Dynamically Scheduling and Maintaining a Flexible Server

Jefferson Huang

Operations Research Department Naval Postgraduate School

INFORMS Annual Meeting November 7, 2018

Co-Authors:

Douglas Down (McMaster), Mark Lewis (Cornell), Cheng-Hung Wu (NTU)

Scheduling and Maintenance

A **flexible** server/machine can handle different types of jobs.

• e.g., different kinds of customers, different products

The service capacity/rate of the server can deteriorate over time.

▶ e.g., fatigue, wear & tear, needs cleaning

Questions:

- 1. How should the server's effort be allocated (i.e., **scheduled**)?
- 2. When should the server be **maintained**?

We consider these questions in the context of a queueing system.

Queue with State-Dependent Service Rates

Consider an M/M/1 queueing system with two arrival classes.

For class i = 1, 2,

- arrival rate is λ_i
- ▶ holding cost rate is c_i

The service rates depend on the **server state** $s \in \{1, ..., S\}$.

 $\triangleright \mu_i^s = \text{class } i \text{ service rate when server state is } s$

The server state evolves according to a continuous-time Markov chain.

- ▶ jump probabilities $J_{s,t}$, $s, t \in \{1, ..., S\}$
- ▶ holding time rates α_s , $s \in \{1, ..., S\}$

Related Work

➤ Cai, Hasenbein, Kutanoglu & Liao (2013) consider a closely related 2-class model, with a different cost, service, and degradation structure.

- ▶ Other work in joint service/production and maintenance:
 - Single Job Class: Kaufman & Lewis (2007), Yao (2003), Koyanagi & Kawai (1995)
 - Non-Queueing: Yao, Xie, Fu & Marcus (2005), Iravani & Duenyas (2002), Sloan & Shanthikumar (2000)

Scheduling

For now, assume we only need to decide how to allocate the server.

At each decision epoch (arrival, service completion, server state change), decide which class to serve.

A **policy** for doing this can depend on the current queue lengths and server state, as well as the history (past queue lengths, server states, and decisions).

 $ightharpoonup Q_i^{\pi}(t) = \text{number of class } i \text{ jobs at time } t, \text{ under policy } \pi$

Objective: Find a policy π minimizing the long-run expected average cost

$$\limsup_{T\to\infty}\frac{1}{T}\;\mathbb{E}\int_0^T\left[c_1Q_1^\pi(t)+c_2Q_2^\pi(t)\right]dt$$

Scheduling

Definition

The $c\mu$ -Rule is the scheduling policy where

server state is
$$s \implies \text{prioritize class } i^* \in \arg\max_{i=1,2} c_i \mu_i^s$$

Well-Known: If the server state does not change, then the $c\mu$ -Rule is optimal. (Buyukkoc, Varaiya & Walrand 1985)

Question: Is the $c\mu$ -Rule optimal when the server state changes?

Suboptimality of the $c\mu$ -Rule

Example:

- arrival rates $\lambda_1 = 5$, $\lambda_2 = 0.8$
- ightharpoonup cost rates $c_1 = c_2 = 1$
- \triangleright S=2 server states

$$\alpha_1 = 1, J_{12} = 1$$
 $\mu_1^1 = 10$
 $\mu_2^1 = 1$
 $\alpha_2 = 1, J_{21} = 1$
 $\mu_1^2 = 10$
 $\mu_2^2 = 2$

$$c_1 \mu_1^1 = 10 > 1 = c_2 \mu_2^1$$

 $c_1 \mu_1^2 = 10 > 2 = c_2 \mu_2^2$

The $c\mu$ -Rule (always prioritize class 1) leads to an **infinite average cost!**

- (long-run fraction of time busy with class 1) = $\frac{\lambda_1}{10} = \frac{1}{2}$
- (average class 2 service rate) = $\frac{1}{2} \left(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 \right) = 0.75 < 0.8 = \lambda_2$

The $c\mu$ -rule is **not optimal**, because the following policy leads to a finite average cost:

If the server state is s, prioritize class s.

When is the $c\mu$ -Rule optimal?

Theorem

Suppose

$$\mu_1^{s-1}\mu_2^s = \mu_1^s\mu_2^{s-1} \qquad \forall s > 1.$$
(1)

Then the cu-Rule is optimal.

 \triangleright (1) means that the ratio between the service rates is constant in s:

$$\mu_2^{s-1}, \mu_2^s > 0 \implies \frac{\mu_1^{s-1}}{\mu_2^{s-1}} = \frac{\mu_1^s}{\mu_2^s}$$

▶ Under (1), a variant of the interchange argument in (Nain 1989) can be used to prove the Theorem.

Scheduling and Maintenance

Same M/M/1 model as before, with the following modifications:

- Additional server state 0 (server is down for maintenance)
- - \triangleright s =condition of the server
- ▶ Preventive Maintenance (PM) when s > 0
 - Send the server to state 0
 - ► Incur cost K_{PM}
 - Maintenance time has general distribution G
- ▶ **Deterioration** when *s* > 0
 - Server transitions from state s to s-1 at rate α_s
 - ► If an uncontrolled transition to server state 0 occurs, the Corrective Maintenance (CM) cost K_{CM} is incurred.

Scheduling and Maintenance

A **policy** stipulates, given the current queue lengths, server state, and history of the process, whether to

- initiate preventive maintenance, or
- serve one of the classes.

For a policy π ,

- $ightharpoonup Q_i^{\pi}(t) = \text{number of class } i \text{ jobs at time } t, \text{ under } \pi$

- t_n^{π} = time of the n^{th} maintenance initiation, under π

Objective: Find a policy π minimizing the long-run expected average cost

$$\limsup_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\sum_{n: t_n^{\pi} \leqslant T} \left[K_{\mathsf{PM}} M_{\mathsf{PM}}^{\pi}(t_n^{\pi}) + K_{\mathsf{CM}} M_{\mathsf{CM}}^{\pi}(t_n^{\pi}) \right] + \int_0^T \sum_{i=1}^2 c_i Q_i^{\pi}(t) \ dt \right]$$

Structure of Optimal Policies

Theorem

Suppose

$$\mu_1^{s-1}\mu_2^s = \mu_1^s\mu_2^{s-1} \qquad \forall s > 1,$$

and that there exists a server state s* such that

$$\frac{\lambda_1}{\sum_{s=s^*}^S (\mu_1^s/\alpha_s)} + \frac{\lambda_2}{\sum_{s=s^*}^S (\mu_2^s/\alpha_s)} < \frac{1}{(1/\alpha_0) + \sum_{s=s^*}^S (1/\alpha_s)}.$$

Then there is an optimal policy that

- (i) schedules according to the cu-Rule, and
- (ii) makes maintenance decisions monotonically in the server state.
 - "schedules according to the cμ-Rule" means:
 - If the policy says to serve a class (rather than do preventive maintenance), use the cμ-Rule to select which one.
 - "makes maintenance decisions monotonically in the server state" means that for each fixed number of class 1 jobs and number of class 2 jobs in the system,
 - ightharpoonup maintain when server state is $s \implies$ maintain when it is s-1

Structure of Optimal Policies

Example: $c\mu$ -Rule says to prioritize class 2:

Conclusions

We considered a combined scheduling and maintenance problem for a queueing system.

Key Takeaways:

- ▶ The $c\mu$ -Rule can be very bad.
- ▶ If degradation reduces the service rates by the same percentage, then attention can be restricted to policies that
 - schedule according to the $c\mu$ -Rule, and
 - call for maintenance monotonically in the server state.

Regarding the structure of optimal or near-optimal policies, **the picture** is still very incomplete.

- Heavy-traffic approximations?
- One-step policy improvement?