
Trusted Hardware: Can It Be Trustworthy?

Cynthia E. Irvine
Department of Computer Science

Naval Postgraduate School
Monterey, California
irvine@nps.edu

Karl Levitt
Program Director, CISE/CNS
National Science Foundation

4201 Wilson Blvd.
Arlington, Virginia 22230

klevitt@nsf.gov

ABSTRACT
Processing and storage of confidential or critical information
is an every day occurrence in computing systems. The trust-
worthiness of computing devices has become an important
consideration during hardware design and fabrication. For
instance, devices are increasingly required to store confiden-
tial information. This includes data such as cryptographic
keys, personal information, and the intellectual property
(IP) in the device’s design. Furthermore, computing systems
in critical applications must work as specified. Therefore it
is important that hardware be designed and fabricated to
be trustworthy.

Many potential attacks can be used to exploit a comput-
ing device. Physical attacks, that monitor power, timing,
electromagnetic radiation, etc. can be used to steal confi-
dential information from the system. A “malicious” foundry
can perform a number of devious activities including steal-
ing the mask, reverse engineering IP, subverting the hard-
ware through back doors and time bombs, and overproduc-
ing counterfeit chips. Design tools can be subverted to insert
malicious circuitry, and chip packagers can modify selected
devices with their own that provide similar functionality, in
addition to underhanded behavior, e.g. stealing information
or malfunctioning at critical junctures.

The notions of trust and trustworthiness are presented.
Although major challenges still confront secure software sys-
tem development, there has been substantial progress.Techniques
that have been useful in the context of software systems
are described and their relevance to the hardware domain is
discussed. Challenges to trusted hardware development are
then explored.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: [Access controls, Infor-
mation flow controls, Verification]; B.7.1 [Types and De-
sign Styles]: [Algorithms implemented in hardware, Gate
Arrays, Microprocessors and microcomputers]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007 June 4-6, San Diego, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

General Terms
Security, Hardware

Keywords
Trust, Assurance, Processor, FPGA, ASIC, Threats, Vul-
nerabilities, Evaluation

1. A BASIS FOR TRUST
Although “trusted” is a term of art within the computer

security community1, the way systems are used on a daily
basis in rest of the world is quite different. Any system that
the end user places confidence in, whether warranted or not,
is trusted. Hence we need precise terminology.

trusted: the degree to which the user or a com-
ponent depends on the trustworthiness of an-
other component. For example, component A
trusts component B, or component B is trusted
by component A. Trust and trustworthiness are
assumed to be measured on the same scale.[2]

Trustworthy describes components that merit our trust.

trustworthy: the degree to which the security
behavior of the component is demonstrably com-
pliant with its stated functionality (e.g., trust-
worthy component).[2]

How much trustworthiness is required in a particular sys-
tem or component? The answer depends upon how and
where that component or system is to be used, i.e., how
much protection is needed for the information assets that it
will process?

1.1 Threats and Vulnerabilities
Confidence that a system is sufficiently trustworthy to be

trusted with sensitive, critical information is achieved by
reducing its vulnerability to attach throughout the system
life cycle. Threats, which may be measured relative to the
value of the information, must be balanced against the cost
of vulnerability mitigation. If no potential attacks are en-
visioned, then there is little risk to information in a system

1Traditionally, a trusted system or application is one that
enforces security policy, supports its enforcement, or exe-
cutes within the perimeter of security-relevant functions and
adheres to the intent of the security policy, all with a mea-
surable level of confidence.

fraught with vulnerabilities. In contrast, a system contain-
ing very valuable information may be juicy prey for highly
sophisticated adversaries, and its vulnerabilities must be re-
duced or removed so that the cost to the attacker becomes
prohibitive. Threats range from a malicious insider on the
development team to a bad agent who performs maintenance
on a fielded system.

The cost of error in hardware can be very high if millions
of devices must be recalled to address a flaw in its design
or implementation. Lacking the option for the unfortunate,
but ubiquitous, downloadable software patch, hardware de-
velopers must pay attention to functional aspects of their
devices. How might techniques used to avoid flaws be used
to increase trustworthiness?

Since protection is not free, it would be wasteful to incur
great expense to construct a highly secure system only to
protect worthless information assets. The effort expended to
address security threats must be balanced against the dam-
age that would result from information exposure or corrup-
tion. Two sets of threats must be addressed in the context
of secure systems: developmental threats and operational
threats.

Developmental threats are those that result in the in-
correct construction of the system, viz., the concrete sys-
tem implementation does not reflect the intent of the high
level policy and specifications. This can result from unin-
tentional errors, or, more troubling, the intentional inser-
tion of unspecified functionality in the form of trap doors
[13][25]. A rigorous development methodology can mitigate
such threats, and can be applied to people, processes, and
tools.

Operational threats can expose information assets to a va-
riety of attacks. If the system is incorrectly specified, then a
well-constructed interface might be legitimately used in an
unanticipated manner for nefarious purposes. A system that
is poorly designed and implemented may contain exploitable
flaws. Sophisticated attackers can construct beaded attacks
that ultimately lead to the “keys to the kingdom”. Some-
times the system may be constructed such that its opera-
tional state can be manipulated in ways that exfiltrate pro-
tected information. These are covert channels [16]: they can
be both difficult to eliminate and difficult to exploit. In the
case of hardware, exploitation make take the form of side
channel attacks, e.g. [15], that extract information using
power or timing analysis.

1.2 Assurance and Lifecycle Considerations
Because attackers will choose the path of least resistance

to realize their objectives, achieving trustworthy systems is
an assurance life cycle challenge that must address trust
from cradle to grave. Life cycle support must define the
environment, tools and techniques to be used, and must in-
clude development processes as well as flaw remediation. A
configuration management plan and system must be in place
to guard against unauthorized modification of the system,
as well as ensure the integrity of all tools used for specifica-
tion, design and development. Development may include a
sequence of specification, refinement, and mapping to ensure
a correctly implemented system. When warranted, develop-
ment may entail formal methods. Testing will ensure that
the system meets its functional specification, while vulner-
ability assessment permits the analysis, albeit incomplete,
of the system’s robustness against exploitation. Plans and

procedures must be in place to ensure the safe delivery of
the system to its users, and the users need appropriate guid-
ance and documentation so that they can configure and run
the system without introducing vulnerabilities.

The assurance techniques described above add time and
expense to product development. In an era when corpora-
tions must maximize profits and rapidly update products
with new features, how are customers to know whether the
components they acquire have really been created in a man-
ner that addresses these life cycle concerns? It might be
foolhardy to believe vendors without some form of third
party assessment. Over the years software and system as-
surance frameworks to provide guidance to developers and
confidence to customers have been developed, e.g. the TC-
SEC [5] and the current Common Criteria (CC) [12]. The
CC describes ten types of assessment required to determine
if a system is trustworthy:

1. analysis and checking of processes and procedures;

2. checks that processes and procedures are applied;

3. analysis of the correspondence between design repre-
sentations;

4. analysis of the design representation against the re-
quirements;

5. verification of proofs;

6. analysis of guidance documents;

7. analysis of the functional tests developed and the re-
sults provided;

8. independent functional testing;

9. vulnerability analysis (including flaw hypothesis [19]);

10. penetration testing.

The new Protection Profile for Separation Kernels in En-
vironments Requiring High Robustness [11] levies many of
the above requirements on developers who incorporate cus-
tom hardware in their systems, whereas the requirements for
commercial-off-the-self (COTS) platform components call
for the developer to show that those components are ca-
pable of effectively supporting the intended system’s se-
curity functions. Even so, developers can only hope that
the COTS components were developed using techniques to
achieve trustworthy results. What sort of guarantees be-
yond saying “trust me” will hardware vendors provide their
customers?

2. TRUSTED HARDWARE CHALLENGES
Do the threats and vulnerabilities associated with hard-

ware directly parallel those that have been studied for soft-
ware systems or does hardware eliminate some threats and
vulnerabilities while introducing others? Subversion is per-
haps the most ominous threat to software systems and can
be accomplished relatively easily [1]. Is the same true for
hardware?

Can hardware become more trustworthy by adopting the
assurance techniques used for software? What are the sim-
ilarities between hardware and software development and
what translation is required to map to hardware develop-
ment assurance processes and techniques similar to those

applied to software systems? Does the hardware design and
implementation process entail techniques with no counter-
parts in software? If so, how will the requirements for new
hardware assurance methods be articulated and met? These
are among the issues that need to be examined.

To explore the context for some of these questions, we ex-
amine recent progress in three areas: the design and imple-
mentation of trustworthy hardware, the kinds of hardware
used to enhance platform security, and security applications
for which hardware is well suited.

2.1 Construction of Trustworthy Hardware
Where covert channels are a concern, i.e., where manda-

tory security policies must be enforced, care must be exer-
cised to avoid them at all levels of the protection system. In
modern processors techniques to enhance performance, such
as speculative execution, can introduce covert channels [27].
Various formal frameworks, e.g. PVS [23] and ACL2 [14],
can be used to verify hardware and to analyze assumptions
made regarding security properties and secure state.

Disconnects in semantics as well as simple errors can occur
between the mathematical description and the concrete im-
plementation of cryptography. These problems are exacer-
bated in hardware implementations where gulf between the
mathematics and the implementation is huge. Data model
uniformity can be exploited to develop domain-specific lan-
guages that can assist mathematicians and engineers to per-
form test and verification of the cryptography-relevant ele-
ments of systems, permit unambiguous specification of cryp-
tographic algorithms, and enhance reusability on different
hardware targets [6].

On FPGAs, mechanisms can monitor for irregular activ-
ity and to provide resilience against denial of service attacks
[7]. Another form of on-board security mechanism is a refer-
ence monitor that adjudicates access to memory according
to policy [10]. Through a policy compiler, users can describe
a policy which is converted into a circuit that may be loaded
onto the FPGA. Isolation and controlled entry-points are
important techniques for protection in any system. In the
case of FPGAs, this may be achieved through spatial separa-
tion, constrained interconnects between cores; and selective
partial reconfiguration with object reuse security [9].

2.2 Types of Trustworthy Hardware
Cryptographic co-processors can range from NICs with

built-in cryptographic algorithms to those such as the IBM
4758 which was designed to detect and respond to tampering
[22]. The Trusted Computing Group Trusted Platform Mod-
ule provides cryptographic primitives and protected storage
locations that may be used to securely attest aspects of the
system configuration to remote parties [26]. The protec-
tion of cryptographic data has been addressed through the
extension of traditional hardware with a Secret Protected
unit [17], which stores and protects system keys and a hash
value to provide tamper evidence of user keys. Furthermore,
the integrity of software can be ensured through the use of
protected checksums that are validated on instruction exe-
cution.

Hardware mechanisms are used as the foundation for many
highly secure systems. Traditional desirable features in-
clude: distinct execution entities, distinct address spaces,
built-in access checks, multiple processor modes, mecha-
nisms for transfer of control, support for partitioning of task

modules, I/O device support, and privileged instructions.
All of the highest assurance products evaluated under the
TCSEC were based on platforms from the X86 family [21],
which offers many of these features. Perhaps one of the
most interesting processors with the potential to support
secure systems was the Intel 432 [18]. With tight hard-
ware/software coupling and the treatment of everything as
a typed object for which programmers could create type
mangers, this processor provided an example of tagging and
capabilities. The use of such constructs to build secure sys-
tems remains a topic of interest and discussion.

Currently vendors are developing next-generation plat-
forms with enhancements that go well beyond those of tra-
ditional processors. These processors support virtualization
and a variety of other features such as mechanisms for pro-
tected storage across power cycles, support to identify and
verify the current platform configuration as well as to iden-
tify the platform itself [8][29].

2.3 Applications of Secure Hardware
That trustworthy hardware would welcomed as the basis

for constructing secure systems ranging from hand-held de-
vices to large servers is a sine qua non. There are a number
of other applications for which trusted hardware is appro-
priate.

FPGAs may be used to support security objectives with
a variety of content processing solutions such as intrusion
detection, XML review, and virus scanning. Consider in-
trusion detection. Because granular intrusion detection is a
computationally intensive task that requires high through-
put and employs algorithms that can be encoded using in-
teger operations, it is a good candidate for hardware imple-
mentation. The reconfigurability of FPGAs allows modifica-
tion to parameters so that intrusion detection systems can
adapt to new attacks. Examples include string matching
engines [24] [4], and the use of principle component analysis
[20],

FPGA technology may augment the processor core to
mitigate threats of software piracy and software tampering.
Zambreno et al. have described an architecture that offers
software tamper protection in combination with techniques
to thwart observation of software ranging from simple ob-
fuscation to full encryption [28].

3. FUTURE DIRECTIONS
The use of FPGAs in support of high performance re-

configurable computers is becoming increasingly attractive
as a result of enormous improvements in performance, size,
power consumption, and cost [3]. Through the use of special-
ized development tools, a high performance platforms can
be tailored to certain classes of applications. These systems
will provide a rich context in which a variety of techniques
to ensure that intended security policies are enforced.

Hardware is the foundation upon which all systems must
be constructed. Today, more often than not, system devel-
opers treat their hardware as axiomatic. Unfortunately the
provenance of most components is such that any claims re-
garding their trustworthiness are largely unfounded. With
increased reliance on sophisticated hardware components,
many that perform security-critical functions and some of
which are mutable, entire infrastructures may be vulnera-
ble to attack. Through new initiatives and ongoing research
programs, it is possible to anticipate energetic efforts to es-

tablish principles, tools, and techniques for the design and
construction of trustworthy hardware.

4. ACKNOWLEDGMENTS
A portion of this material is based upon work supported

by the NSF under Grant No. 0524707. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the NSF.

5. REFERENCES
[1] E. A. Anderson, C. E. Irvine, and R. R. Schell.

Subversion as a threat in information warfare. Journal
of Information Warfare, 3(2):52–65, 2004.

[2] T. V. Benzel, C. E. Irvine, T. E. Levin, G. Bhaskara,
T. D. Nguyen, and P. C. Clark. Design principles for
security. ISI-TR-605, Information Sciences Institute,
Santa Monica, California, and NPS-CS-05-010, Naval
Postgraduate School, Monterey, California, 2005.

[3] D. Buell, T. El-Ghazawi, K. Gaj, and V. Kindratenko.
High performance reconfigurable computing. IEEE
Computer, 40(3):23–27, March 2007.

[4] Y. H. Cho and W. Mangione-Smith. Deep packet filter
with dedicated logic and read only memories. In IEEE
Symposium on Field-Programmable Custom
Computing Machines, pages 125–134, 2004.

[5] DoD. Department of Defense Trusted Computer
System Evaluation Criteria. Number DoD
5200.28-STD. National Computer Security Center,
December 1985.

[6] Galois Connection, Inc. Cryptol Reference Manual.
Galois Connection, Inc., Beaverton, OR, February
2006.

[7] G. Gogniat, T. Wolf, and W. Burleson. Reconfigurable
security architecture for embedded systems. In Mobile
Computer Hardware Architectures: Design and
Implementation, January 2006.

[8] D. Grawrock. The Intel Safer Computing Initiative.
Intel Press, Hillsboro, OR, 2006.

[9] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood,
R. Kastner, T. Levin, T. Nguyen, and C. Irvine.
Moats and drawbridges: An isolation primitive for
reconfigurable hardware based systems. In Proceedings
of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 2007 (to appear).

[10] T. Huffmire, S. Prasad, T. Sherwood, and R. Kastner.
Policy-driven memory protection for reconfigurable
hardware. In Proceedings of the European Symposium
on Research in Computer Security (ESORICS),
volume LNCS 4189, pages 461–478, Hamburg,
Germany, September 2006. Springer.

[11] IAD. U.S. Government Protection Profile for
Separation Kernels in Environments Requiring High
Robustness. National Information Assurance
Partnership, version 1.021 edition, March 2007.

[12] ISO/IEC. ISO/IEC 15408 - Common Criteria for
Information Technology Security Evaluation. Number
CCIMB-2005-08-001, CCIMB-2005-08-002,
CCIMB-2005-08-003. International Organization for
Standardisation, version 2.3 edition, August 2005.

[13] P. A. Karger and R. R. Schell. Multics security
evaluation: Vulnerability analysis. Technical Report

ESD-TR-74-193, Vol. II, Information Systems
Technology Application Office Deputy for Command
and Management Systems Electronic Systems Division
(AFSC), Hanscom AFB, Bedford, MA 01730, 1974.

[14] M. Kaufmann and J. S. Moore. ACL2 homepage.
http://www.cs.utexas.edu/users/moore/acl2/.

[15] P. C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems, pages
104–113. Advances in Cryptology – CRYPTO’96,
Lecture Notes in Computer Science, V. 1109.
Springer-Verlag, 1996.

[16] B. W. Lampson. A note on the confinement problem.
Communications of the A.C.M., 16(10):613–615, 1973.

[17] R. Lee, P. Kwan, J. McGregor, J. Dowskin, and
Z. Wang. Architecture for protecting critical secrets in
microprocessors. In Proceedings 32nd International
Symposium on Computer Architecture, pages 2–13,
Madison, Wisconsin, June 2005. IEEE Computer
Society.

[18] H. M. Levy. Capability-based Computer Systems.
Digital Press, Bedford, MA, 1984.

[19] R. R. Linde. Operating system penetration. In
National Computer Conference, pages 361–367, 1975.

[20] D. Nguyen, A. Das, G. Memik, and A. Choudhary. A
reconfigurable architecture for network intrusion
detection using principal component analysis. In
Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), Napa Valley, California, April 2006.

[21] O. Sibert, P. A. Porras, and R. Lindell. The Intel
80x86 processor architecture: Pitfalls for secure
systems. In Proceedings 1995 IEEE Symposium on
Security and Privacy, pages 211–222, Oakland, CA,
May 1995. IEEE Computer Society Press.

[22] S. Smith and S. Weingart. Building a
high-performance, programmable secure coprocessor.
Computer Networks, 31:831–860, November 1999.

[23] SRI International. PVS specification and verification
system. http://pvs.csl.sri.com.

[24] L. Tan, B. Brotherton, and T. Sherwood. Bit-split
string-matching engines for intrusion detection and
prevention. ACM Transactions on Architecture and
Code Optimization, 3(1):3–34, March 2006.

[25] K. Thompson. Reflections on Trusting Trust.
Communications of the A.C.M., 27(8):761–763, 1984.

[26] Trusted Computing Group. TPM Main, Part 1,
Design Principles.
https://www.trustedcomputinggroup.org/downloads
/specifications/tpm/tpm, 29 March 2006.

[27] Z. Wang and R. B. Lee. Covert and side channels due
to processor architecture. In Proceedings of the 22nd
Annual Computer Security Applications Conference,
pages 473–482, December 2006.

[28] J. Zambreno, D. Honbo, A. Choudhary, R. Simha, and
B. Narahari. High-performance software protection
using reconfigurable architectures. Proceedings of the
IEEE, 94(2):1–13, February 2006.

[29] A. Zelchick. Processor-based virtualization, AMD64
style, part i.
http://developer.amd.com/articles.jsp?id=14&num=1,
2007.

