Average Reward

Eπx = expectation given that the initial state is x and the policy π is used

Xt = state at time t

At = action taken at time t

Long-Run Expected Average Reward:

wπ(x) := lim sup
T→∞

1

T
Eπx

T−1∑
t=0

r(Xt ,At) x ∈ X
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Part 3

Performance Evaluation
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Performance Evaluation: Finite-Horizon Total Reward

Suppose a Markov policy π is used.

I The state process X0,X1, . . . is a (possibly nonhomogeneous)
Markov chain.

V πT can be computed using backward induction:

V π0 (x) = 0, x ∈ X

V πt (x) = Eπx [r(X0,A0)] + Eπx [V πt−1(X1)], x ∈ X, t = 1, . . . ,T
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Performance Evaluation: Discounted Reward

Suppose a stationary policy π is used.

I The state process X0,X1, . . . is a homogeneous Markov chain.

When the one-step rewards r(x , a) are bounded, we can approximate vπβ
using value iteration: Letting

f0(x) := 0, x ∈ X

and
fN(x) := Eπx [r(X0,A0)] + βEπx [fN−1(X1)], x ∈ X,

we get

vπβ(x) = lim
N→∞ fN(x) for all x ∈ X.
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Performance Evaluation: Discounted Reward

If the state and action sets are finite, can π can be evaluated by inverting
a matrix:

Pπ = transition matrix of the homogeneous Markov chain induced by π

rπ = vector with components rπ(x) :=
∑

a∈A(x) r(x , a)π(a|x) for x ∈ X

I = |X|× |X| identity matrix

vπβ = vector with components vπβ(x) for x ∈ X

Then

vπβ = (I − βPπ)
−1rπ
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Performance Evaluation: Average Reward

Suppose a stationary policy π is used.

I The state process X0,X1, . . . is a homogeneous Markov chain Pπ.

To evaluate π, we need to understand the structure of Pπ.

Suppose the state space X is finite.

I Pπ is unichain if it has a single recurrent class (may have transient
states)

I Pπ is multichain if it has at least two recurrent classes
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Performance Evaluation: Average Reward

If Pπ is unichain, then:

I it has a unique stationary distribution νπ

I the average reward under π is independent of the initial state, and is
equal to

wπ :=
∑
x∈X

νπ(x)
∑

a∈A(x)

π(a|x)r(x , a)

I If the constant w and the function h satisfy the evaluation equations

w + h(x) =
∑

a∈A(x)

π(a|x)r(x , a) +
∑
y∈X

∑
a∈A(x)

π(a|x)p(y |x , a)h(y)

for all x ∈ X, then w = wπ.

If Pπ is multichain, the average cost depends on the initial state.

I We won’t dwell on this case.
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Example: Single-Sourcing

For the computational examples, we’ll assume the following:

I No fractional orders, e.g., each order is for a certain number of units
(e.g., pallets) of the product.

I The warehouse has a finite capacity.

I There is a limit to how much can be ordered at once.

I The demand is discrete.

I All unmet demand is lost.

Under these assumptions, the single-sourcing problem is an MDP with
finite state and action sets.
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Example: Single-Sourcing

Consider the following instance of the aforementioned capacitated
single-sourcing problem with discrete demand and lost sales:

I The warehouse can only store 2 pallets of the product.

I At most 2 pallets can be ordered at once.

I The demand is uniformly distributed on {0, 1, 2}.

I Rewards/Costs:

I Selling price: p = $4 per unit
I Holding cost rate: h = $1 per unit per period
I Ordering cost: c = $2 per unit

Let π denote the base-stock policy with base-stock level s = 2.
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Example: Single-Sourcing

To make evaluating π easier, note that under π the process is a Markov
reward process.

I i.e., the state evolves according to a Markov chain Pπ, and a reward
rπ(x) is earned whenever state x is visited.

For the base-stock policy with base-stock level s = 2,

Pπ =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



rπ =

−1
1
3


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Example: Single-Sourcing

Finite-Horizon Total Reward:

V πT = rπ + Pπrπ + P2
πrπ + · · ·+ PT−1

π rπ

To avoid having to compute powers of Pπ, use backward induction:

V π0 = 0 (the zero vector)

V πt = rπ + PπV
π
t−1, t = 1, . . . ,T

When the base-stock policy π is followed for T = 3 periods, the vector of
expected total rewards is

V πT =

1
3
5


MDP Model Performance Measures Performance Evaluation Optimization Additional Topics 32/55



Example: Single-Sourcing

Discounted Total Reward:

vπβ = rπ + βPπrπ + β2P2
πrπ + · · · = (I − βPπ)

−1rπ

When the base-stock policy π is followed, and the discount factor is
β = 0.9, the vector of expected discounted total rewards is

vπβ =

1 0 0
0 1 0
0 0 1

− β

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

−1 −1
1
3

 =

 8
10
12


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Example: Single-Sourcing

Average Reward:

wπ = lim sup
T→∞

1

T

T−1∑
t=0

P t
πrπ

When the base-stock policy π is followed, the state process is an
irreducible finite-state Markov chain Pπ. This means:

I Pπ has a unique stationary distribution νπ.

I By the Strong Law of Large Numbers for Markov chains,

wπ =
∑
y∈X

νπ(y)rπ(y) ∀x ∈ X.

(Here wπ is a constant, not a vector.)

Since the stationary distribution of Pπ is νπ = [1/3, 1/3, 1/3],

wπ = vπrπ = 1
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Example: Single-Sourcing

If the MDP is unichain, we can avoid dealing with the stationary
distribution by using the evaluation equations to find wπ:

wπ1+ h = rπ + Pπh (1)

(1 = vector of all ones)

In particular:

1. Select any state x∗ and set h(x∗) = 0.

2. Solve the system (1) with this constraint.

For our problem, setting x∗ = 0 turns (1) into1 − 1
3 − 1

3
1 1 − 1

3 − 1
3

1 − 1
3 1 − 1

3

 wπ

h(1)
h(2)

 =

−1
1
3

 =⇒ h =

0
2
4

 , wπ = 1
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Part 4

Optimization
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Optimal Policies

Let J denote an optimality criterion (e.g., VT , vβ, or w).

A policy π∗ is optimal with respect to the optimality criterion associated with J
if

Jπ∗(x) = max
π

Jπ(x) for all x ∈ X.

If the state and action sets are finite, then:

I Under finite-horizon, discounted, and average rewards, there exists an
optimal Markov policy.

I Under both discounted and average rewards, this optimal Markov policy
can be taken to be deterministic and stationary.

There is a long line of mathematical work (from the 1960s to the present) on
the existence of optimal policies for MDPs with infinite state or action spaces

E. A. Feinberg, P. O. Kasyanov, N. V. Zadoianchuk, (2012) Average cost Markov decision processes with weakly
continuous transition probabilities. Mathematics of Operations Research 37(4):591-607.
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Computing Optimal Policies

Main Approaches:

1. Value Iteration

2. Policy Iteration (Discounted, Average)

3. Linear Programming (Discounted, Average)

I If the simplex method is used, this is equivalent to Policy Iteration.

Practical Considerations:

I When computationally feasible, policy iteration is typically the best
option (especially for discounted MDPs).

M. L. Puterman (2005). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons.

I For many problems of interest, the MDP is just too big for these exact
methods to work, but approximate versions of them can be useful.

W. B. Powell (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality. John
Wiley & Sons.

I Sometimes, there are optimal policies whose structure makes them
particularly easy to implement.

J. Gittins, K. Glazebrook, & R. Weber (2011). Multi-Armed Bandit Allocation Indices. John Wiley & Sons.
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Optimization: Finite-Horizon Total Reward

Assume the state and action sets are finite.

Theorem (Bellman, 1957)

There exists an optimal Markov policy that is deterministic.

Proof Sketch. For any function f : X→ R, let

Tf (x) := max
a∈A(x)

[
r(x , a) +

∑
y∈X

p(y |x , a)f (y)

]
.

Let V0 = 0 and
Vt = TVt−1, t = 1, . . . ,T .

Let π be any deterministic Markov policy that satisfies

πt(x) ∈ arg max
a∈A(x)

[
r(x , a) +

∑
y∈X

p(y |x , a)Vt−1(y)

]
, t = 1, . . . ,T .

Then π is optimal.
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Optimization: Finite-Horizon Total Reward

The backward induction algorithm used in the proof (sketch) can be used
to compute an optimal deterministic Markov policy.

To simplify the statement of the algorithm, for f : X→ R let G(f ) denote
the set of all “greedy” decision rules ϕ with respect to f , where

ϕ(x) ∈ arg max
a∈A(x)

r(x , a) +
∑
y∈X

p(y |x , a)f (y)

 ∀x ∈ X.

Backward Induction

1: Set V0 = 0.
2: for t = 1, . . . ,T do
3: Set Vt = TVt−1.
4: Select any π∗t ∈ G(Vt−1).
5: return the policy π∗ = {π∗1 , . . . ,π∗T }.
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Example: Single-Sourcing

Let’s revisit the capacitated single-sourcing problem with discrete
demand and lost sales, described on Slides 29 and 30.

Compute an optimal policy for T = 3: Letting V0 = 0,

V1 =

0.33
2.33

3

 =⇒ π∗1 =

1
0
0

 ,

V2 =

1.33
3.33
4.89

 =⇒ π∗2 =

1
0
0

 ,

V3 =

2.33
4.33
6.19

 =⇒ π∗3 =

1
0
0

 .
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Optimization: Discounted Reward

Assume the state and action sets are finite.

Theorem (Howard, 1960)

For any β ∈ [0, 1), there exists an optimal policy that is deterministic and
stationary.

Proof (Sketch). Consider any β ∈ [0, 1). The value function

vβ(x) := inf
π
vπβ (x)

uniquely satisfies the optimality equation

vβ(x) = max
a∈A(x)

[
r(x , a) + β

∑
y∈X

p(y |x , a)vβ(y)

]
, x ∈ X.

Moreover, a deterministic stationary policy π is optimal if and only if

π(x) ∈ arg max
a∈A(x)

[
r(x , a) + β

∑
y∈X

p(y |x , a)vβ(y)

]
, x ∈ X.
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Optimization: Discounted Reward

Value Iteration:

Consider any f : X→ R. Let ‖f ‖∞ := maxx∈X |f (x)| for x ∈ X, and

Tβf (x) := max
a∈A(x)

r(x , a) + β
∑
y∈X

p(y |x , a)f (y)

 , x ∈ X.

The operator Tβ is a contraction mapping, i.e., for all real-valued
functions f , g on X,

‖Tβf − Tβg‖∞ 6 β‖f − g‖∞.

Hence, letting v0 := 0 and vk := (Tβ)
kv0 for k = 1, 2, . . . , we have

‖vβ − vk‖∞ 6 βk‖vβ − v0‖∞, k = 1, 2, . . .
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Optimization: Discounted Reward

Based on the preceding the following algorithm can be used to compute
an ε-optimal policy, i.e., a policy πε such that

vπε

β (x) > vβ(x) − ε ∀x ∈ X,

for any ε > 0.

Value Iteration

1: Select any ε > 0.
2: Set v0 = 0.
3: Set k = 0.
4: do
5: Set vk+1 = Tβvk .
6: Set k = k + 1.
7: while ‖vk − vk−1‖∞ > ε(1 − β)/(2β)
8: return any policy πε ∈ G(vk)
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Optimization: Discounted Reward

Policy Iteration:

If it’s better to switch to another policy for one step, then it’s better to use
that policy all the time.

Let ϕ and ψ be two deterministic stationary policies, and let (ϕ,ψ) denote the
policy that uses ϕ for one step, and then follows ψ.

Lemma

If v
(ϕ,ψ)
β > vψβ , then vϕβ > vψβ . (f > g means f (x) > g(x) for all x)

Proof (Sketch). We have

rϕ + βPϕv
ψ
β = v

(ϕ,ψ)
β > vψβ =⇒ rϕ > (I − βPϕ)v

ψ
β .

Since (I − βPϕ)
−1 =

∑∞
t=0 β

tP t
ϕ is a nonnegative matrix,

vϕβ = (I − βPϕ)
−1rϕ > vψβ .
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Optimization: Discounted Reward

For a deterministic stationary policy φ and f : X→ R,

Tφβ f := rφ + βPφf

Policy Iteration

1: Select any deterministic stationary policy ϕ.
2: do
3: Compute vϕβ = (I − βPϕ)

−1rϕ.
4: Select a policy ϕ+ where Tϕ+

β vϕβ = Tβv
ϕ
β , setting ϕ+ = ϕ if possible.

5: while ϕ+ 6= ϕ
6: return ϕ

Theorem (Howard, 1960)

The policy iteration agorithm terminates after a finite number of steps with an
optimal policy.
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Optimization: Average Cost

Assume the state and action sets are finite.

Theorem (Derman, 1962)

There exists an optimal policy that is deterministic and stationary.

Proof (Sketch). For β ∈ [0, 1), let πβ be an optimal deterministic stationary
(DS) policy under discounted costs.

Since the set of DS policies is finite, there exists a sequence {βn} ⊆ [0, 1) such
that βn →∞ and πβn = π∗, for some DS policy π∗. Moreover, since the state
and action sets are finite, it follows from a “Tauberian theorem” that

lim
n→∞(1 − βn)vβn (x) = wπ∗(x) ∀x ∈ X.

So, for every policy π, the aforementioned “Tauberian theorem” implies that

wπ(x) > lim sup
n→∞ (1 − βn)v

π
βn
(x) > lim

n→∞(1 − βn)vβn (x) = wπ∗(x) ∀x ∈ X.

Hence the DS policy π∗ is optimal.
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Optimization: Average Cost

Assume the state and action sets are finite, and that the MDP is unichain.

Policy Iteration

1: Select any deterministic stationary policy ϕ.
2: do
3: Compute (wπ, h) satisfying wϕ1+ h = rϕ + Pϕh.
4: Select a policy ϕ+ where rϕ+ +Pϕ+h = Th, setting ϕ+ = ϕ if possible.
5: while ϕ+ 6= ϕ
6: return ϕ

Theorem (Howard, 1960)

The policy iteration algorithm terminates after a finite number of steps with an
optimal policy.
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Example: Single-Sourcing

Code available at
https://people.orie.cornell.edu/jh2543/.
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Part 5

Additional Topics
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Some Active Research Areas on MDPs

1. Approximate Dynamic Programming (ADP)
I aka. Reinforcement Learning

2. Robust MDPs

3. Learning when Demand Distributions are Unknown

4. Partially Observable MDPs
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Approximate Dynamic Programming (ADP)

(called Reinforcement Learning (RL) in Computer Science (CS))

Motivated by problems that can be modeled as MDPs, but where one of the
following issues exists:

I The MDP is too big (too many states, too many actions, . . . ).

I The transition probabilities are unknown.

One classic method from CS is Q-Learning: Approximate the “Q-factors”

Q(x , a) := r(x , a) + β
∑
y∈X

p(y |x , a)vβ(y), x ∈ X, a ∈ A(x),

via stochastic approximation.

I Useful when the transition probabilities are unknown, but where one can
easily interact with the system.

I Applications to SCM?

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540), 529.

Wang, Y., & Jiang, D. R. (2018). Structured actor-critic for anaging and dispensing public health inventory. arXiv
preprint arXiv:1806.02490.

MDP Model Performance Measures Performance Evaluation Optimization Additional Topics 52/55



Approximate Dynamic Programming

Value Function Approximation: Useful for large state spaces.

1. Find a good approximation of the value function: vβ ≈ v̂β

2. Use a policy ϕ̂∗ where

ϕ̂∗(x) ∈ arg max
a∈A(x)

[
r(x , a) +

∑
y∈X

p(y |x , a)v̂β(y)

]
, x ∈ X.

v̂β is often taken to be the best approximation to vβ within some structured
class of functions, e.g.,

I the output of a neural network

I linear combinations of basis functions:

vβ(x) ≈
s∑

k=1

αkφk(x), x ∈ X.

Dai, J. and Shi, P., Inpatient overflow: An approximate dynamic programming approach (2018). Manufacturing
and Service Operations Management, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2924208.

Powell, W. B. (2016). Perspectives of approximate dynamic programming. Annals of Operations Research,
241(1-2), 319-356.
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Other Topics Relevant to SCM

I Robust MDPs

Lim H. S., Xu, H., Mannor S. (2016) Reinforcement learning in robust Markov decision processes.
Mathematics of Operations Research 41(4):1325-1353.

Sun, J. and Van Mieghem, J. A., Robust dual sourcing inventory management: Optimality of capped dual
index policies and smoothing (April 18, 2018). Manufacturing & Service Operations Management,
Forthcoming. Available at SSRN: https://ssrn.com/abstract=2991250.

I Learning when Demand Distributions are Unknown

Cheung, W. C., Simchi-Levi, D., & Wang, H. (2017). Dynamic pricing and demand learning with limited
price experimentation. Operations Research, 65(6), 1722-1731.

Zhang, H. and Chao, X. and Shi, C., Closing the gap: A learning algorithm for the lost-sales inventory
system with lead times (March 2018). Available at SSRN: https://ssrn.com/abstract=2922820.

I Partially Observable MDPs

Kim, M. J. (2016) Robust control of partially observable failing systems. Operations Research
64(4):999-1014.

Saghafian, S., Hopp, W. J., Iravani, S. M., Cheng, Y., & Diermeier, D. (2018). Workload management in
telemedical physician triage and other knowledge-based service systems. Management Science Articles in
Advance, https://doi.org/10.1287/mnsc.2017.2905
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Summary

1. MDPs can model many decision-making problems relevant to SCM.

2. MDPs have attracted the attention of many OR researchers since
the 1950s, up to the present day.

3. There are still many research opportunities!

Thank You!

jh2543@cornell.edu
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