
Proceedings of the 2006 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY, 21-23 June 2006

Toward a Boot Odometer

Richard C. Vernon, Cynthia E. Irvine, Timothy E. Levin

Abstract—

In trustworthy systems, object reuse requirements extend
to all forms of memory on the platform and can include
volatile elements such as RAM, cache, I/O device registers,
and certain controllers. To ensure that residual information
is not accessible from one session to another, these regions
must be either protected or purged. In situations where the
operating system cannot be trusted to meet object reuse
requirements, an alternative is needed.

In this paper, we address the object reuse problem in
volatile memory. A “hard” reboot includes a power cycle,
which ensures that sensitive information in volatile mem-
ory is purged, whereas a software initiated reboot does not.
How can we prove that a hard reboot has occurred? To our
knowledge, it is not possible for a remote entity using cur-
rently available technology, to sense whether a hard reboot
has occurred on an PC client, e.g. between communication
sessions. We propose a hardware-assisted design that uses
a secure coprocessor to sense the reboot type of the host
platform and that maintains a Boot Odometer that tracks
the sum of hard reboots that have occurred on the host. In
addition, secure coprocessor services allow trustworthy at-
testation to a remote entity, cognizant of a previous Boot
Odometer Value, that volatile memory has been purged.

I. Introduction

The limited nature of the physical resources in computers
requires management of their allocation so that the same
physical resources can be reused for objects to which differ-
ent security attributes may be assigned. A form of passive
misuse of computers is the scavenging of pre-existing in-
formation on storage resources that have been allocated
to a new object [1]. This object reuse problem must be ad-
dressed in systems enforcing access control and information
flow policies.

In general, to address object reuse, residual information
is purged from resources (e.g., physical memory) between
the time they are deleted from one object and reallocated
to another object [2]. The Common Criteria devotes an en-
tire functional family (i.e., FPT-RIP, Residual Information
Protection) [3] to object reuse.1

A remote content server or users of a public computer at
a library or coffee shop could need to ensure that informa-
tion from one session does not persist to the next session.
If the operating system cannot be relied upon to address

R.C. Vernon: Naval Postgraduate School, Monterey, CA.
C. E. Irvine: Naval Postgraduate School, Monterey, CA.
T. E. Levin: Naval Postgraduate School, Monterey, CA.
1Note that these requirements do not address hardware forensics.

object reuse to an adequate level of trustworthiness, are
there effective alternatives to doing nothing?

We have been engaged in the development of a dis-
tributed client-server architecture (MYSEA) that segre-
gates highly sensitive information from less sensitive in-
formation, while providing assured sharing as permitted
by an overarching system policy. [4], [5]. The architecture
leverages a combination of trusted systems and commer-
cial products to implement multilevel networks over which
secure information services can be provided. To achieve
user acceptability [4], viz. usable security, the architecture
allows client systems to execute any operating system and
any suite of application software and are assigned a current
session level, which may change over time. By definition,
the clients may not be trustworthy and may even include
malicious code in the OS. It is assumed that users are not
a threat to the physical integrity of the client systems. We
can achieve this by trusting the users, guarding the client,
or using tamper-proof techniques. As will be seen, the
tamper resistance properties of the Trusted Platform Mod-
ule [6] determine the integrity of our prototype. The only
constraint on clients is that all session-related information
must be stored on a highly trusted server. Thus the clients
have large RAM disks, but no persistent writable storage.
When the client changes session level, it has access to dif-
ferent information on the server. Care must be taken to
ensure that information from previous, more sensitive ses-
sions is not accessible in local volatile memory devices on
the client.

A system reset, or manual power down of the client,
causes the refresh rate for memory to go to zero. As a
result, information in volatile memory is zero and when
the system is restarted, memory will contain either ran-
dom or some predefined constant values. The operating
system can also be restarted without a powercycle. Here
we call this a soft reboot (also called a warm reboot). A
reboot that involves a power cycle is called a hard reboot.
In the case of a soft reboot, the problem of residual infor-
mation persists regardless of the boot medium: CD, USB
drive, etc.

An earlier study of object reuse in the context of po-
tentially malicious client operating systems [7] concluded
that power cycling the hardware was the best approach for
purging volatile memory. Without a power cycle on re-
boot, sensitive information may remain in volatile memory

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 30

components, including system RAM and other board-level
hardware components. However, at that time there ap-
peared to be no foolproof way to validate that a power
cycle had occurred.

A trusted coprocessor [8], [9] offers a path to a solution.
A secure coprocessor added to the main system board of
the client can provide a trustworthy environment for the
storage of security-critical information and for performing
security-critical computation. Its security and encryption
services provide a context in which a hard reboot of the
client can be attested.

The problem of trusted system boot and the use of
trusted coprocessors to facilitate this process has been dis-
cussed in earlier work [10], [11], [9]; however, this earlier
work did not address the problem of object reuse as it re-
lates to ensuring that the system has undergone a power
cycle.

This paper presents a set of enhancements to the TPM
specification [8] that would allow it to sense the type of
reboot a computer has undergone: hard or soft. We show
that the proposed design reflects key security properties
[1]: that it is understandable, cannot be bypassed, and
cannot be modified. The TPM is also enhanced to maintain
a Boot Odometer Value (BOV), which tracks the number
of hard reboots the host platform has undergone. When
used in conjunction with a TPM that provides attestation
services2, the platform can trustfully prove to a remote
entity, such as our trusted server, the current total number
of hard reboots and the type of the most recent reboot.
To further explore our ideas, a proof of concept hardware
simulation was developed.

II. Background

Most modern, networked applications implicitly trust
the integrity of the systems with which they communi-
cate. However, even if a software application is trustwor-
thy, there is no way to verify the integrity of the oper-
ating environment of today’s commercial systems. When
queried, malicious software can lie with impunity - and
malicious applications can often exploit weaknesses in com-
mercial operating systems.

Secure coprocessors can be used to provide high integrity
evidence of the client’s current operating environment, such
as hardware, operating systems, and running software, to
a remote entity. This information can establish a basis
for decisions by remote entities regarding the provision of
services and data to the attesting system. The Trusted
Platform Module [8] can be used to provide a trustwor-
thy source of platform measurements. Figure 1 presents a
generic representation of a TPM-enhanced architecture.

The security architecture in which we have explored
client object reuse issues consists of a completely untrusted

2“Attestation is the process of vouching for the accuracy of infor-
mation” [8]

TPM Untrusted
CPU Remote HostNetwork

TPM-Enabled Host

Fig. 1. Simple Layout for TPM-enhanced Operations.

client, a small trusted appliance called a Trusted Path Ex-
tension (TPE), and a trusted server, which manages the
MYSEA LAN [4]. Both the TPE and the server are high
assurance components and constitute elements in the dis-
tributed trusted computing base (TCB). The TPE provides
a user with trusted I/O and protects itself from malicious
software operating on the client computer through its phys-
ically separate execution environment and its high assur-
ance separation kernel [12]. TPE services include:
1. a high assurance trusted path [13] to the server for user
identification, authentication and session security attribute
negotiation,
2. support for a protected communication channel between
itself and the server,
3. trusted screen and keyboard interfaces,
4. dynamic security services such as context and
application-specific security associations [?], and
5. mediation of client access to the LAN.
The concept of operation for client access to server re-
sources requires that all security-relevant parameters for
a user session must be established to the server using the
TPE before the untrusted client can access the network. If
the client has requested a change to a lower session level,
volatile memory must be purged on the client. While the
TPE can provide security services directly between the user
and the trusted server, neither the TPE nor the trusted
server can currently validate a hard reboot which implies
memory purge of the client computer.

To address this problem, a secure coprocessor, viz., a
modified TPM, has been added to the TCB to detect the
type of reboot the client platform underwent, and to keep
a count of the number of client platform hard reboots. An
instruction is added to the TPM that allows local programs
to query for the hard reboot count and provide that trust-
worthy evidence to the trusted server.

III. Design

Each client system is equipped with a TPM, i.e., a secure
coprocessor, as illustrated in Figure 2. The secure copro-
cessor stores a high integrity number known as the Boot
Odometer Value (BOV). If and only if the computer hard
reboots, the secure coprocessor increments the BOV by 1.

Using the TPM’s attestation service, the client can prove
to a remote entity, that is cognizant of a previous BOV,
that volatile memory has been purged.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 31

TPM Untrusted
CPU

Remote
HostNetwork

TPM-Enabled Host

TPE

Trusted and part of distributed TCB

Fig. 2. Client Enhanced with TPE and TPM.

To do this, the client requests its secure coprocessor to
sign the current BOV using a private key known only to
the secure coprocessor.3The client then sends the signed
BOV to the remote entity. The remote entity uses the cor-
responding public key to validate the BOV. Assuming that
the secure coprocessor protects its private signing keys from
tamper or observation, the remote entity can trust that the
BOV is authentic and has not been altered in transport. By
comparing the current BOV to previously provided BOVs,
the remote entity can determine if an additional hard re-
boot has occurred on the client. Protection against replay
and other network attacks is provided by the attestation
protocol [14].

A. Highlevel System Requirements

The Boot Odometer function results in several high-level
design requirements.
• The BOV must increment every time a full power cycle-
boot sequence completes. No requirement is made regard-
ing the value of the increment; however, an increment of 1
is preferred to minimize the number of rollover events in a
finite storage location.
• The BOV must only increment on a hard reboot. (It
must not change during a soft reboot.)
• The BOV must be retained during system power-off
state: it must be located in non-volatile storage.
• The BOV must be protected from software tampering
from other elements on the host. Access to the secure co-
processor services is negotiated via software calls. It must
not be possible to use any combination of software calls to
the secure coprocessor to change the BOV.
• The BOV increment operation must be functionally
atomic. The BOV must not be corruptible by power cycles
initiated during the boot sequence, i.e., increment without
a hard boot.
• The secure coprocessor must be able to detect error con-
ditions in the Boot Odometer mechanism. Because the
Boot Odometer mechanism is part of the system boot rou-
tine, errors in its operation can affect system security by
corrupting the boot process. By detecting exceptions, the
secure coprocessor can take appropriate action to ensure

3This is a highly simplified description, the details of which are
elsewhere, e.g., [14].

system confidentiality or integrity.
• The secure coprocessor must be able to respond to error
conditions in the Boot Odometer mechanism. Exception
handling must be well defined and not leave the coprocessor
in an insecure state.
• The secure coprocessor must be able to attest to the value
of the BOV with high integrity.

The Boot Odometer operates as follows. One of the TPM
Platform Configuration Registers (PCR) is used to hold a
Boot Status Indicator (BSI). If the platform has undergone
a hard reboot, power to the TPM will have been inter-
rupted causing its PCRs to initialize to a known value [6].
For simplicity, we assume that the initialization value is all
zeros. A soft reboot will not reset the contents of the PCRs.
During its initialization phase, the TPM inspects the PCR
where it had previously placed the Boot Status Indicator.
If the Indicator appears inside the specified PCR, rather
than the initialization value, then the TPM assumes that
it has undergone a soft reboot and the TPM is disabled.
(Note that this rather Draconian approach is sufficient for
the demonstration of concept of the goals of the security
architecture and will be the focus of refinement in subse-
quent work. For example, instead of disabling the TPM the
BSI could be used to indicate the type of the boot: hard or
soft.) Disabling the TPM does not prevent the host plat-
form from accessing the hardware accelerated encryption
algorithms provided by the TPM [8], it does prevent the
host platform from accessing services that are associated
with TPM protected encryption keys.

In the case of a hard reboot, the TPM first updates the
contents of the specified PCR with the Boot Status Indi-
cator, then it fetches the Boot Odometer Value from non-
volatile TPM storage, increments it, and finally places the
BOV back into the non-volatile storage of the TPM. The
initial value of the Boot Odometer Value is assumed to be
set at the factory, but has no relevance to the correctness
of the BOV algorithm. The non-volatile memory and the
PCR in which the Boot Status Indicator is stored are not
accessible by the host platform CPU. This protects them
against malicious alteration.

A remote entity has two choices when requesting trusted
attestation of a hard reboot. First, the remote entity can
store a previously provided BOV. It can then request the
current BOV. If the current value is larger than the stored
value, then the remote entity can assume that the client
has undergone a hard reboot. Second, it can ask the host
to directly attest to the fact that the current session is the
result of a hard boot. In this case, the client would ask its
TPM, if it is enabled, to return a time-stamped and signed
record that can be sent as evidence to the remote entity;
(see Section III-C, Software, for details). If the session is
the result of a soft boot, such a record cannot be produced.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 32

B. Hardware

The Boot Odometer mechanism is implemented by mak-
ing changes to the initialization firmware within the TPM
[8]. The changes required for the BOV will affect the
TPM Startup function, which executes every time the
TPM goes through an initialization cycle. TPM startup
is well suited for incorporation of the Boot Odometer func-
tionality.

The TPM Startup function call is part of the TPM ini-
tialization phase. At the beginning of every boot cycle,
the TPM undergoes a transition function called TPM Init
which transitions the TPM into its first stage of initial-
ization and behaves identically whether the system under-
went a hard or soft reboot. TPM Init places the TPM in
a state where it waits for an external command to execute
TPM Startup. Platform initialization code must inform
the TPM what type of initialization it is currently undergo-
ing. The TPM Startup function behaves differently based
on one of three flags. The TPM ST CLEAR flag signals
the TPM to reset volatile TPM variables back to their de-
fault values. The TPM ST SAVE flag signals the TPM to
restore volatile variables back to their previously known
values. This occurs when the computer starts from a hi-
bernation related state. The TPM ST DEACTIVATED
flag signals the TPM to enter a deactivated state.[15] Be-
cause we are only interested in the situation were the com-
puter boots into fully operational mode from a power-off
state, only the case were TPM Startup is called with the
TPM ST CLEAR flag is considered.

The TPM Specification requires that all system boots
must first start with a system-wide reset. This includes
physically signaling system components that a system boot
is happening. This requirement prevents the TPM from
being maliciously reset without a platform-wide reset, a
situation that would render the TPM vulnerable to certain
masquerade attacks.[15]

The required actions taken by a Boot Odometer-
enhanced TPM when executing TPM Startup are pre-
sented in Table I in standard TPM specification format.[15]
Steps marked in bold indicate changes made to accommo-
date the Boot Odometer mechanism. As noted, a result
of a hard reboot is that all PCRs are set to known initial
values.

The test for the Boot Status Indicator (BSI) occurs at
step a and before the PCRs are reset (step c). PCR number
8, hereafter abbreviated PCR[8], is used as the container
for the Boot Status Indicator. Because PCR[8] is in volatile
memory, its contents will already have been cleared when
there is a power cycle reboot. The Boot Status Indicator
is an arbitrary, but constant, binary string that is different
from the PCR initial value and is no larger than a PCR. If
PCR[8] equals the Boot Status Indicator, it indicates that
the computer did not undergo a hard reboot, the TPM is
disabled and can not be re-enabled until the computer is

hard rebooted.
Absence of the BSI indicates a hard reboot [16]. 4 Since

the contents of PCR[8] are reset at step c, the Boot Status
Indicator is not re-entered into PCR[8] until step d. At
step e the BOV is incremented to keep track of the number
hard reboots. No count is kept for the number of soft
reboots. The BOV must be stored in TPM non-volatile
storage such that its integrity is assured by the TPM. The
tamper resistance properties of the TPM [6] determine the
integrity of the BOV.

C. Software

If the computer is running in a TPM-enabled state, any
program that has access to the TPM can determine that
the computer session was started with a hard reboot when
it receives a response to TPM key-based function (see Sec-
tion III-A). However, the converse is not true. A TPM
maybe disabled for several reasons. A program cannot as-
sume that a disabled TPM indicates a soft reboot.

To obtain the current BOV, software on the host will
need to query the TPM using a new instruction that re-
turns the current BOV, such that it is cryptographically
signed by the TPM if requested.

To compute the boot status of the client, the remote en-
tity must perform three functions. First, it must be able
to cryptographically validate an attestation response from
a client. Second, it must be able to securely store vali-
dated BOVs. High assurance systems could do this easily,
whereas less trusted systems equipped with TPMs could
utilize the TPM Sealed Storage service. Third, the remote
entity must be able to reliably compare the currently at-
tested BOV with the previously attested BOV.

Servers that retain previously attested client BOVs must
be able to handle BOV rollover events. These will be in-
stantly recognizable since the current BOV will be smaller
than the previously observered BOV. In this situation, the
server must make a decision to either accept or not accept
the new BOV. This decision could be based on whether
or not the wrap-around difference between the previoius
BOV and the current one is greater than some precon-
figured value. For example, if the previous BOV was the
maximum possible BOV value, and the current BOV is 0 or
a small integer, then this could be seen as correct operation
of the client system.

IV. Hardware Prototype

A hardware simulation was generated using Version 3
of SimpleScalar and was based on the SimpleScalar/PISA
target architecture.[17], [18], [19] The PISA target was as-
sumed to be a generic representation of the TPM module

4Earlier versions of the TPM specification did not require initial-
ization of TPM memory to known values. In this case, there is a
possibility of a collision with the BSI. For an n-bit register, the prob-
ability that the BSI would be found in PCR[8] is 2−n.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 33

TABLE I

Actions of Boot Odometer-Enhanced TPM

Steps in boldface type are modifications to the standard TPM specification [15] that permit the Boot Odometer mechanism.

1. If stType = TPM ST CLEAR

(a) Inspect the contents of PCR[8].
i. If the Boot Status Indicator is found, disable the TPM.
(For example, the TPM ST DEACTIVATED flag might be set and
then there might be a jump to the code for stType=TPM ST DEACTIVATED.)

(b) Ensure that sessions associated with resources TPM RT CONTEXT, TPM RT AUTH
and TPM RT TRANS are invalidated.

(c) Reset each PCR value to its default value (reworded from TPM specification for clarity)

(d) Set the contents of PCR[8] to the Boot Status Indicator.

(e) Increment the Boot Odometer Value by 1 by doing the following:
i. Read the current BOV from non-volatile storage
ii. Increment the BOV by 1 using the TPM processor
iii. Write the new BOV back to non-volatile storage

(f) Set the following TPM STCLEAR FLAGS to their default state.
i. Physical Presence
ii. PhysicalPresenceLock
iii. disableForceClear

(g) The TPM MAY initialize auditDigest to NULL
i. If not initialized to NULL the TPM SHALL ensure that auditDigest contains a valid value
ii. If initialization fails the TPM SHALL set auditDigest to NULL and SHALL set the internal

TPM state so that the TPM returns TPM FAILED SELFTEST to all subsequent commands.

(h) The TPM SHALL set TPM STCLEAR FLAGS → deactivated to the same state as
TPM PERMANENT FLAGS → deactivated.

(i) The TPM MUST set the TPM STANY DATA fields as follows:
i. TPM STANY DATA→contextNonceSession is set to NULLS
ii. TPM STANY DATA→contextCount is set to 0
iii. TPM STANY DATA→contextList is set to 0

(j) The TPM MUST set TPM STCLEAR DATA fields as follows:
i. Invalidate contextNonceKey
ii. countID to NULL
iii. bGlobalLock to FALSE

(k) Determine which keys should remain in the TPM

(l) For each key that has a valid preserved value in the TPM
i. if parentPCRStatus is TRUE then call TPM FlushSpecific(keyHandle)
ii. if IsVolatile is TRUE then call TPM FlushSpecifid(keyHandle)

and was assumed to logically simulate the general-purpose
computation carried out within the TPM.

The simulation indicates the feasibility of the TPM en-
hancements to accommodate the Boot Odometer mecha-
nism. A combination of both interactive and scripted test-
ing showed that the mechanism maintained the BOV in
protected store and performed register operations, includ-
ing register rollover, correctly.Because the mechanism is
needed only infrequently, its performance is not critical.
For the prototype, no performance measurements were con-
ducted.

V. Security Analysis

The non-volatile memory and the PCR in which the BSI
and the BOV are located are not accessible by the host
platform CPU. This protects them against malicious alter-
ation.

The order of steps c, d, and e in TPM Startup described
in Section 3 is such that interruption of the start up se-
quence could, at worst, result in a false negative, i.e. in-
dication that the system did not undergo a hard reboot.
However, it is expected that if an external interrupt oc-
curred during this stage, the system would require a hard

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 34

reboot to achieve a known state.
It is not possible to exploit the BOV as a useful covert

channel because the BOV only increments in cases where
the computer is hard rebooted and software in current PC
architectures cannot initiate a hard reboot, i.e., the best
they can do is “shut down”. Manually modulated covert
channels are of no interest since a user-initiated channel is
outside of the scope of the technical security policy. Nev-
ertheless, while the computer could be used to assist the
malicious user in the exfiltration of data, only a single bit
of sensitive information is transmitted per reboot. Assum-
ing a relatively fast boot process of 15 seconds, the channel
rate would be only four bits per minute, which is well below
the threshold for concern [13].

There is no need for the instruction that returns the cur-
rent BOV to be privileged. First, there are no software-
driven covert channels to be exploited in conjunction with
the BOV. Second, the TPM cannot be modified by soft-
ware.

The standard protocols associated with the attestation
process ensure that replay attacks are infeasible [14]. A
malicious client could not “store up” BOVs and at some
point in the future attempt to trick the server into believing
that a hard boot had just occurred.

Because the function calls for accessing the BOV and ini-
tializing the TPM are accessible to untrusted components,
a malicious user might attempt a denial of service attack on
the TPM by flooding it with requests to perform the func-
tion. This is the same for all non-privileged TPM calls. The
Trusted Software Stack (TSS) mitigates such denial of ser-
vice attacks [20]. However, a malicious BIOS could cause
a denial of service by passing the ST DEACTIVATED flag
to the TPM at startup.

VI. Related Work

The problem of object reuse on commodity PCs was in-
vestigated by Agacayak, who identified areas on the plat-
form that could possibly contain residual information fol-
lowing a warm boot [7]. His conclusion that a power cycle
will clear dynamic memory areas (including main memory)
is the basis for using a hard reboot to address the object
reuse problem. Both Agacayak and Turin noted the prob-
lem of ensuring a power cycle reboot from an associated
secure coprocessor [7], [21].

Secure boot processes [10], [11], [9] are based on the fact
that system initialization begins at a specific point in pro-
gram code. The boot process then proceeds in a layered
fashion such that each layer verifies the integrity of the
layer above it before passing control. None of these ap-
proaches attempts to distinguish a hard reboot from a soft
reboot; therefore, none are able to address the object reuse
problem on untrustworthy clients.

Smith utilizes a register with a non-negative value,
termed the trust ratchet, within the secure coprocessor to

keep track of the layer at which it is currently executing.
Each boot layer increments the trust ratchet before pass-
ing control to the next layer [9]. The focus is the integrity
of the system software, not a guarantee that all volatile
memory on the platform has been purged since the previ-
ous session. In addition, the boot processes described in
these other efforts make no use of a long term stored secret
that could be compared to the boot odometer.The BirliX
architecture does not address the distinction between soft
and hard system boots [22], [23]. Among its goals are at-
testation and the use of certificates and stored secrets for
that purpose. Integrity of the bootstrap is listed among its
objectives, but it is silent regarding the distinction between
hard and soft boot [23]. The Aegis system [11] did not em-
ploy a secure coprocessor, but still depended on a trusted
BIOS whose integrity was explicitly trusted. Aegis does
not address object reuse for the platform, but is focused
on the integrity of the operating system. In addition, the
Aegis boot process explicitly permits warm boot.

VII. Discussion and Summary

A TPM-based solution for the platform-level object reuse
problem assumes a larger infrastructure in support of a dis-
tributed TPM architecture, and includes TPM equipped
machines, TPM aware operating systems, and TPM aware
applications. It is believed that the investment in the TPM
by hardware and software manufacturers ensures that ex-
panded support for the TPM is forthcoming.

In addition to the object reuse problem, there are several
other uses for the Boot Odometer Value, if the mechanism
is extended to separately log soft as well as hard reboots.
In a corporate network, policy may dictate that computers
should only be used for work purposes and that no other
software should be installed or used. If some users are
using bootable CDs to boot into other operating systems
and bypass client-enforced policy settings, this could be de-
tected by observing that the soft or hard Boot Odometer
Values have been incremented more than expected between
concurrent attestations, although this is not conclusive ev-
idence that policy has been violated. The BOV could also
be incremented if the system is undergoing reboots because
of a malfunction; however, either situation would warrant
further investigation.

Sometimes it is necessary to ensure that a host has un-
dergone a reboot regardless of its type. For example, fol-
lowing the application of security patches to system soft-
ware, it is often the case that a system must undergo a
reboot. A remote observer who needs to ensure compli-
ance with this procedure could request attestation that a
reboot has occurred.

Managers of large data centers could also use the BOV.
Suppose a data center loses partial power. Machines may
be rebooted, but need some manual intervention to recover
to full operational status. A system administrator could

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 35

request that all remote hosts attest to their current Boot
Odometer Values. Comparison of current and previous
BOVs would allow the system administrator to determine
which machines had lost power and needed further atten-
tion.

A. Summary

We described the design of a hardware-enabled mecha-
nism to sense a hard reboot through the use of a modified
Trusted Platform Module. Analysis has shown the concep-
tual design to be secure because it is understandable, can-
not be bypassed, and cannot by modified. The design can
be considered understandable because of its simplicity. It
included only four new requirements to the TPM Startup
function. The new operations cannot be bypassed because
they are part of TPM function TPM Startup. This func-
tion occurs during every system boot cycle and is specified
in TPM design documents. The added functionality is non-
modifiable because it is protected by the TPM.

Using a full specification of a commercially produced
TPM, further study on the integration of the Boot Odome-
ter concept into a full TPM could be conducted. Foreshad-
owing this work, the extension of the Boot Odometer to
track soft reboots was also described.

Acknowledgment

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. DUE-0114018
and Grant No. CNS-0430566. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References

[1] J. P. Anderson, “Computer security technology planning study,”
Tech. Rep. ESD-TR-73-51, Air Force Electronic Systems Divi-
sion, Hanscom AFB, Bedford, MA, 1972. (Also available as Vol.
I,DITCAD-758206. Vol. II, DITCAD-772806).

[2] National Computer Security Center, “A guide to understanding
object reuse in trusted systems,” Tech. Rep. NCSC TG-018, Na-
tional Computer Security Center, Fort George G. Meade, MD,
1991.

[3] ISO/IEC, “ISO/IEC 15408 - Common Criteria for Information
Technology Security Evaluation.” Version 3.0, July 2005.

[4] C. E. Irvine, T. E. Levin, T. D. Nguyen, D. Shifflett, J. Khos-
alim, P. C. Clark, A. Wong, F. Afinidad, D. Bibighaus, and
J. Sears, “Overview of a High Assurance Architecture for Dis-
tributed Multilevel Security,” in Proceedings of the 2004 IEEE
Systems Man and Cybernetics Information Assurance Work-
shop, (West Point, NY), pp. 38–45, June 2004.

[5] T. D. Nguyen, T. E. Levin, and C. E. Irvine, “MYSEA testbed,”
in Proceedings of the 6th IEEE Systems, Man and Cybernetics
Information Assurance Workshop, (West Point, NY), pp. 438–
439, June 2005.

[6] Trusted Computing Group, “TCG specific implementation spec-
ification, version 1.2,” tech. rep., Trusted Computing Group,
2005.

[7] C. Agacayak, “TCBE control of object reuse in clients,” Master’s
thesis, Naval Postgraduate School, Monterey, CA, March 2000.

[8] Trusted Computing Group, “TCG specification architecture
overview,” Tech. Rep. Rev 1.2, Trusted Computing Group, 28
April 2004.

[9] S. Smith and S. Weingart, “Building a high-performance, pro-
grammable secure coprocessor,” Computer Networks, vol. 31,
pp. 831–860, November 1999.

[10] B. Yee, “Using secure coprocessors,” Tech. Rep. CMU-CS-94-
149, Carnegie Mellon University, Pittsburg, PA, 1994.

[11] W. A. Arbaugh, D. Faber, and J. Smith, “A secure and reliable
bootstrap architecture,” in Proceedings 1997 IEEE Symposium
on Security and Privacy, (Oakland, CA), pp. 65–71, May 1997.

[12] T. D. Nguyen, T. E. Levin, and C. E. Irvine, “Tcx project: High
assurance for secure embedded systems,” in Proceedings of the
11th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, pp. 21–25, March 2005.

[13] Department of Defense Trusted Computer System Evaluation
Criteria. No. DoD 5200.28-STD, National Computer Security
Center, December 1985.

[14] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous at-
testation,” in Proceedings 11th ACM Conference on Computer
and Communications Security, (Washington, DC), pp. 132–145,
ACM Press, October 2004.

[15] Trusted Computing Group, “TPM main, part 3, commands,”
Tech. Rep. Specification Version 1.2, Level 2 Revision 85,
Trusted Computing Group, 13 February 2005.

[16] Atmel engineers, “Private communication,” August 2005.
[17] T. Austin, E. Larson, and D. Ernst, “SimpleSclar: An infrastruc-

ture for computer system modeling,” IEEE Computer, vol. 35,
pp. 59–67, February 2002.

[18] D. Burger and T. Austin, “The SimpleScalar tool set, version
2.0,” Tech. Rep. CS-TR-97-1342, University of Wisconsin, Madi-
son, Wisconsin, 1997.

[19] T. Austin, “Simplescalar 3.0 release.”
http://www.simplescalar.com/docs/ANNOUNCE-3.0d.txt,
October 2003.

[20] M. F. Barret, “Towards an open trusted computing frame-
work,” Master’s thesis, University of Auckland, Auckland, New
Zealand, 2005.

[21] B. Turan, “Client bootstrap under tcbe control,” Master’s thesis,
Naval Postgraduate School, Monterey, CA, March 2000.

[22] H. Hartig, O. Kowalski, and W. Kuhnhauser, “The BirliX secu-
rity architecture,” Journal of Computer Security, vol. 2, no. 1,
pp. 5–21, 1993.

[23] H. Hartig, “Security architectures revisited,” in Proceedings 10th
ACM SIGOPS European Workshop, (Saint-Emilion, France),
September 2002.

ISBN 0-7803-9814-9/$10.00 c©2002 IEEE 36

