
NPS-CS-06-002 

 

 

 

 

 

 

 
 

 
| SecureCore Technical Report 

Trustworthy Commodity Computation and 
Communication

 

 

 

 

 

 

A Time Interval Memory Protection System 
Francis B. Afinidad, Cynthia E. Irvine, Thuy D. Nguyen,  
and Timothy E. Levin 
 
 
 



Time Interval Memory Protection System 

 ii 

 
 

 

 

 

 
 

This material is based upon work supported by the National Science Foundation under Grant No. 
CNS-0430566 with support from DARPA ATO. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation or of DARPA ATO. 

 
 

 

Author Affiliations 
 

Naval Postgraduate School:  
Francis B. Afinidad, Cynthia E. Irvine, Timothy E. Levin, Thuy D. Nguyen 
Center for Information Systems Security Studies and Research 
Computer Science Department 
Naval Postgraduate School 
Monterey, California  93943 
 

 



  Time Interval Memory Protection System 

     Trustworthy Commodity Computation and Communication iii 

TABLE OF CONTENTS 

ABSTRACT 1 

I. INTRODUCTION 1 

A. Contribution of this work 2 

II. BACKGROUND 2 

A. Time Interval Access Control Model 2 

B. Protection mechanisms 2 
Page and Segment-Level Memory Protection 3 
Capabilities 3 
Principles for  Security Mechanism Implementation 3 

III. PRINCIPLE OF EFFICIENT MEDIATED ACCESS 4 

IV. PHASES OF MEMORY ACCESS 5 

V. TIME INTERVAL MEMORY PROTECTION SYSTEM 5 

A. Temporal Authorization Matrix 5 

B. Access Control During the Initial Access Phase 7 

C. Access Control During the Allowed Access Phase 8 

D. Access Control During the Access Termination Phase 9 

VI. TIMPS ARCHITECTURE 9 
Hardware Reference Clock 10 
Virtual Memory Protection Scheme 1 11 
Virtual Memory Protection Scheme  2 13 
Virtual Memory Protection Scheme 3 14 

VII. COMPARISON OF TIMPS VIRTUAL MEMORY PROTECTION SCHEMES 14 

VIII. SIM-TIAC SIMULATION RESULTS 15 

IX. FUTURE WORK AND SUMMARY 16 

A. Summary 16 

REFERENCES 17 



Time Interval Memory Protection System 

 iv 

 
 

 
 

 
 

 
 

 
 

 

 



  Time Interval Memory Protection System 

     Trustworthy Commodity Computation and Communication 1 

Abstract 
Time is often a critical factor for making decisions regarding access to information.  To 
manage and protect critical data in this regard implies that information systems need to 
enforce temporal security policies. However, we lack operating system and hardware 
support for implementing temporal protection mechanisms. 
A time interval memory protection architecture to support enforcement of temporal 
policies is presented.  It implements a Time Interval Access Control model in which 
authorizations are determined by time attributes associated with subjects and objects, and 
constraints on the relations of those attributes relative to the time of access. The policy is 
enforced at the memory page level by kernel mechanisms and related hardware 
extensions. The notion of memory access phases and the principle of efficiently mediated 
access are articulated to support the analysis of the design. A simulator-based prototype 
shows that the architecture is both feasible and practical. 

I. Introduction 
Time is often a critical factor for making decisions regarding authorization or access to 
information. Electronic commerce, multimedia content providers, financial institutions, 
digital libraries, and federal/military intelligence agencies all must manage and protect 
critical data that may be perishable, valid for a specific period, or where access is limited 
by time factors associated with both the data being accessed and the user or process 
accessing the data. 
Credit cards, identification cards, X.509 certificates, phone cards, library cards, and other 
access tokens typically have expiration dates or a period of validity, which can be 
considered as time attributes that constrain the use of the access token.  The tokens may 
be used to access data from sources such as: a) digital libraries, where temporal control 
over digital books is required, b) multimedia content providers, where there is a 
requirement to control viewing of multimedia content for a limited period, and c) 
financial institutions, where control over the time at which financial transactions are 
allowed to occur. 

Temporal security policies may be based on other time attributes such as duration of 
allowed access, time during which data is valid, or time at which access to data is no 
longer authorized.  Additionally, authorized access may be constrained by temporal 
factors such as the time during which a user is allowed to access data, the time during 
which the user has a valid authorization to access data, or a time at which a user in no 
longer authorized to access data.  Thus, the time attribute associated with the user and 
that associated with the data are independent access decision variables. The Time Interval 
Access Control (TIAC) model [1] permits the specification of temporal policies where 
authorization is determined from four conditions—the mode of access, time attributes 
associated with subjects and objects, and constraints on the relation of those attributes 
with respect to the time of access. However, the low-level software and hardware 
protection mechanisms in current systems lack support for temporal attributes and there 
are no hardware mechanisms in modern CPU architectures to support management of 
accesses, e.g. revocation, based on temporal constraints.  Thus, system-wide temporal 



 

 2 

security policies would have to be enforced wholly by operating systems or applications.  
This adds complexity to policy enforcement, making it difficult to verify whether a 
protection system controls access as specified. 

A. Contribution of this work 

This paper presents a temporal protection architecture, the Time Interval Memory 
Protection System (TIMPS), to support enforcement of temporal policies in conjunction 
with the existing kernel and hardware access control mechanisms. It includes hardware 
support for automatic revocation of access to data after access permissions have expired, 
and hardware logic that is able to evaluate time interval access graphs. To provide a clear 
and simple conceptual framework for the temporal protection architecture, a new 
perspective to access control that views it with respect to time as a sequence of phases 
was developed.  A functional simulation of our hardware protection architecture 
demonstrates its feasibility and practicality. 

II. Background 
We provide an overview of the Time Interval Access Control Model, followed by a 
review of existing hardware support for memory protection and some principles that 
guide the design of our architecture. The Principle of Efficient Mediated Access is 
introduced. 

A. Time Interval Access Control Model 

The Time Interval Access Control (TIAC) model [2, 3] provides formal semantics to 
express temporal security policies, in which time attributes of subjects and objects are 
used to determine authorized accesses.  In this model, interval algebra [4] provides the 
necessary expressive power to precisely describe a desired temporal policy, and an 
efficient way to computationally reason about whether a given access request may be 
acceptable within the constraints of that policy. Temporal authorizations are represented 
by time attributes associated with both subjects and objects, and a “time interval access 
graph” that defines restrictions on the relations of those attributes with respect to the time 
of access. 
In this model, a subject initiates a request to access an object in a given mode to occur at 
a particular time and the request is evaluated against the defined temporal policy.  
A key advantage of the TIAC model is that the representation of the temporal policy is 
independent from time attributes of subjects and objects upon which specific access 
decisions are based. 

B. Protection mechanisms 

From the mid-1950’s through the early 1960’s, computer hardware protection 
mechanisms were developed to help improve the reliability, availability, and correct 
operation of time-sharing systems [16, 23, 37, 6, 17, 36, 22, 48]. By the mid-1960’s, the 
risk of accidental or deliberate disclosure of private user data or corporate sensitive data 
was a concern [9, 18, 53, 27, 54, 55, 29, 56, 51].  Hardware memory protection 
mechanisms and memory protection schemes were developed [28, 57, 56, 8, 47, 52].  
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Recent memory protection systems have explored: (1) memory protection schemes to 
enforce access permissions at either the granularity of individual words [58, 59] or by 
creating multiple domains of protection within a task [10], (2) memory protection support 
for single address space operating systems that use 64-bit address spaces  [14, 38, 15], (3) 
memory protection support for fast capability systems [24, 49], (4) multi-protection page 
tables [50], and (5) tamper-resistant execute-only memory [41, 40].  However, none of 
these mechanisms include support for temporal policies. Basic hardware memory 
protection schemes are reviewed next. 

Page and Segment-Level Memory Protection 
Paged-based virtual memory protection was introduced in the Atlas computer in the late 
1950’s through the early 1960’s [23, 37, 36, 39].  Virtual memory was partitioned into 
small memory blocks called “pages”.  Each page in memory was associated with a page 
address register [23, 37]. 
Paged-based virtual memory protection is commonly enhanced to provide hardware-
based access control.  Instead of a single lockout bit associated with each page, additional 
permission bits have been added for more granular access control (e.g., read-only, write, 
read/write, read/execute, execute only).  The metadata for a page is global to the system 
and must be managed by the software to provide per-process permissions. 

Segmentation was first introduced in the Burroughs 5000 [12]. A per process segment 
descriptor is used to check memory accesses against memory bounds and access 
permissions.  A flag bit is used to distinguish code and data so that hardware would not 
inadvertently execute data or alter code.  The Intel IA-32 [31] provides protection 
mechanisms that can operate at both the segment level and page level, while the 
PowerPC [46] and HP PA-RISC 2.0 [33] both use segmentation as a virtual memory 
scheme combined with page-level protection.  
Other hardware improvements include: 1) the ability to group pages in memory into 
separate address protection domains [33, 30, 32], 2) the use of privilege levels as an 
additional attribute for determining access permissions [47, 33, 31, 30, 32], and 3) the use 
of a protection look-aside buffer (PLB) [38] to accelerate permission checks by caching 
permissions in hardware and by separating access checks from address translation. 

Capabilities 
A capability can be thought of as a token containing access permissions to a unique 
object in a computer system. [20] To ensure the integrity of each capability, capabilities 
must be protected, e.g, by using a tagged approach or a partition approach.[21]  

Capability systems allow processes to propagate or exchange capabilities with other 
processes. Once a capability is granted to a process, it can be difficult to revoke that 
capability while ensuring that the revocation process does not affect or interfere with 
other processes [34, 35, 13]. 

Principles for Security Mechanism Implementation 
There are three essential design requirements for the reference validation mechanism 
based upon the ideal of the Reference Monitor Concept [5]: 1) It must be tamperproof, 
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meaning that the reference validation mechanism cannot be altered, 2) It must always be 
invoked, meaning all access to system resources must be mediated, and 3) It must be 
small enough to be subject to verification, meaning that it is understandable and to 
operate strictly as specified. The goal of the TIMPS architecture is to design a memory 
protection system such that all design requirements for the validation mechanism can be 
adhered to as closely as possible. 

In their survey, Saltzer and Schroeder [46] described design principles applicable to the 
implementation of protection mechanisms.  Three are applicable to the design of the 
TIMPS mechanism: the principle of complete mediation, the principle of least privilege, 
and the principle of fail-safe defaults. Although various hardware security mechanisms 
have been recommended [6, 17, 48, 9, 18, 19, 25, 43, 7, 26, 44, 45, 52, 42, 60], there has 
been no articulation of a principle to guide the choice between a hardware or software 
security implementation for a mechanism.  To guide our reasoning, we introduce the 
Principle of Efficient Mediated Access. 

III. Principle of Efficient Mediated Access 
Inherent in the development of secure systems is the complexity of understanding the 
interaction between software and hardware security mechanisms and how these security 
mechanisms are combined to enforce the desired security policies.  To address controlled 
access to protected resources, three major components have to be considered: 1) the 
security policy that specifies access constraints, 2) the software enforcement mechanisms, 
and 3) the hardware enforcement mechanisms. Clearly, the different mechanisms must 
work in concert to enforce the policy. 
Which parts of the enforcement mechanism should be allocated to hardware and which 
should be performed by software? 
If hardware provided no support to the overall access mediation mechanism, then every 
access to a physical resource would require software intervention.  This means that the 
system would provide a form of emulation for even the simplest primitive instructions, 
such as move-byte.  This is highly inefficient, but affords considerable design flexibility, 
due to the greater malleability of software. Alternatively, for a special-purpose system, 
the entire mechanism might be hardwired. An example is an in-line encryptor.  This is 
highly efficient, but inflexible, since any modification will require new hardware. 

To achieve a balance between flexibility and efficiency, the principle of efficient 
mediated access [1] is introduced.  This principle states that: the access control 
mechanism should be allocated to the lowest possible level of the system while still 
meeting system flexibility requirements. 

If a system is constructed of hierarchical layers, with hardware constituting the lowest 
layer, then, when possible, the most efficient choice is to allocate the access mediation 
mechanism to the hardware.  Hence, the hardware must have the sufficient access 
mediation mechanisms to enforce access to hardware resources for a broad range of 
policies and architectures. This principle guided the construction of the TIMPS 
mechanism. 
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IV. Phases of Memory Access 
To support enforcement of a temporal policy, a memory protection architecture must mediate all 
memory accesses and incorporate time attributes in its decision logic. We define three different 
phases of memory access, based on the different functions of the protection architecture. This 
insight is key to understanding the coordinated interaction between the kernel and hardware when 
controlling memory accesses and helps justify the chosen delineation between software and 
hardware protection mechanisms. 

The Initial Access Phase is when a subject requests and is granted access to an object for the first 
time, or for the first time since the last “termination phase” (see below).  This can be seen as a 
request to the kernel to instantiate an object into a subject’s virtual address domain, such as a “file 
open” operation.  Object access is considered ‘established’ when a subject has the mechanical 
means to access an object, such as a valid memory descriptor. 

Once initial access is established, a subject will be allowed the specified mode of interaction with 
an object beginning at the end of the initial access phase and ending at the time that access to the 
object is no longer allowed (expiration time).  This time interval is the duration of the Allowed 
Access Phase and is characterized by the subject’s invocation of operations such as “move-byte.” 

The Access Termination Phase starts when access to an object expires or a request to terminate 
access to an object has been initiated.  This phase ends when the system has removed or 
invalidated the memory instance of the object in the subject’s virtual address domain, or has 
otherwise performed all system-dependent actions related to termination of a subject’s ability to 
interact with the object. 

In each of these phases, there is a need for enhancements to the existing memory 
protection mechanisms to facilitate enforcement of temporal aspects of the security 
policy. 

V. Time Interval Memory Protection System 
TIMPS supports mediation of all memory accesses during all phases. In the following 
discussion, the term kernel refers to the low-level software responsible for resource 
allocation and the software portion of protection mechanisms. 

A. Temporal Authorization Matrix 

TIMPS defines a kernel-based temporal authorization matrix that is indexed by subject and 
object, in which each entry consists of a mode (or set of modes) and a phi field, which is a 
representation of the TIAC model’s time interval access graph. The function to compute whether 
an initial-phase access request is authorized can be implemented in software or hardware. If 
implemented in hardware as part of the memory-page translation mechanism, the objects would 
be memory pages; if performed by the kernel, the objects would be kernel abstractions such as 
memory blocks.  

The phi field consists of three subfields to, ts, and so, which specify the allowed relations 
between the subject time attribute, the object time attribute, and the requested time of access.  
Table 1 describes each subfield and Figure 1 shows its layout. 
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Phi Field Name Description 

to time_to_object 
interval relation 

This field is a 16-bit field that represents the allowed time-interval 
relation(s) between the object and current time of access.  The 
default value is 0. 

ts time_to_subject 
interval relation 

This field is a 16-bit field that represents the allowed time-interval 
relation(s) between the subject and current time of access.  The 
default value is 0. 

so subject_to_object 
interval relation 

This field is a 16-bit field that represents the allowed time-interval 
relation(s) between the subject and object. The default value is 0. 

Table 1.   Contents of the phi field 

 

 
Figure 1.  Layout of the phi field 

 

Encoding Scheme for the Phi Subfields. The encoding scheme for to, ts, and so are 
identical.  Each 16-bit subfield is a bitwise representation of the disjunction of possible 
interval algebra relations between two intervals (x and y in Table 2).   
For example, consider the following temporal constraints, where τ represents a time 
interval, and now.τ, o.τ, and s.τ are symbolic representations of the time, object and 
subject intervals (respectively) that the constraints will be applied to: 

to: DURING(now.τ, o.τ) ∨ STARTS(now.τ, o.τ) ∨ FINISHES(now.τ, o.τ) 
ts: DURING(now.τ, s.τ) ∨ FINISHES(now.τ, s.τ) 
so: OVERLAPS(s.τ, o.τ) ∨ FINISHED_BY(s.τ, o.τ) ∨ INCLUDES(s.τ, o.τ) 

Using Figure 2 and Table 2 the bitwise encoding for to, ts and so are as follows: (Note: 
bit positions 13-15 are reserved in this example.) 

to  =  0000010000010100  
ts  =   0000010000000100  
so  =  0000001100000010  
 

 
Figure 2.  Bitwise encoding for to, ts, and so subfields 
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Bit Pos Symbol Definition  Bit Pos Symbol Definition 

0 = EQUALS(x,y)  8 o OVERLAPS(x,y) 

1 fi FINISHED_BY(x,y)  9 di INCLUDES(x,y) 

2 f FINISHES(x,y)  10 d DURING(x,y) 

3 si STARTED_BY(x,y)  11 > AFTER(x,y) 

4 s STARTS(x,y)  12 < BEFORE(x,y) 

5 mi MET_BY(x,y)  13 -- reserved 

6 m MEETS(x,y)  14 -- reserved 

7 oi OVERLAPPED_BY(x,y)  15 -- reserved 

Table 2.  Bit position mapping for time interval relations 
Using Figure 1, the phi field becomes 
000001000001010000000100000001000000001100000010, which during the authentication 
check can be easily compared to a similar encoding of the  relations between the actual subject, 
object, and time intervals. 

 

 

B. Access Control During the Initial Access Phase 

During the Initial Access Phase, (1) a subject submits an access request to the kernel, (2) 
the kernel processes the request by consulting the authorization matrix regarding the 
requested mode of access and current time, (3) if authorized, the kernel configures the 
hardware to add the object to the subject’s address space for the requested mode, and (4) 
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returns a handle or other information for the subject to begin to access the memory 
location requested.  Figure 3 illustrates the steps in the initial access phase.   
 

 
Figure 3. Logical flow diagram for mediating memory access during the Allowed Access 

Phase 

C. Access Control During the Allowed Access Phase 

During this phase, the hardware enforces the temporal access constraints on every 
interaction with the object. These are called “access checks” to distinguish them from the 
authorization check of the initial access phase. The TIMPS architecture regulates access 
to memory via the virtual memory address translation mechanism. 

A subject may try to use an invalid or unauthorized virtual address, or an unauthorized 
mode of access. In these cases, the hardware returns a memory access violation. If the 
operation is allowed, then a hardware time_check flag associated with the virtual memory 
address is checked.  If the time_check flag is set (true) then a temporal access check is 
performed, otherwise, access to memory is permitted. 
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In the temporal access check, the hardware ensures that the expiration time for the 
authorization has not passed. The operation faults if the subject is no longer authorized.  
Figure 4 shows a logical flow diagram of the Allowed Access Phase. 

D. Access Control During the Access Termination Phase 

The Access Termination Phase begins when access to a previously permitted virtual 
memory address location is no longer allowed by the policy, and continues until the 
virtual memory address is invalidated, or the hardware representation of the temporal 
policy is changed to once again allow access. The key point is that the addressing 
mechanism may allow access during this time, so the temporal mechanism must assure 
denial. 

 
Figure 4.  Virtual memory translation/protection scheme without temporal protection 

mechanisms1 

VI. TIMPS Architecture 
The TIMPS architecture provides the necessary and sufficient mechanisms for supporting 
the temporal access control concepts discussed above.  Modern CPUs perform memory 
protection checks during the virtual memory translation process as illustrated in Figure 5.  
The rights field stores the access mode currently allowed for a particular memory address 
location, such as read, write, and execute access.  Other fields typically used (not shown) 
in memory protection are those that specify privilege levels and “region” level protection 
rights. This approach will be used to illustrate the TIMPS architectural extensions.  

 
 

 
 

                                                
1 Adapted from Figure 4-2 in Intel Corporation, "IA-64 System Architecture," in Intel IA-64 Architecture 
Software Developer's Manual, vol. 2, p. 4-3: Intel Corporation, 2000 
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  Virtual Memory 
Scheme 1 

Virtual Memory 
Scheme 2 

Virtual Memory 
Scheme 3  

Allocation of 
authorization 

check  

Kernel routine with 
respect to kernel 
objects 

 

 

Specialized TIAC 
hardware module with 
respect to pages  

 

Specialized TIAC 
hardware module with 
respect to kernel 
objects 

Initial 
access 
phase 

Allocation of 
Expiration 

time 
algorithm 

Kernel routine n/a Either  

1) kernel routine or 

2) TIAC hardware logic 
with expiration module 

Allowed 
access 
phase 

Type of 
access-
check 

mechanism 

Simple TLB/page table 
extensions  

More extensive 
TLB/page table 
extensions and TIAC 
hardware module    

Simple TLB/page table 
extensions  

Table 3. Summary of differences in the virtual memory protection schemes 

During the memory address translation process, the TIMPS temporal access check is invoked just 
after the access mode permission check (see Figure 4).  In this section, three virtual memory 
protection schemes for TIMPS are presented. Details of the specific hardware extensions and 
software components required to support temporal access control are discussed elsewhere [1]. 
Table 3 summarizes the major differences of the three schemes. 

Hardware Reference Clock 
TIMPS requires a hardware reference clock that can be used to determine the time of 
access during an access check.  The clock must be able to provide absolute or relative 
time in the same units used for the temporal authorizations, and must be able to represent 
time in two ways: 1) a unit interval and 2) a point. 

For example, if the clock has a 1 second resolution and the current time (tnow) is 4:10:00, 
then in absolute time: 

• unit time interval = [tnow, tnow + 1) = [4:10:00, 4:10:01) 
• point in time = tnow = 4:10:00 

If the temporal authorizations are based on relative time, the output of the reference 
clock, for the above example where 4:10 is the time, would be: 

• unit time interval = [tnow, tnow + 1) = [0, 1) 
• point in time = tnow = 0 

In the schemes discussed below, the kernel uses the unit time interval format [tnow, tnow + 
1), shorthand notation for which is [tnow-, tnow+). 
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Virtual Memory Protection Scheme 1 
Virtual memory protection scheme 1 is intended to have a minimal amount of  hardware 
support. In this scheme, the TIMPS architecture extends traditional TLB/Page-Table 
entry structures by adding two protection fields: 1) ex (expiration time), and 2) tc 
(time_check flag).  See Table 4. The ex and tc fields are stored in the Page-Table entry 
structure so that temporal protection information can be preserved when the TLB cache is 
flushed or when a TLB entry is invalidated.  The bit-length of the ex field is the same 
format and length used by the time reference clock.  Additional CPU instructions are 
needed to allow the kernel to configure the ex and tc fields when an access request is 
granted during the Initial Access phase.  These instructions must be privileged and 
executable only by the kernel to ensure that the fields are not modified or bypassed by 
less privileged subjects. 

During the authorization check, the kernel computes the expiration time based on the 
constraints of the temporal authorization matrix.  The expiration time represents the time 
at which access is no longer allowed and is stored by the kernel in the ex field of the 
appropriate TLB/Page-Table entry.  Details regarding expiration time computation are 
described in the TIAC model [3]. 

 
TLB/Page-Table 

Entry Field Name Description 

ex expires 
The time value (unsigned) used to determine whether access has 
expired. This field is only used if the tc bit is set to 1.  Its default value is 
0. 

tc time_check 
flag 

A 1-bit field that indicates whether temporal access checks are enabled 
for a specific TLB entry. The default value for this field is 1. 

Table 4.  TLB/page-table protection fields for virtual memory scheme 1 

The kernel sets the tc field of the appropriate TLB/Page-Table entry when allocating 
memory during the Initial Access phase.  The tc field can serve either of two purposes:  
1) to indicate whether a temporal access check is required for a particular page in 
memory or 2) to indicate that the time interval during which access is allowed is infinite.  
The tc field is set to ‘1’ to enable temporal access checks for a particular TLB/Page-Table 
entry.  Where access to a memory location has no temporal constraints or access is 
allowed for an infinite amount of time, the tc field is set to ‘0’. 

Once the kernel has allocated memory and configured the ex and tc fields, the hardware 
controls access during the Allowed Access Phase (see Figure 6).  If a temporal access 
check is required, the current value of the time reference clock (current time of access) 
and the expiration field ex associated with the memory page being accessed are compared 
to determine whether access is allowed: 

if (tnow < texpires) = true then 
access is allowed 

else 
access is revoked 

where : 
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tnow     is the current time of access (derived from the reference clock) 
       texpires   is the expiration time stored in the ex field 

 

 
Figure 6.  Conceptual virtual memory protection scheme 1 

 

When the current value of the reference clock is greater than or equal to the value stored 
in the ex field, the hardware raises a fault to the kernel to indicate an access violation. As 
long as the ex field is not modified, any future attempts to access that particular memory 
location will be denied.  The kernel is responsible for invalidating the TLB entry where 
the violation had occurred and performing the appropriate steps to modify or delete the 
corresponding page table entries as necessary. 

 
TLB/Page-
Table Entry 

Field 
Name Description 

t- t-minus 

This field is the closed end-point of the half-open interval [t-, t+) used to 
represent the time attribute associated with the TLB/Page-Table entry.  
The bit-length of this field is implementation-dependent but must be the 
same bit-length as t+ and the bit-length used by the time reference 
clock.  Its default value is 0 

t+ t-plus 

This field is the open end-point of the half-open interval [t-, t+) used to 
represent the time attribute associated with the TLB/Page-Table entry.  
The bit-length of this field is implementation-dependent but must be the 
same bit-length as t- and the bit-length used by the time reference clock.  
Its default value is 0. 

Phi phi 

This field is used to store the encoded access graph that represents the 
temporal access constraints between the current process’s time attribute 
[pt-, pt+), the TLB/Page-Table entry’s time attribute [t-, t+), and time of 
access.  This field is 48-bits in length and contains three subfields to, ts, 
and so that are 16-bits each.  These fields are described in detail later.  
Default value is 0 
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Tc time_check 
flag 

This is a 1-bit field indicates whether temporal access checks are 
enabled for a TLB entry.  When this bit field is set to 1, temporal access 
checks for the TLB entry are enabled.  When this bit field is set to 0, no 
temporal access checks are required for this TLB entry.  This could 
mean that no temporal constraints apply to this memory location or that 
access to this memory location is allowed for an infinite duration.  Its 
default value is 1. 

Table 5. TLB/page-table protection fields for virtual memory scheme 2 

Virtual Memory Protection Scheme  2 
In virtual memory protection scheme 2 a TIAC hardware module relieves kernel software 
of the burden of computing the temporal portion of the authorization check and the 
expiration time during the Initial Access phase. In this scheme, the traditional TLB/Page-
Table entry structures are extended with fields to represent the page’s temporal attributes 
as well as the related authorizations (See Table 5 and the phi field in Section 5.1). The 
hardware context of the process is extended to include its temporal attributes (p- and p+).  
The temporal access check is performed by hardware during address translation, e.g., 
implemented as part of the arithmetic logic unit or as a separate hardware chip.  

This approach was found to be inefficient during analysis due to the larger hardware table 
requirements, and will not be discussed in detail. 

 
Figure 7.  Virtual memory protection scheme  3 
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Virtual Memory Protection Scheme 3 
Virtual memory protection scheme 3 is a hybrid of schemes 1 and 2.  As depicted in 
Figure 7, the TLB/Page-Table entry structure and access check performed during the 
allowed access phase are the same as in scheme 1. 

The Initial Access phase is similar to scheme 2. If the kernel determines that the temporal 
authorization matrix allows the requested mode, it uses the TIAC hardware module to 
check the request against the temporal constraints. If the request is authorized, the kernel 
computes the expiration time, using the TIAC hardware module if the expiration function 
is included there, and configures the ex and tc protection fields for the virtual memory 
object. 

VII. Comparison of TIMPS Virtual Memory Protection 
Schemes 
Each virtual memory protection scheme described earlier uses a different combination of 
temporal protection mechanisms to control access during each of its access control 
phases.  Each scheme supports three main functions: 1) evaluation of the time interval 
access graph φ, 2) computation of the expiration time, and 3) hardware mediation of 
every access to virtual memory.  A comparative analysis of performance and memory 
usage was conducted for the three TIMPS virtual memory protection schemes [1].   
As shown in Table 6, scheme 2 is the most efficient mechanism during the Initial Access 
Phase when compared to scheme 1 and scheme 3 with the TIAC expiration module.  
However, the bulk of memory accesses in most usage scenarios are during the Allowed 
Access Phase, so the performance advantage this provides is negligible.  In Table 7, it is 
shown that schemes 1 and 3 perform better than scheme 2 during the Allowed Access 
Phase.  It is important to note that performance (i.e., latency) during the Allowed Access 
Phase weighs heavily in determining the efficiency of mediated access.  Another 
drawback for using Scheme 2 is that it requires more space in the TLB (see Table 8). 

 

Virtual Memory Protection Scheme Temporal 
Protection 
Functions Scheme 1 Scheme 2 Scheme 3 

Evaluation of the 
time interval access 
graph φ  

access_allowed() 

(1750 ns) 

TIAC hardware 
logic 

(20.820 ns) 

TIAC hardware logic 

(20.82 ns) 

Computation of 
expiration time 

compute_expires() 

(1000 ns) 
Not required 

compute_expires() 

(1000 ns) 

TIAC hardware 
expiration 
module 

(36.926 ns) 

Total Delay 2750 ns 20.820 ns 1020.82 ns 57.746 ns 

Table 6. Comparison of the total latency (delay) of the temporal protection mechanisms 
used during the Initial Access Phase 
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Virtual Memory Protection Scheme Temporal Protection 
Function Scheme 1 Scheme 2 Scheme 3 

Evaluation of every memory 
access during Allowed 
Access Phase and Access 
Termination Phase 

Temporal Access 
Check Hardware 

Logic 
TIAC Hardware Logic Temporal Access Check 

Hardware Logic 

Total Delay 10.215 ns 20.820 ns 10.215 ns 

Table 7. Comparison of the total latency (delay) of the temporal protection mechanisms 
used during the Allowed Access Phase and Access Termination Phase 

 

Virtual Memory Protection Scheme TLB/Page-Table 
Temporal Protection 

Fields Scheme 1 Scheme 2 Scheme 3 

ex 32 bits n/a 32 bits 

tc 1 bit 1 bit 1 bit 

t- n/a 32 bits n/a 

t+ n/a 32 bits n/a 

phi n/a 48 bits n/a 

Total Number of Bits 33 bits 113 bits 33 bits 

Table 8.  Comparison of the number of additional bits required in a TLB/Page Table Entry 
for each virtual memory protection scheme 

 

Virtual memory protection scheme 1 is recommended for systems where there will be 
relatively few authorization checks versus access checks (e.g., personal desktop 
computer, laptop, or PDA).  Virtual memory protection scheme 3 (with TIAC expiration 
module) is recommended for systems where a high number of initial access requests (e.g., 
web-server or database-server) is expected. 

VIII. Sim-tiac Simulation Results 
The SimpleScalar framework [11] is a software tool that simulates a hardware processing 
environment through the use of various emulators. A new simulator called sim-tiac was 
developed for SimpleScalar to demonstrate the concept of time interval access control.  
Sim-tiac implements the TIMPS virtual memory protection scheme 1, and provides an 
environment for testing various supporting mechanisms. 
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The page-table entry structure defined in SimpleScalar’s original baseline memory 
module (memory.h) was extended to include the following temporal protection fields: 1) 
ex (expires) field and 2) rights field that includes tc (time check), r (read), w (write), and 
x (execute) bits. To ensure that all virtual memory accesses are mediated in sim-tiac’s 
simulation environment, a new direct memory access interface for use by the host 
operating system was developed as the tiac_mem_access() function, and other direct 
memory access functions were disabled. 
A series of tests was conducted to verify the TIMPS architecture concept and the 
operation of sim-tiac. For each test, a user program accessed memory locations within its 
simulated virtual memory address space.  The tests exercised the protection mechanisms 
of each memory access phase (i.e. Initial Access Phase, Allowed Access Phase, and 
Access Termination Phase). 

The test results showed that the TIMPS architecture concept can efficiently and 
effectively enforce temporal security policies.  We conclude that hardware protection 
mechanisms can support a feasible solution to temporal access control. 

IX. Future work and summary 
Several areas related to TIMPS are still being investigated. In the context of the TIAC 
mode, work is needed to determine how to maintain temporal authorizations, e.g., 
creation and deletion of subjects, objects, and temporal authorization entries, as well as 
the implication of tranquility of temporal attributes associated with subjects and objects. 
The semantics of the TIAC model can be generalized so that it could specify an access 
request that uses a different reference time other than current time, which would allow 
the model to check for previous, current, and future authorizations. The model can also 
be extended to support the specification of event-based security policies and tools can be 
developed for creating and checking temporal security policies expressed using the TIAC 
model semantics. 
Although a simulation of TIMPS was developed, it would be useful to prototype the CPU 
extensions in hardware.  This could include development of efficient designs for 
accessing the time reference clock for every temporal access check and for minimizing 
the overhead of temporal access checks.  One approach to the latter would be to perform 
them concurrently with instruction execution, provided the result in an exception before 
the completion of the memory cycle.  This concept was demonstrated in the Mondrian 
Memory Protection system [59]. Use of a Protection Lookaside Buffer [PLB] [38] might 
also be considered. 
TIMPS opens up many possibilities in the development of hardware and kernel software 
for support temporal protection mechanisms.  At the operating system level, it remains to 
be determined how current file systems could be extended to support association of time 
attributes (protection labels) to files. 

A. Summary 

The Time Interval Memory Protection System (TIMPS) architectural concept was 
developed to support enforcement of temporal security policies specified using the TIAC 
model.  TIMPS protection mechanisms support temporal access control at the kernel 
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software and hardware level to provide efficient mediated access. The TIMPS approach 
to analyzing temporal protection mechanisms for each memory access phase supports a 
clear articulation of the interaction between the kernel and hardware temporal protection 
mechanisms to ensure complete mediation.  
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