
NPS-CS-06-002

| SecureCore Technical Report

Trustworthy Commodity Computation and
Communication

A Time Interval Memory Protection System
Francis B. Afinidad, Cynthia E. Irvine, Thuy D. Nguyen,
and Timothy E. Levin

Time Interval Memory Protection System

 ii

This material is based upon work supported by the National Science Foundation under Grant No.
CNS-0430566 with support from DARPA ATO. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or of DARPA ATO.

Author Affiliations

Naval Postgraduate School:
Francis B. Afinidad, Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen
Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication iii

TABLE OF CONTENTS

ABSTRACT 1

I. INTRODUCTION 1

A. Contribution of this work 2

II. BACKGROUND 2

A. Time Interval Access Control Model 2

B. Protection mechanisms 2
Page and Segment-Level Memory Protection 3
Capabilities 3
Principles for Security Mechanism Implementation 3

III. PRINCIPLE OF EFFICIENT MEDIATED ACCESS 4

IV. PHASES OF MEMORY ACCESS 5

V. TIME INTERVAL MEMORY PROTECTION SYSTEM 5

A. Temporal Authorization Matrix 5

B. Access Control During the Initial Access Phase 7

C. Access Control During the Allowed Access Phase 8

D. Access Control During the Access Termination Phase 9

VI. TIMPS ARCHITECTURE 9
Hardware Reference Clock 10
Virtual Memory Protection Scheme 1 11
Virtual Memory Protection Scheme 2 13
Virtual Memory Protection Scheme 3 14

VII. COMPARISON OF TIMPS VIRTUAL MEMORY PROTECTION SCHEMES 14

VIII. SIM-TIAC SIMULATION RESULTS 15

IX. FUTURE WORK AND SUMMARY 16

A. Summary 16

REFERENCES 17

Time Interval Memory Protection System

 iv

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 1

Abstract
Time is often a critical factor for making decisions regarding access to information. To
manage and protect critical data in this regard implies that information systems need to
enforce temporal security policies. However, we lack operating system and hardware
support for implementing temporal protection mechanisms.
A time interval memory protection architecture to support enforcement of temporal
policies is presented. It implements a Time Interval Access Control model in which
authorizations are determined by time attributes associated with subjects and objects, and
constraints on the relations of those attributes relative to the time of access. The policy is
enforced at the memory page level by kernel mechanisms and related hardware
extensions. The notion of memory access phases and the principle of efficiently mediated
access are articulated to support the analysis of the design. A simulator-based prototype
shows that the architecture is both feasible and practical.

I. Introduction
Time is often a critical factor for making decisions regarding authorization or access to
information. Electronic commerce, multimedia content providers, financial institutions,
digital libraries, and federal/military intelligence agencies all must manage and protect
critical data that may be perishable, valid for a specific period, or where access is limited
by time factors associated with both the data being accessed and the user or process
accessing the data.
Credit cards, identification cards, X.509 certificates, phone cards, library cards, and other
access tokens typically have expiration dates or a period of validity, which can be
considered as time attributes that constrain the use of the access token. The tokens may
be used to access data from sources such as: a) digital libraries, where temporal control
over digital books is required, b) multimedia content providers, where there is a
requirement to control viewing of multimedia content for a limited period, and c)
financial institutions, where control over the time at which financial transactions are
allowed to occur.

Temporal security policies may be based on other time attributes such as duration of
allowed access, time during which data is valid, or time at which access to data is no
longer authorized. Additionally, authorized access may be constrained by temporal
factors such as the time during which a user is allowed to access data, the time during
which the user has a valid authorization to access data, or a time at which a user in no
longer authorized to access data. Thus, the time attribute associated with the user and
that associated with the data are independent access decision variables. The Time Interval
Access Control (TIAC) model [1] permits the specification of temporal policies where
authorization is determined from four conditions—the mode of access, time attributes
associated with subjects and objects, and constraints on the relation of those attributes
with respect to the time of access. However, the low-level software and hardware
protection mechanisms in current systems lack support for temporal attributes and there
are no hardware mechanisms in modern CPU architectures to support management of
accesses, e.g. revocation, based on temporal constraints. Thus, system-wide temporal

 2

security policies would have to be enforced wholly by operating systems or applications.
This adds complexity to policy enforcement, making it difficult to verify whether a
protection system controls access as specified.

A. Contribution of this work

This paper presents a temporal protection architecture, the Time Interval Memory
Protection System (TIMPS), to support enforcement of temporal policies in conjunction
with the existing kernel and hardware access control mechanisms. It includes hardware
support for automatic revocation of access to data after access permissions have expired,
and hardware logic that is able to evaluate time interval access graphs. To provide a clear
and simple conceptual framework for the temporal protection architecture, a new
perspective to access control that views it with respect to time as a sequence of phases
was developed. A functional simulation of our hardware protection architecture
demonstrates its feasibility and practicality.

II. Background
We provide an overview of the Time Interval Access Control Model, followed by a
review of existing hardware support for memory protection and some principles that
guide the design of our architecture. The Principle of Efficient Mediated Access is
introduced.

A. Time Interval Access Control Model

The Time Interval Access Control (TIAC) model [2, 3] provides formal semantics to
express temporal security policies, in which time attributes of subjects and objects are
used to determine authorized accesses. In this model, interval algebra [4] provides the
necessary expressive power to precisely describe a desired temporal policy, and an
efficient way to computationally reason about whether a given access request may be
acceptable within the constraints of that policy. Temporal authorizations are represented
by time attributes associated with both subjects and objects, and a “time interval access
graph” that defines restrictions on the relations of those attributes with respect to the time
of access.
In this model, a subject initiates a request to access an object in a given mode to occur at
a particular time and the request is evaluated against the defined temporal policy.
A key advantage of the TIAC model is that the representation of the temporal policy is
independent from time attributes of subjects and objects upon which specific access
decisions are based.

B. Protection mechanisms

From the mid-1950’s through the early 1960’s, computer hardware protection
mechanisms were developed to help improve the reliability, availability, and correct
operation of time-sharing systems [16, 23, 37, 6, 17, 36, 22, 48]. By the mid-1960’s, the
risk of accidental or deliberate disclosure of private user data or corporate sensitive data
was a concern [9, 18, 53, 27, 54, 55, 29, 56, 51]. Hardware memory protection
mechanisms and memory protection schemes were developed [28, 57, 56, 8, 47, 52].

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 3

Recent memory protection systems have explored: (1) memory protection schemes to
enforce access permissions at either the granularity of individual words [58, 59] or by
creating multiple domains of protection within a task [10], (2) memory protection support
for single address space operating systems that use 64-bit address spaces [14, 38, 15], (3)
memory protection support for fast capability systems [24, 49], (4) multi-protection page
tables [50], and (5) tamper-resistant execute-only memory [41, 40]. However, none of
these mechanisms include support for temporal policies. Basic hardware memory
protection schemes are reviewed next.

Page and Segment-Level Memory Protection
Paged-based virtual memory protection was introduced in the Atlas computer in the late
1950’s through the early 1960’s [23, 37, 36, 39]. Virtual memory was partitioned into
small memory blocks called “pages”. Each page in memory was associated with a page
address register [23, 37].
Paged-based virtual memory protection is commonly enhanced to provide hardware-
based access control. Instead of a single lockout bit associated with each page, additional
permission bits have been added for more granular access control (e.g., read-only, write,
read/write, read/execute, execute only). The metadata for a page is global to the system
and must be managed by the software to provide per-process permissions.

Segmentation was first introduced in the Burroughs 5000 [12]. A per process segment
descriptor is used to check memory accesses against memory bounds and access
permissions. A flag bit is used to distinguish code and data so that hardware would not
inadvertently execute data or alter code. The Intel IA-32 [31] provides protection
mechanisms that can operate at both the segment level and page level, while the
PowerPC [46] and HP PA-RISC 2.0 [33] both use segmentation as a virtual memory
scheme combined with page-level protection.
Other hardware improvements include: 1) the ability to group pages in memory into
separate address protection domains [33, 30, 32], 2) the use of privilege levels as an
additional attribute for determining access permissions [47, 33, 31, 30, 32], and 3) the use
of a protection look-aside buffer (PLB) [38] to accelerate permission checks by caching
permissions in hardware and by separating access checks from address translation.

Capabilities
A capability can be thought of as a token containing access permissions to a unique
object in a computer system. [20] To ensure the integrity of each capability, capabilities
must be protected, e.g, by using a tagged approach or a partition approach.[21]

Capability systems allow processes to propagate or exchange capabilities with other
processes. Once a capability is granted to a process, it can be difficult to revoke that
capability while ensuring that the revocation process does not affect or interfere with
other processes [34, 35, 13].

Principles for Security Mechanism Implementation
There are three essential design requirements for the reference validation mechanism
based upon the ideal of the Reference Monitor Concept [5]: 1) It must be tamperproof,

 4

meaning that the reference validation mechanism cannot be altered, 2) It must always be
invoked, meaning all access to system resources must be mediated, and 3) It must be
small enough to be subject to verification, meaning that it is understandable and to
operate strictly as specified. The goal of the TIMPS architecture is to design a memory
protection system such that all design requirements for the validation mechanism can be
adhered to as closely as possible.

In their survey, Saltzer and Schroeder [46] described design principles applicable to the
implementation of protection mechanisms. Three are applicable to the design of the
TIMPS mechanism: the principle of complete mediation, the principle of least privilege,
and the principle of fail-safe defaults. Although various hardware security mechanisms
have been recommended [6, 17, 48, 9, 18, 19, 25, 43, 7, 26, 44, 45, 52, 42, 60], there has
been no articulation of a principle to guide the choice between a hardware or software
security implementation for a mechanism. To guide our reasoning, we introduce the
Principle of Efficient Mediated Access.

III. Principle of Efficient Mediated Access
Inherent in the development of secure systems is the complexity of understanding the
interaction between software and hardware security mechanisms and how these security
mechanisms are combined to enforce the desired security policies. To address controlled
access to protected resources, three major components have to be considered: 1) the
security policy that specifies access constraints, 2) the software enforcement mechanisms,
and 3) the hardware enforcement mechanisms. Clearly, the different mechanisms must
work in concert to enforce the policy.
Which parts of the enforcement mechanism should be allocated to hardware and which
should be performed by software?
If hardware provided no support to the overall access mediation mechanism, then every
access to a physical resource would require software intervention. This means that the
system would provide a form of emulation for even the simplest primitive instructions,
such as move-byte. This is highly inefficient, but affords considerable design flexibility,
due to the greater malleability of software. Alternatively, for a special-purpose system,
the entire mechanism might be hardwired. An example is an in-line encryptor. This is
highly efficient, but inflexible, since any modification will require new hardware.

To achieve a balance between flexibility and efficiency, the principle of efficient
mediated access [1] is introduced. This principle states that: the access control
mechanism should be allocated to the lowest possible level of the system while still
meeting system flexibility requirements.

If a system is constructed of hierarchical layers, with hardware constituting the lowest
layer, then, when possible, the most efficient choice is to allocate the access mediation
mechanism to the hardware. Hence, the hardware must have the sufficient access
mediation mechanisms to enforce access to hardware resources for a broad range of
policies and architectures. This principle guided the construction of the TIMPS
mechanism.

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 5

IV. Phases of Memory Access
To support enforcement of a temporal policy, a memory protection architecture must mediate all
memory accesses and incorporate time attributes in its decision logic. We define three different
phases of memory access, based on the different functions of the protection architecture. This
insight is key to understanding the coordinated interaction between the kernel and hardware when
controlling memory accesses and helps justify the chosen delineation between software and
hardware protection mechanisms.

The Initial Access Phase is when a subject requests and is granted access to an object for the first
time, or for the first time since the last “termination phase” (see below). This can be seen as a
request to the kernel to instantiate an object into a subject’s virtual address domain, such as a “file
open” operation. Object access is considered ‘established’ when a subject has the mechanical
means to access an object, such as a valid memory descriptor.

Once initial access is established, a subject will be allowed the specified mode of interaction with
an object beginning at the end of the initial access phase and ending at the time that access to the
object is no longer allowed (expiration time). This time interval is the duration of the Allowed
Access Phase and is characterized by the subject’s invocation of operations such as “move-byte.”

The Access Termination Phase starts when access to an object expires or a request to terminate
access to an object has been initiated. This phase ends when the system has removed or
invalidated the memory instance of the object in the subject’s virtual address domain, or has
otherwise performed all system-dependent actions related to termination of a subject’s ability to
interact with the object.

In each of these phases, there is a need for enhancements to the existing memory
protection mechanisms to facilitate enforcement of temporal aspects of the security
policy.

V. Time Interval Memory Protection System
TIMPS supports mediation of all memory accesses during all phases. In the following
discussion, the term kernel refers to the low-level software responsible for resource
allocation and the software portion of protection mechanisms.

A. Temporal Authorization Matrix

TIMPS defines a kernel-based temporal authorization matrix that is indexed by subject and
object, in which each entry consists of a mode (or set of modes) and a phi field, which is a
representation of the TIAC model’s time interval access graph. The function to compute whether
an initial-phase access request is authorized can be implemented in software or hardware. If
implemented in hardware as part of the memory-page translation mechanism, the objects would
be memory pages; if performed by the kernel, the objects would be kernel abstractions such as
memory blocks.

The phi field consists of three subfields to, ts, and so, which specify the allowed relations
between the subject time attribute, the object time attribute, and the requested time of access.
Table 1 describes each subfield and Figure 1 shows its layout.

 6

Phi Field Name Description

to time_to_object
interval relation

This field is a 16-bit field that represents the allowed time-interval
relation(s) between the object and current time of access. The
default value is 0.

ts time_to_subject
interval relation

This field is a 16-bit field that represents the allowed time-interval
relation(s) between the subject and current time of access. The
default value is 0.

so subject_to_object
interval relation

This field is a 16-bit field that represents the allowed time-interval
relation(s) between the subject and object. The default value is 0.

Table 1. Contents of the phi field

Figure 1. Layout of the phi field

Encoding Scheme for the Phi Subfields. The encoding scheme for to, ts, and so are
identical. Each 16-bit subfield is a bitwise representation of the disjunction of possible
interval algebra relations between two intervals (x and y in Table 2).
For example, consider the following temporal constraints, where τ represents a time
interval, and now.τ, o.τ, and s.τ are symbolic representations of the time, object and
subject intervals (respectively) that the constraints will be applied to:

to: DURING(now.τ, o.τ) ∨ STARTS(now.τ, o.τ) ∨ FINISHES(now.τ, o.τ)
ts: DURING(now.τ, s.τ) ∨ FINISHES(now.τ, s.τ)
so: OVERLAPS(s.τ, o.τ) ∨ FINISHED_BY(s.τ, o.τ) ∨ INCLUDES(s.τ, o.τ)

Using Figure 2 and Table 2 the bitwise encoding for to, ts and so are as follows: (Note:
bit positions 13-15 are reserved in this example.)

to = 0000010000010100
ts = 0000010000000100
so = 0000001100000010

Figure 2. Bitwise encoding for to, ts, and so subfields

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 7

Bit Pos Symbol Definition Bit Pos Symbol Definition

0 = EQUALS(x,y) 8 o OVERLAPS(x,y)

1 fi FINISHED_BY(x,y) 9 di INCLUDES(x,y)

2 f FINISHES(x,y) 10 d DURING(x,y)

3 si STARTED_BY(x,y) 11 > AFTER(x,y)

4 s STARTS(x,y) 12 < BEFORE(x,y)

5 mi MET_BY(x,y) 13 -- reserved

6 m MEETS(x,y) 14 -- reserved

7 oi OVERLAPPED_BY(x,y) 15 -- reserved

Table 2. Bit position mapping for time interval relations
Using Figure 1, the phi field becomes
000001000001010000000100000001000000001100000010, which during the authentication
check can be easily compared to a similar encoding of the relations between the actual subject,
object, and time intervals.

B. Access Control During the Initial Access Phase

During the Initial Access Phase, (1) a subject submits an access request to the kernel, (2)
the kernel processes the request by consulting the authorization matrix regarding the
requested mode of access and current time, (3) if authorized, the kernel configures the
hardware to add the object to the subject’s address space for the requested mode, and (4)

 8

returns a handle or other information for the subject to begin to access the memory
location requested. Figure 3 illustrates the steps in the initial access phase.

Figure 3. Logical flow diagram for mediating memory access during the Allowed Access

Phase

C. Access Control During the Allowed Access Phase

During this phase, the hardware enforces the temporal access constraints on every
interaction with the object. These are called “access checks” to distinguish them from the
authorization check of the initial access phase. The TIMPS architecture regulates access
to memory via the virtual memory address translation mechanism.

A subject may try to use an invalid or unauthorized virtual address, or an unauthorized
mode of access. In these cases, the hardware returns a memory access violation. If the
operation is allowed, then a hardware time_check flag associated with the virtual memory
address is checked. If the time_check flag is set (true) then a temporal access check is
performed, otherwise, access to memory is permitted.

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 9

In the temporal access check, the hardware ensures that the expiration time for the
authorization has not passed. The operation faults if the subject is no longer authorized.
Figure 4 shows a logical flow diagram of the Allowed Access Phase.

D. Access Control During the Access Termination Phase

The Access Termination Phase begins when access to a previously permitted virtual
memory address location is no longer allowed by the policy, and continues until the
virtual memory address is invalidated, or the hardware representation of the temporal
policy is changed to once again allow access. The key point is that the addressing
mechanism may allow access during this time, so the temporal mechanism must assure
denial.

Figure 4. Virtual memory translation/protection scheme without temporal protection

mechanisms1

VI. TIMPS Architecture
The TIMPS architecture provides the necessary and sufficient mechanisms for supporting
the temporal access control concepts discussed above. Modern CPUs perform memory
protection checks during the virtual memory translation process as illustrated in Figure 5.
The rights field stores the access mode currently allowed for a particular memory address
location, such as read, write, and execute access. Other fields typically used (not shown)
in memory protection are those that specify privilege levels and “region” level protection
rights. This approach will be used to illustrate the TIMPS architectural extensions.

1 Adapted from Figure 4-2 in Intel Corporation, "IA-64 System Architecture," in Intel IA-64 Architecture
Software Developer's Manual, vol. 2, p. 4-3: Intel Corporation, 2000

 10

 Virtual Memory
Scheme 1

Virtual Memory
Scheme 2

Virtual Memory
Scheme 3

Allocation of
authorization

check

Kernel routine with
respect to kernel
objects

Specialized TIAC
hardware module with
respect to pages

Specialized TIAC
hardware module with
respect to kernel
objects

Initial
access
phase

Allocation of
Expiration

time
algorithm

Kernel routine n/a Either

1) kernel routine or

2) TIAC hardware logic
with expiration module

Allowed
access
phase

Type of
access-
check

mechanism

Simple TLB/page table
extensions

More extensive
TLB/page table
extensions and TIAC
hardware module

Simple TLB/page table
extensions

Table 3. Summary of differences in the virtual memory protection schemes

During the memory address translation process, the TIMPS temporal access check is invoked just
after the access mode permission check (see Figure 4). In this section, three virtual memory
protection schemes for TIMPS are presented. Details of the specific hardware extensions and
software components required to support temporal access control are discussed elsewhere [1].
Table 3 summarizes the major differences of the three schemes.

Hardware Reference Clock
TIMPS requires a hardware reference clock that can be used to determine the time of
access during an access check. The clock must be able to provide absolute or relative
time in the same units used for the temporal authorizations, and must be able to represent
time in two ways: 1) a unit interval and 2) a point.

For example, if the clock has a 1 second resolution and the current time (tnow) is 4:10:00,
then in absolute time:

• unit time interval = [tnow, tnow + 1) = [4:10:00, 4:10:01)
• point in time = tnow = 4:10:00

If the temporal authorizations are based on relative time, the output of the reference
clock, for the above example where 4:10 is the time, would be:

• unit time interval = [tnow, tnow + 1) = [0, 1)
• point in time = tnow = 0

In the schemes discussed below, the kernel uses the unit time interval format [tnow, tnow +
1), shorthand notation for which is [tnow-, tnow+).

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 11

Virtual Memory Protection Scheme 1
Virtual memory protection scheme 1 is intended to have a minimal amount of hardware
support. In this scheme, the TIMPS architecture extends traditional TLB/Page-Table
entry structures by adding two protection fields: 1) ex (expiration time), and 2) tc
(time_check flag). See Table 4. The ex and tc fields are stored in the Page-Table entry
structure so that temporal protection information can be preserved when the TLB cache is
flushed or when a TLB entry is invalidated. The bit-length of the ex field is the same
format and length used by the time reference clock. Additional CPU instructions are
needed to allow the kernel to configure the ex and tc fields when an access request is
granted during the Initial Access phase. These instructions must be privileged and
executable only by the kernel to ensure that the fields are not modified or bypassed by
less privileged subjects.

During the authorization check, the kernel computes the expiration time based on the
constraints of the temporal authorization matrix. The expiration time represents the time
at which access is no longer allowed and is stored by the kernel in the ex field of the
appropriate TLB/Page-Table entry. Details regarding expiration time computation are
described in the TIAC model [3].

TLB/Page-Table

Entry Field Name Description

ex expires
The time value (unsigned) used to determine whether access has
expired. This field is only used if the tc bit is set to 1. Its default value is
0.

tc time_check
flag

A 1-bit field that indicates whether temporal access checks are enabled
for a specific TLB entry. The default value for this field is 1.

Table 4. TLB/page-table protection fields for virtual memory scheme 1

The kernel sets the tc field of the appropriate TLB/Page-Table entry when allocating
memory during the Initial Access phase. The tc field can serve either of two purposes:
1) to indicate whether a temporal access check is required for a particular page in
memory or 2) to indicate that the time interval during which access is allowed is infinite.
The tc field is set to ‘1’ to enable temporal access checks for a particular TLB/Page-Table
entry. Where access to a memory location has no temporal constraints or access is
allowed for an infinite amount of time, the tc field is set to ‘0’.

Once the kernel has allocated memory and configured the ex and tc fields, the hardware
controls access during the Allowed Access Phase (see Figure 6). If a temporal access
check is required, the current value of the time reference clock (current time of access)
and the expiration field ex associated with the memory page being accessed are compared
to determine whether access is allowed:

if (tnow < texpires) = true then
access is allowed

else
access is revoked

where :

 12

tnow is the current time of access (derived from the reference clock)
 texpires is the expiration time stored in the ex field

Figure 6. Conceptual virtual memory protection scheme 1

When the current value of the reference clock is greater than or equal to the value stored
in the ex field, the hardware raises a fault to the kernel to indicate an access violation. As
long as the ex field is not modified, any future attempts to access that particular memory
location will be denied. The kernel is responsible for invalidating the TLB entry where
the violation had occurred and performing the appropriate steps to modify or delete the
corresponding page table entries as necessary.

TLB/Page-
Table Entry

Field
Name Description

t- t-minus

This field is the closed end-point of the half-open interval [t-, t+) used to
represent the time attribute associated with the TLB/Page-Table entry.
The bit-length of this field is implementation-dependent but must be the
same bit-length as t+ and the bit-length used by the time reference
clock. Its default value is 0

t+ t-plus

This field is the open end-point of the half-open interval [t-, t+) used to
represent the time attribute associated with the TLB/Page-Table entry.
The bit-length of this field is implementation-dependent but must be the
same bit-length as t- and the bit-length used by the time reference clock.
Its default value is 0.

Phi phi

This field is used to store the encoded access graph that represents the
temporal access constraints between the current process’s time attribute
[pt-, pt+), the TLB/Page-Table entry’s time attribute [t-, t+), and time of
access. This field is 48-bits in length and contains three subfields to, ts,
and so that are 16-bits each. These fields are described in detail later.
Default value is 0

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 13

Tc time_check
flag

This is a 1-bit field indicates whether temporal access checks are
enabled for a TLB entry. When this bit field is set to 1, temporal access
checks for the TLB entry are enabled. When this bit field is set to 0, no
temporal access checks are required for this TLB entry. This could
mean that no temporal constraints apply to this memory location or that
access to this memory location is allowed for an infinite duration. Its
default value is 1.

Table 5. TLB/page-table protection fields for virtual memory scheme 2

Virtual Memory Protection Scheme 2
In virtual memory protection scheme 2 a TIAC hardware module relieves kernel software
of the burden of computing the temporal portion of the authorization check and the
expiration time during the Initial Access phase. In this scheme, the traditional TLB/Page-
Table entry structures are extended with fields to represent the page’s temporal attributes
as well as the related authorizations (See Table 5 and the phi field in Section 5.1). The
hardware context of the process is extended to include its temporal attributes (p- and p+).
The temporal access check is performed by hardware during address translation, e.g.,
implemented as part of the arithmetic logic unit or as a separate hardware chip.

This approach was found to be inefficient during analysis due to the larger hardware table
requirements, and will not be discussed in detail.

Figure 7. Virtual memory protection scheme 3

 14

Virtual Memory Protection Scheme 3
Virtual memory protection scheme 3 is a hybrid of schemes 1 and 2. As depicted in
Figure 7, the TLB/Page-Table entry structure and access check performed during the
allowed access phase are the same as in scheme 1.

The Initial Access phase is similar to scheme 2. If the kernel determines that the temporal
authorization matrix allows the requested mode, it uses the TIAC hardware module to
check the request against the temporal constraints. If the request is authorized, the kernel
computes the expiration time, using the TIAC hardware module if the expiration function
is included there, and configures the ex and tc protection fields for the virtual memory
object.

VII. Comparison of TIMPS Virtual Memory Protection
Schemes
Each virtual memory protection scheme described earlier uses a different combination of
temporal protection mechanisms to control access during each of its access control
phases. Each scheme supports three main functions: 1) evaluation of the time interval
access graph φ, 2) computation of the expiration time, and 3) hardware mediation of
every access to virtual memory. A comparative analysis of performance and memory
usage was conducted for the three TIMPS virtual memory protection schemes [1].
As shown in Table 6, scheme 2 is the most efficient mechanism during the Initial Access
Phase when compared to scheme 1 and scheme 3 with the TIAC expiration module.
However, the bulk of memory accesses in most usage scenarios are during the Allowed
Access Phase, so the performance advantage this provides is negligible. In Table 7, it is
shown that schemes 1 and 3 perform better than scheme 2 during the Allowed Access
Phase. It is important to note that performance (i.e., latency) during the Allowed Access
Phase weighs heavily in determining the efficiency of mediated access. Another
drawback for using Scheme 2 is that it requires more space in the TLB (see Table 8).

Virtual Memory Protection Scheme Temporal
Protection
Functions Scheme 1 Scheme 2 Scheme 3

Evaluation of the
time interval access
graph φ

access_allowed()

(1750 ns)

TIAC hardware
logic

(20.820 ns)

TIAC hardware logic

(20.82 ns)

Computation of
expiration time

compute_expires()

(1000 ns)
Not required

compute_expires()

(1000 ns)

TIAC hardware
expiration
module

(36.926 ns)

Total Delay 2750 ns 20.820 ns 1020.82 ns 57.746 ns

Table 6. Comparison of the total latency (delay) of the temporal protection mechanisms
used during the Initial Access Phase

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 15

Virtual Memory Protection Scheme Temporal Protection
Function Scheme 1 Scheme 2 Scheme 3

Evaluation of every memory
access during Allowed
Access Phase and Access
Termination Phase

Temporal Access
Check Hardware

Logic
TIAC Hardware Logic Temporal Access Check

Hardware Logic

Total Delay 10.215 ns 20.820 ns 10.215 ns

Table 7. Comparison of the total latency (delay) of the temporal protection mechanisms
used during the Allowed Access Phase and Access Termination Phase

Virtual Memory Protection Scheme TLB/Page-Table
Temporal Protection

Fields Scheme 1 Scheme 2 Scheme 3

ex 32 bits n/a 32 bits

tc 1 bit 1 bit 1 bit

t- n/a 32 bits n/a

t+ n/a 32 bits n/a

phi n/a 48 bits n/a

Total Number of Bits 33 bits 113 bits 33 bits

Table 8. Comparison of the number of additional bits required in a TLB/Page Table Entry
for each virtual memory protection scheme

Virtual memory protection scheme 1 is recommended for systems where there will be
relatively few authorization checks versus access checks (e.g., personal desktop
computer, laptop, or PDA). Virtual memory protection scheme 3 (with TIAC expiration
module) is recommended for systems where a high number of initial access requests (e.g.,
web-server or database-server) is expected.

VIII. Sim-tiac Simulation Results
The SimpleScalar framework [11] is a software tool that simulates a hardware processing
environment through the use of various emulators. A new simulator called sim-tiac was
developed for SimpleScalar to demonstrate the concept of time interval access control.
Sim-tiac implements the TIMPS virtual memory protection scheme 1, and provides an
environment for testing various supporting mechanisms.

 16

The page-table entry structure defined in SimpleScalar’s original baseline memory
module (memory.h) was extended to include the following temporal protection fields: 1)
ex (expires) field and 2) rights field that includes tc (time check), r (read), w (write), and
x (execute) bits. To ensure that all virtual memory accesses are mediated in sim-tiac’s
simulation environment, a new direct memory access interface for use by the host
operating system was developed as the tiac_mem_access() function, and other direct
memory access functions were disabled.
A series of tests was conducted to verify the TIMPS architecture concept and the
operation of sim-tiac. For each test, a user program accessed memory locations within its
simulated virtual memory address space. The tests exercised the protection mechanisms
of each memory access phase (i.e. Initial Access Phase, Allowed Access Phase, and
Access Termination Phase).

The test results showed that the TIMPS architecture concept can efficiently and
effectively enforce temporal security policies. We conclude that hardware protection
mechanisms can support a feasible solution to temporal access control.

IX. Future work and summary
Several areas related to TIMPS are still being investigated. In the context of the TIAC
mode, work is needed to determine how to maintain temporal authorizations, e.g.,
creation and deletion of subjects, objects, and temporal authorization entries, as well as
the implication of tranquility of temporal attributes associated with subjects and objects.
The semantics of the TIAC model can be generalized so that it could specify an access
request that uses a different reference time other than current time, which would allow
the model to check for previous, current, and future authorizations. The model can also
be extended to support the specification of event-based security policies and tools can be
developed for creating and checking temporal security policies expressed using the TIAC
model semantics.
Although a simulation of TIMPS was developed, it would be useful to prototype the CPU
extensions in hardware. This could include development of efficient designs for
accessing the time reference clock for every temporal access check and for minimizing
the overhead of temporal access checks. One approach to the latter would be to perform
them concurrently with instruction execution, provided the result in an exception before
the completion of the memory cycle. This concept was demonstrated in the Mondrian
Memory Protection system [59]. Use of a Protection Lookaside Buffer [PLB] [38] might
also be considered.
TIMPS opens up many possibilities in the development of hardware and kernel software
for support temporal protection mechanisms. At the operating system level, it remains to
be determined how current file systems could be extended to support association of time
attributes (protection labels) to files.

A. Summary

The Time Interval Memory Protection System (TIMPS) architectural concept was
developed to support enforcement of temporal security policies specified using the TIAC
model. TIMPS protection mechanisms support temporal access control at the kernel

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 17

software and hardware level to provide efficient mediated access. The TIMPS approach
to analyzing temporal protection mechanisms for each memory access phase supports a
clear articulation of the interaction between the kernel and hardware temporal protection
mechanisms to ensure complete mediation.

References
[1] F. B. Afinidad, An Interval Algebra-Based Temporal Access Control Protection

Architecture, Ph.D. Dissertation, Naval Postgraduate School, Monterey, California, June
2000.

[2] F. B. Afinidad, T. E. Levin, T., C. E. Irvine, and T. D. Nguyen, “Foundataion for a Time
Interval Access Control Model”, Mathematical Methods, Models, and Architectures for
Computer Networks Security, MMM-ACNS 2005, St. Petersburg, Russia, Septebmer 24-
28, 2005, Proceedings, Lecture Notes in Computer Science, ed. V. Gorodetsky, I. Kotenko,
and V. Skormin, Springer-Verlag GmbH, Vol. 2685, pp 406-411, St. Petersburg, Russia,
Septebmer 24-28, 2005.

[3] F.B. Afinidad, T. E. Levin, C. E. Irvine, and T. D. Nguyen, A Model for Temporal Interval
Authorizations, Hawaii International Conference on System Sciences, Software Technology
Track, Information Security Education and Foundational Research, Kauai, Hawaii, January
2006, to appear.

[4] J. F. Allen, "Maintaining Knowledge About Temporal Intervals," Communications of the
ACM, vol. 26, no. 11, pp. 832-843, November 1983.

[5] J. P. Anderson, "Computer Security Technology Planning Study," Electronic Systems
Division, Air Force Systems Command, Bedford, Massachusetts, Technical Report ESD-
TR-73-51, Vol. II, October 1972.

[6] J. P. Anderson, S. Hoffman, A., J. Shifman, and R. J. Williams, "D825 - A Multiple-
Computer System for Command & Control," in Proceedings of the Fall Joint Computer
Conference, 1962, pp. 86-96.

[7] C. G. Bell, "Fundamentals of Time Shared Computers," Computer Design, vol. 7, nos. 2
and 3, pp. 44-59 and pp. 38-46, February and March 1968.

[8] A. Bensoussan and C. T. Clingen, "The Multics Virtual Memory: Concepts and Design,"
Communications of the ACM, vol. 15, no. 5, pp. 308-318, May 1972.

[9] H. W. Bingham, "Security Techniques for EDP of Multilevel Classified Information,"
Rome Air Development Center, Griffis Air Force Base, New York, Technical Report
RADC-TR-65-415, December 1965.

[10] C. Bryce and M. Gilles, "Matching Micro-Kernels to Modern Applications using Fine-
Grained Memory Protection," in Proceedings of the 7th IEEE Symposium on Parallel and
Distributed Processing, October 25-28, 1995, pp. 272-279.

[11] D. Burger and T. M. Austin, "The SimpleScalar Tool Set Version 2.0," University of
Wisconsin-Madison, Computer Sciences Department, Technical Report, June 1997.

[12] Burroughs Corporation, "The Descriptor - A Definition of the B5000 Information
Processing System,"
http://www.cs.virginia.edu/brochure/images/manuals/b5000/descrip/descrip.html, 1961,
Last accessed: June 2005.

 18

[13] N. P. Carter, S. W. Keckler, and W. J. Dally, "Hardware Support for Fast Capability-based
Addressing," in Proceedings of the 6th International Conference on Architectural Support
for Programming Languages and Operating Systems, October 5-7, 1994, pp. 319-327.

[14] J. S. Chase, H. M. Levy, M. Baker-Harvey, and E. D. Lazowska, "How to Use a 64-Bit
Virtual Address Space," Department of Computer Science and Engineering, University of
Washington, Technical Report 92-03-02, March 1992.

[15] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, "Sharing and Protection in a
Single-Address-Space Operating System," ACM Transactions on Computer Systems, vol.
12, no. 4, pp. 271-307, November 1994.

[16] J. Cocke and H. G. Kolsky, "The Virtual Memory in the STRETCH Computer," in
Proceedings of the Eastern Joint Computer Conference, December 1-3, 1959, pp. 82-93.

[17] F. J. Corbató, M. Merwin-Dagget, and R. C. Daley, "An Experimental Time-Sharing
System," in Proceedings of the Spring Joint Computer Conference, May 1-3, 1962, pp.
335-344.

[18] F. J. Corbató and V. A. Vyssotsky, "Introduction and Overview of the Multics System," in
Proceedings of the Fall Joint Computer Conference, November 30, 1965, pp. 185-196.

[19] J. B. Dennis, "Segmentation and the Design of Multiprogrammed Computer Systems,"
Journal of the Association for Computing Machinery, vol. 12, no. 4, pp. 589-602, October
1965.

[20] J. B. Dennis and E. C. Van Horn, "Programming Semantics For Multiprogrammed
Computations," Communications of the ACM, vol. 9, no. 3, March 1966.

[21] R. S. Fabry, "Capability-Based Addressing," Communications of the ACM, vol. 17, no. 7,
pp. 403-412, July 1974.

[22] P. Fagg, J. L. Brown, J. A. Hipp, and D. T. Doody, "IBM System/360 Engineering," in
Proceedings of the Fall Joint Computer Conference, 1964, pp. 205-231.

[23] J. Fotheringham, "Dynamic Storage Allocation in the Atlas Computer, Including an
Automatic Use of a Backing Store," Communications of the ACM, vol. 4(10), October
1961.

[24] K. Ghose and P. Vasek, "A Fast Capability Extension to a RISC Architecture," in
Proceedings of the 22nd EUROMICRO Conference, September 2-5, 1996, pp. 606-613.

[25] E. L. Glaser, J. F. Couleur, and G. A. Oliver, "System Design of a Computer for Time
Sharing Applications," in Proceedings of the Fall Joint Computer Conference, 1965, pp.
197-202.

[26] G. S. Graham and P. J. Denning, "Protection---Principles and Practice," in Proceedings of
the Spring Joint Computer Conference, May 16-18, 1972, pp. 417-429.

[27] R. M. Graham, "Protection in an Information Processing Utility," presented at ACM
Symposium on Operating System Principles, Gatlinburg, Tennessee, 1967.

[28] T. F. J. Hatch and J. B. Geyer, "Hardware/Software Interaction on the Honeywell Model
8200," in Proceedings of the Fall Joint Computer Conference, December 9-11, 1968, pp.
891-901.

[29] L. J. Hoffman, "Computer and Privacy: A Survey," ACM Computing Surveys, vol. 1, no. 2,
pp. 85-103, June 1969.

 Time Interval Memory Protection System

 Trustworthy Commodity Computation and Communication 19

[30] IBM Corporation, PowerPC Microprocessor Family: The Programming Environments for
32-Bit Microprocessors, 2000.

[31] Intel Corporation, "System Programming Guide," in Intel Architecture Software
Developer's Manual, vol. 3, 1997.

[32] Intel Corporation, "IA-64 System Architecture," in Intel IA-64 Architecture Software
Developer's Manual, vol. 2: Intel Corporation, 2000.

[33] G. Kane, PA-RISC 2.0 Architecture. Upper Saddle River, NJ: Prentice Hall PTR, 1996.

[34] P. A. Karger, "Improving Security Performance for Capability Systems," PhD Dissertation,
University of Cambridge, Cambridge, England, 1988.

[35] P. A. Karger, "New Methods for Immediate Revocation," in Proceedings of the IEEE
Symposium on Security and Privacy, May 1-3, 1989, pp. 48-55.

[36] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner, "One-level Storage
System," IRE Transactions on Electronics and Computers, vol. 2, pp. 223-235, April 1962.

[37] T. Kilburn and R. B. Payne, "The Atlas Supervisor," in Proceedings of the Eastern Joint
Computer Conference, December 12-14, 1961, pp. 279-294.

[38] E. J. Koldinger, J. S. Chase, and S. J. Eggers, "Architectural Support for Single Address
Space Operating Systems," Department of Computer Science and Engineering, University
of Washington, Seattle, Washington, Technical Report 92-03-10, July 1992.

[39] S. H. Lavington, "The Manchester Mark I and Atlas: A Historical Perspective,"
Communications of the ACM, vol. 21(no. 1), pp. 4-12, January 1978.

[40] D. Lie, C. A. Thekkath, and M. Horowitz, "Implementing an Untrusted Operating System
on Trusted Hardware," in Proceedings of the 19th ACM Symposium on Operating Systems
Principles, October 19-22, 2003, pp. 178-192.

[41] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz,
"Architectural Support for Copy and Tamper Resistant Software," in Proceedings of the 9th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2000, pp. 168-177.

[42] E. J. McCauley and P. J. Drongowski, "KSOS---The Design of a Secure Operating
System," in Proceedings of the National Computer Conference, June 4-7, 1979, pp. 345-
353.

[43] B. Peters, "Security Considerations in a Multi-programmed Computer System," in
Proceedings of the Spring Joint Computer Conference, April 18-20, 1967, pp. 283-286.

[44] G. J. Popek and C. S. Kline, "Verifiable Secure Operating System Software," in
Proceedings of the National Computer Conference and Exposition, May 6-10, 1974, pp.
145-151.

[45] J. H. Saltzer, "Protection and the Control of Information Sharing in Multics,"
Communications of the ACM, vol. 17, no. 7, pp. 388-402, July 1974.

[46] J. H. Saltzer and M. D. Schroeder, "The Protection of Information in Computer Systems,"
in Proceedings of the IEEE, vol. 63, no. 9, September, 1975, pp. 1278-1308.

[47] M. D. Schroeder and J. H. Saltzer, "A Hardware for Implementing Protection Rings,"
Communications of the ACM, vol. 15, no. 3, pp. 157-179, March 1972.

 20

[48] J. I. Schwartz, E. G. Coffman, and C. Weissman, "A General-Purpose Time-Sharing
System," in Proceedings of the Spring Joint Computer Conference, 1964, pp. 397-411.

[49] J. S. Shapiro, J. M. Smith, and D. J. Farber, "EROS: A Fast Capability System," Operating
Systems Review, vol. 34(5), pp. 170-185, December 1999.

[50] T. Shinagawa, K. Kono, and T. Masuda, "Fine-grained Protection Domain Based on
Segmentation Mechanism," in Proceedings of the Japan Society for Software Science and
Technology, 2003 Workshop on Systems for Programming and Applications, March 20-22,
2000.

[51] G. E. Short, "Threats and Vulnerabilities in a Computer System," in Data Security and Data
Processing, vol. 5, Study Results: TRW Systems, Inc.: IBM Corporation, Technical
Publications - Systems, Department, 1974.

[52] F. M. Stepczyk, "Requirements for Secure Operating Systems," in Data Security and Data
Processing, vol. 5, Study Results: TRW Systems, Inc.: IBM Corporation, Technical
Publications - Systems, Department, 1974.

[53] V. A. Vyssotsky, F. J. Corbató, and R. M. Graham, "Structure of the Multics Supervisor,"
in Proceedings of the Fall Joint Computer Conference, 1965, pp. 203-212.

[54] W. H. Ware, "Security and Privacy in Computer Systems," in Proceedings of the Spring
Joint Computer Conference, April 18-12, 1967, pp. 279-282.

[55] W. H. Ware, "Security and Privacy: Similarity and Differences," in Proceedings of the
Spring Joint Computer Conference, April 18-20, 1967, pp. 287-290.

[56] W. H. Ware, "Security Controls for Computer Systems (U): Report of Defense Science
Board Task Force on Computer Security," The RAND Corporation, Santa Monica, CA,
February 1970.

[57] C. Weissman, "Security Controls in the ADEPT-50 Time-Sharing System," in Proceedings
of the Fall Joint Computer Conference, November 18-20, 1969, pp. 119-133.

[58] E. Witchel, J. Cates, and K. Asanovic, "Mondrian Memory Protection," in Proceedings of
the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems, October 5-9, 2002, pp. 304-316.

[59] E. J. Witchel, "Mondriaan Memory Protection," PhD Dissertation, Massachusetts Institute
of Technology, 2004.

[60] W. D. Young, "Verifiable Computer Security and Hardware: Issues," Computational Logic
Inc., Austin, Texas, Technical Report 70, September 1991.

