
IPsec Modulation for Quality of Security Service

Evdoxia Spyropoulou Chris Agar Timothy Levin Cynthia Irvine
Naval Postgraduate School

{espyropo, cdagar, levin, irvine}@nps.navy.mil

Abstract

This paper discusses the modulation of
security services in response to changes in
network conditions or as a result of modified
user or application security requirements.
First, the notion of security variability and
how security can be treated as a dimension
of Quality of Service in distributed systems
is described. We discuss how security
choices presented to users or applications
and limits on these choices can be defined
and managed through dynamic network
policies. A costing framework for managing
resource utilization costs due to variant
security is presented. And finally, we
provide an analysis of how a specific
security mechanism can be modulated to
provide differing levels of security service in
harmony with Quality of Security Service
requests and we describe our proof of
concept demonstration for such modulation
with respect to IPsec.

1. Introduction

Quality of Service (QoS) mechanisms
can be beneficial to both the user and the
overall distributed system. QoS users benefit
by having reliable access to services. The
distributed system whose resources are QoS
managed benefits by having more
predictable resource utilization and, where
supported, more efficient resource
allocation. We have previously examined
how reliability, predictability and efficiency
can be enhanced by including security as a
real part of QoS, transforming security from
an inflexible performance obstacle into a

constructive management tool. We have
termed the effects of this inclusion, "Quality
of Security Service" (QoSS) [10]. The
motivation for the work described here is to
examine specific methods for managing
variability of security services, including
choices offered to users, resource cost
calculation, and modulation of underlying
security mechanisms.

Security variability has been discussed in
earlier work. Variable packet authentication
rates have been discussed with respect to the
management of system performance [17]. A
Quality of Protection parameter, which
manages the level of protection provided to
a message communication stream by an
underlying security mechanism, is presented
in the GSS-API specification [15]. In our
work we are trying to provide a more
general framework, applicable to a wide
range of policy, processing and networking
contexts, as well as diverse security services.
We have presented a preliminary security
service taxonomy defining the range of
security services a QoS mechanism may
need to manage [8]. We have also addressed
the issues of user interaction with this wide
range of security services, and resource cost
calculation for variant security [9][18].

For security to be a real part of QoS,
security choices must be presented to users.
This paper discusses how the limits on these
choices can be defined, how we can relate
those limits to security policies that can
change dynamically, and what the impact of
these choices is on resource costs.

Furthermore, for provision of QoSS, the
QoS mechanism must be able to modulate
related variables to provide predictable
security service levels to the users. IPsec is a
security mechanism that offers choices for
the characteristics of the security services it
provides. A trust management system [1][2]
can be used in conjunction with the IPsec
mechanism to provide policy management
for protected traffic in security endpoints
[3]. In this paper we present how a QoSS
system could be built to utilize a trust
management system to store and resolve
security range relationships for IPsec and
provide variant security according to user
QoSS selections.

The remainder of this paper is organized
as follows: we give an overview of our ideas
for Quality of Security Service in Section 2.
Section 3 discusses further the issue of
variability in security services and how
notions such as network operational modes
and security level choices can be addressed.
This section also includes a discussion about
our framework for calculating the resource
costs due to variant security. In Section 4 we
illustrate how IPsec can be modulated to
respond to QoSS requests and a summary
follows in Section 5.

2. Quality of Security Service
Background

Quality of Service refers to the ability of
a distributed system to provide network and
computation services in a way that each
user's expectations for timeliness and
performance quality are met. Various
dimensions of QoS, like accuracy, precision
and performance have been described
[4][20]. If a Quality of Service dimension is
supported, then a user can request a level of
service for one or more attributes of this
dimension and the underlying QoS control
mechanism is capable of entering into
agreement to deliver those services at the
requested levels.

Users present to the QoS mechanism
service level requests, which can be hard
and soft requirements [19]. A hard
requirement involves fixed service levels
that the QoS mechanism must deliver. Soft
requirements on the other hand can be seen
as describing a range of acceptable service, a
variable that the QoS mechanism can
manipulate, in order to satisfy the set of
current users. The QoS mechanism can offer
choices to the user only for aspects of the
system over which it controls, and is willing
to provide, a range of service (the users
would then formulate their hard or soft
requests in response to these choices).

Historically, security has been handled
rather statically and indirectly compared to
traditional QoS attributes (e.g. jitter,
deadline, latency). The QoS mechanism
could be more effective if variable levels of
security services and requirements can be
presented to the users or network tasks,
providing security choices within acceptable
ranges. These ranges result in additional
parameters that the underlying system can
modulate to successfully meet overall user
and system demands.

We use the term Quality of Security
Service (QoSS) to refer to the use of security
as a quality of service dimension. We have
developed a theory of QoSS and a related
security-costing framework that supports
extension of QoS functionality to embrace
existing and emerging security technologies
[10][18]. Our goals have been to leverage
existing security mechanisms to improve
system performance, while maintaining, if
not increasing the security of the distributed
system.

Variability in security requirements is
fundamental to QoSS, and has two distinct
characteristics. Variability in user and
application security requirements allows the
underlying control system to be more
adaptable in responding to requests for

resources, and variability in system a n d
resource security requirements allows the
distributed system, e.g., through QoS
middleware, to offer security choices to
users or applications. The availability of
user security choices along with support for
management of security resources in
response to user requests enables QoSS.

Several existing mechanisms and policies
allow for security variance. Many of the so-
called fixed requirements can be seen to
actually define only minimums, allowing for
a range of solutions. Some examples of
security service attributes that provide
ranges are the choice of cryptographic
algorithm, number of rounds or key length,
assurance level or strength of boundary
control in a remote environment, or even the
capability level of the environment’s
security administrators.

An example of usage of security ranges
could be an environment that offers the user
choices of log-on authentication technology.
A user may log on with a password, a one-
time password (crypto challenge-response),
a public key smart card, a biometric, or
some combination of these. In such an
environment the user could be granted
greater access to resources if he uses higher-
assurance authentication [11]. Another
example is an intrusion detection system
(IDS) which can be run within an effectivity
range rather than at a fixed level. There
would be a minimal level of IDS processing
below which the system would not be
allowed to fall, but the IDS would be
balanced against performance requirements
of the organization's tasks. Thus the IDS
might perform with deeper histories when
the system is lightly loaded than during peak
hours.

QoS can be seen as the modulation of
resources to deliver requested services to
users, which depends on the control and
variability of resources. Similarly, QoSS

involves the modulation of security
resources, and depends on the control and
variability of those security resources. In a
typical distributed system, the security
restrictions and requirements confronted by
a user emanate from many layers,
components and services. How can QoS or
resource management middleware make
sense out of this apparent chaos in
attempting to manage the system efficiently?
Our approach involves several abstractions:
the first is to view all security restrictions as
service attributes. The second is to view all
security restrictions as a range that defines a
set of partially ordered possibilities, where
some values are “more secure” than others.
Of course, in some cases the range maybe
unitary or degenerate, in which case it
represents no choice and the related service
can be used in only one way.

To understand how these ranges can be
used in a layered distributed architecture,
consider how a request for execution of a
task is passed between different layers, and
security services are provided in response to
these requests. As this task sequence is
processed, there are both choices and limits
regarding each security restriction or
requirement. A choice is the security range
request passed to the next layer. A limit
defines which requests from previous layers
are acceptable. In the end, if the task is
realized by the system, meaning that the
various choices and limits have been
successfully resolved, the user’s
expectations for QoSS will have been met.
Additionally, the QoS middleware will have
had additional latitude, by way of variant
security requirements, in fulfilling user and
system-wide goals, thereby potentially
increasing the availability, predictability,
and efficiency of the system.

3. Managing Variability and Costs
of Security Services

In this section we will describe briefly
our QoSS costing framework that
incorporates the ideas of variant security
services [18].

A task on the network is presented with
various security services: this means that
during its execution it may utilize certain
security services. A security service is a
high-level abstract resource providing
securi ty funct ional i ty such as:
authentication, auditing, privacy, integrity,
intrusion detection, non-repudiation and
traffic flow confidentiality. A security
service typically consumes other low level
system resources, such as CPU, memory,
disk, network bandwidth, and may be
implemented by one or more security
mechanisms.

Each security service may embody
security requirements regarding its use,
imposed by the network security policy.
This body of rules for resolving network
security issues can be decomposed typically
into functional requirements. These
requirements might be the typical MAC and
DAC requirements, or other security
constraints, e.g.: encryption available 9pm to
5am, available encryption algorithms, and
required key lengths. As we described in the
previous section, we view all security
requirements as defining a range of
permissible behavior. So every task is
associated with a vector of security
requirements related to the security services
that the task invokes.

3.1 User Choices for Security
Levels

The security requirements necessitated by
the network security policy demand some
minimum levels of security be applied for
each task, and also indicate the maximum
security levels that can be provided by the

system (e.g., if only through resource
limitations). Selections for QoSS may be
provided to users to any degree of security
within these limits. Thus, a system can
always provide more security, at the user’s
discretion, than the minimum required by
the base security policy, while still
complying with that policy.

Still, the complexity of the available
variables and the choices associated with the
security services and underlying
mechanisms, maybe too high for the users or
applications to manage without automated
support. We can offer a simplified
abstraction of security to the user, in the
form of security level choices, like “high”,
“medium”, “low”. This way the user is not
offered all combinations of security
parameters for the variant services.

In this approach, the security
administrator or system security engineer
would pre-set translation matrixes, through
which the security levels offered to the user
are mapped to detailed mechanism
invocations. A security level can be mapped
to a sub-range within the acceptable range of
values for the variant security attribute, or
could be mapped to a specific value. In
either case the QoS mechanism would be
responsible for subsequently assigning
security services and resources to the user
that would meet the security profile
indicated by the translation matrix.

3.2 The Notion of Network Modes

Under different environment conditions
we may be willing to accept more (or less)
security for a given application. A business
executive in a foreign country known for
industrial espionage might require strong
security for his communications with the
headquarters, whereas a company trying to
get a proposal submitted within a deadline
might decide to forgo security altogether and
just get the information out the fastest
possible. These decisions change the

security policy, but the actual policy arrived
at, through an ad hoc decision process, may
not be clearly understood.

With a dynamic security policy, the
security restrictions and available security
policies can be examined with respect to the
overall policy, prior to being fielded. This
way the network can support different
situational modes and respond to changing
environments, by having access to a
predefined set of alternate security policies.
For example, a military network might have
a "crisis" mode indicating that there is a
physical threat to the facility, and that
command messages which would normally
be encrypted and signed need to go out with
the highest bandwidth available,
disregarding cryptographic security. In such
a case, the effects of changes to the security
mechanisms would be predefined and
limited to meet the desired alternate security
policy.

We refer to three example modes: normal,
impacted (e.g., a system can enter this mode
when it receives a large amount of
simultaneous requests and for efficiency
curtails certain optional security services)
and emergency (in which strong security is
required without many choices offered).

Network modes provide alternate
mappings for the security requirements or
limits to be enforced by the underlying
system. The acceptable range of values for a
security variable attribute depends on the
network “mode” and the selections offered
to the users and applications must be within
the limits of the mode. Furthermore,
network modes can provide alternate
mappings for the security levels offered to
the users, since "high" security would be
translated in a different way if the system is
in normal or in emergency mode.

Ranges for different modes can have
overlapping values, or certain values may be
completely excluded from the permissible

set of values of any mode for a security
variable. Also, the range need not be
continuous (e.g. there could be sets of
discrete values).

3.3 Costing for QoSS

Costs in the form of monetary charges
(unlimited bandwidth but at a high cost per
byte) or performance degradation (for high
resolution, processing and downloads times
will be long) will influence users' choices
for security levels. When cost is very high
(e.g., slow response time or image display),
users may be willing to accept security (or
imagery) that is less than their ideal level of
service.

If a particular security mechanism is
“fixed” (i.e., always applied) then the
overhead for the mechanism is part of the
normal cost of running the task and the
normal costing mechanism used by the QoS
control mechanism will suffice. For variant
security mechanisms, however, the security
overhead will vary, depending on the
security vector of the user’s QoS request and
any subsequent refinement of the user's
choices due to the application or QoS
mechanism. To make the appropriate QoSS
decisions the underlying system must have
access to detailed information about the
resource costs for each variant security
mechanism.

In our approach, we use a costing
framework with cost expressions relative to
every security service invoked by the task
and its variant security attributes. Each
service may access various resources, e.g.
CPU, memory and bandwidth. We
discriminate between start-up and streaming
costs, since the utilization of a resource can
be persistent through the task's execution or
occur only during a set-up phase. The
calculated costs can then be fed to the
middleware QoS mechanism for use in its
resource allocation and scheduling
decisions.

4. Modulation of IPsec

For security to be a real part of QoS,
security choices must be presented to users,
and the QoS mechanism must be able to
modulate related variables to provide
predictable security service levels to those
users. As a proof of concept we want to
demonstrate how a specific security
mechanism, IPsec, can be modulated to
provide different levels for security in
response to QoSS requests from users. The
following sections give an overview of IPsec
and its architecture and describe our
approach for modulating IPsec's variant
security attributes according to network
mode and security level selections.

4.1 IPsec Background

By definition, IP packets inherently have
no security. It is therefore simple to spoof,
modify, and inspect IP packets without
authorization from the sender. IPsec was
developed to address this problem by
providing a per packet security mechanism
that protects datagrams at the network layer.
IPsec allows a system to select the required
security protocols, determine the algorithms
to be authorized for a specific service, and
utilize cryptographic keys required by the
services. IPsec can protect host-to-host,
gateway-to-gateway or host-to-gateway /
gateway-to-host packet communications [5].

IPsec provides the following security
services that may be combined to meet
specific requirements: origin authentication,
data integrity authentication, data

confidentiality, anti-replay protection and
limited traffic flow confidentiality. It uses
two methods to protect IP packets:
Encapsulating Security Payload (ESP) and
Authentication Header (AH). ESP provides
data integrity, confidentiality and anti-replay
protection. AH provides only data integrity
and anti-replay protection (Figure 1).

IPsec additionally implements two modes
of packet protection: transport mode and
tunnel mode. Transport mode is used to
protect upper-layer protocols for host-to-
host communications: an IPsec header is
inserted between the IP header and the upper
layer protocol header. Tunnel mode is used
to protect the entire IP packet for gateway
communications: entire IP packet is
encapsulated in another IP datagram and an
IPsec header is inserted between the outer
and inner IP headers (Figure 2).

IPsec is fundamentally built around the
concept of Security Associations (SA). SAs
are security service specifications that define
security attributes to be used during
communications between peers. More
formally, a SA is a "simplex connection that
affords security services to the traffic carried
by it" and it essentially is "a management
construct used to enforce a security policy in
the IPsec environment" [12]. There is a set
of parameters associated with each SA,
which includes, among others: SA lifetime,
encryption and/or authentication algorithms
and keys, and protocol mode
(tunnel/transport).

AUTHENTICATEDIP HEADERDATAESP TRAILERESP HEADERENCRYPTEDIP HEADERDATAAH TRAILERAH HEADERAUTHENTICATED

Figure 1: Encapsulated Security Protocol vs. Authenticated Header Protocol

DATATCP/UDP HEADERIP HEADERIPSEC HEADERDATATCP/UDP HEADERIPSEC HEADERTUNNEL IP HEADER

Figure 2: Tunnel Mode vs. Transport Mode

The established SAs are stored in the
Security Association Database (SAD). The
SAs can be generated manually, but that
approach does not scale well. The Internet
Key Exchange (IKE) along with the Internet
Security Association and Key Management
Protocol (ISAKMP) address the problem of
establishing and maintaining SAs through
the use of an automated daemon. IKE
establishes shared security parameters and
authenticated keys between communicating
peers, it negotiates SAs for peer IPsec
communications and it dynamically
populates the SAD. IKE uses the ISAKMP
format for negotiation messages with the
peer. ISAKMP defines the method of peer
negotiations including message format and
state transitions [7][16].

Rules that define communication
authorizations between peers based on SAs,
i.e. what action should be taken on a per-
packet basis (e.g., packet should be dropped,
requires IPsec protection, IPsec protection
expected, etc…), are stored in the Security
Policy Database (SPD). The SPD must be
able to distinguish between traffic requiring
IPsec protection, traffic protected by IPsec
protection and traffic allowed to by-pass
IPsec security mechanisms. If a policy exists
for a packet in SPD but no SAs currently are
found in the SAD, a negotiation process
must be initiated with the remote peer to
create valid SAs [12].

IPsec provides protection for packets
against tampering and eavesdropping,
whereby protection is either granted for a

peer-to-peer communication or bypassed.
However, IPsec does not include
mechanisms for specifying more granular
security policy issues like which hosts are
authorized for sessions with certain other
entities or whether hosts are authorized to
exchange specified kinds of traffic.

4.2 IPsec and Trust Management

We are currently using OpenBDS’s
implementation of IPsec [13][6]. This
implementation addresses the issue of
managing the policies that control which
host is allowed to establish SAs with another
host and what kind of characteristics the
SAs should have, by including a trust
management system, KeyNote and ensuring
through it, that newly created SAs agree
with a local security policy.

KeyNote is a simple and flexible trust-
management system that provides a standard
interface used by applications to determine
if proposed potentially dangerous actions
comply with the local security policies. It is
formally characterized by actions,
principals, policies, credentials and a
compliance checker. KeyNote is composed
of assertions which are small highly
structured programmable predicates that
limit the actions principals are authorized to
perform. Simply put, KeyNote determines
whether SAs between specific peers
(including characteristics like encryption
algorithms, keys, and communication
protocol) comply with local security policy.
A distinction should be made between SPD

IKE DaemonIPSecProcessingKernelKeyNote InterpreterIsakmpd.confSADIP InputRoutineSAManagementKeyNoteDatabaseSPDIP OutputRoutineInternetPeerInternetEndUserUser Mode

Figure 3: IPsec and Trust Management

and KeyNote policy. SPD policy (per packet
basis) is a subset of KeyNote policy (peer to
peer basis). For performance reasons, SPD is
used as a kernel cache for packet policies
[3].

When peers negotiate security
communication parameters, KeyNote is
referenced on both sides to verify
compliance with local security policies. SAs
will be dynamically created for authorized
communication and inserted into the SAD.
Unauthorized communications will be
refused.

The basic data packet flow through a
KeyNote-controlled IPsec system
implemented on OpenBSD is as follows:

Output processing: A packet arrives from
a high-level protocol. The SPD is consulted

to determine if the packet requires IPsec
protection. If protection is not required, the
packet is forwarded to the external network.
If IPsec protection is required, the packet is
forwarded to the IPsec processing module,
where the SAD is consulted for SA specifics
for the packet. If an SA exists for the packet,
the appropriate security transformations are
applied to the packet and it is forwarded to
the external network. If no SA exists, the SA
management module is triggered. The SA
management module consults the SAD to
reverify that no SA exists. If one does, the
packet is dropped. The KeyNote database is
consulted using packet information via the
KeyNote interpreter to determine if the
packet should be accepted, dropped, or
needs IPsec protection. In the event of the
requirement for IPsec protection, the IKE
daemon consults its configuration data (from

IPSec
Processing

Kernel

User Space

KeyNote

SAD

IKE Daemon

isakmpd.conf

SPD

SA
Management

QoSS Management Module

KeyNote
Database

...

IP Output
Routine

IP Input
Routine

Peer

X

X

Detects modification
in QoSS parameters

Internet

Figure 4: QoSS awareness for IPsec

the isakmpd.conf file) for remote peer
communication parameters and forms the
proposals it will send to the peer. IKE then
negotiates security parameters with the
remote peer. The remote peer will consult its
own KeyNote Policy and reply with a
proposed setting of secure communication
parameters. The KeyNote database will be
consulted again to ensure that the parameters
presented by the remote peer comply with
local policy. If both systems are in
agreement, an SA will be created, updating
the SAD and SPD. At completion the
original packet is discarded [3]. These
interactions can be seen schematically in
Figure 3.

Input processing: Input processing is
similar to output processing except that the
SPD is consulted to determine whether the
packet should be forwarded for further
processing, by-pass IPsec input process or
be dropped. If the packet is forwarded for
further processing, the SAD is consulted to
decapsulate the packet. If no current SA

exists, the SA management module is
initiated as in the output processing.

4.3 QoSS Awareness for IPsec

Two entities that wish to communicate
with each other using IPsec negotiate
through IKE/ISAKMP and KeyNote and
establish IPsec SAs, as described previously.
These SAs are used until their negotiated
lifetime expires (assuming that no violent
interruption or discard of SAs takes place).
There is no provision for a response to
changing operational conditions: the
characteristics of the negotiated SAs cannot
respond to dynamic modifications of the
environment's security requirements, for
example they cannot adapt to changes in
threat conditions, critical time transmissions,
and network congestion/traffic.

There are two main issues that need to be
handled if we want to provide QoSS
awareness for IPsec:

- the SAs that the IKE daemon
negotiates, and the local policy for
them enforced by the Trust

Management System, should be in
accordance with the system's QoSS
parameters: this means that if there is
a change, for example, in a "network
mode" or a "security level" parameter,
the set of SA characteristics we are
willing to propose and accept should
reflect these changes.

- Furthermore, if there is a change in a
QoSS parameter, currently active SAs
should be renegotiated to conform to
the current set of security
requirements (as expressed by the
local policy).

Using the foundation that the IPsec trust
management architecture described in the
previous paragraph provides, we apply our
QoSS ideas by using the scheme shown in
Figure 4. The QoSS Management Module,
which we have added, is responsible for
fetching the current selections for the
network mode and the security level. The
SA settings proposed (IKE daemon's
configuration file) and the local KeyNote
policy file are selected based on current
QoSS selections.

If the network mode changes to reflect a
modification in the system status, or if we
just want to execute the same application but
with higher security, then the QoSS
Management Module detects the
modification and updates the IKE daemon's
configuration data and the local security
policy. It then sends a notification to the
daemon. The daemon in response uses from
then on the new configuration data and local
policy for SA negotiations. Furthermore if
there exist currently active SAs, it removes
them and notifies the peer's daemon that
these SAs are no longer valid, so that
renegotiation of SAs can proceed.

4.3.1 A Proof of Concept
Demonstration

Using our task model and the QoSS aware
IPsec, we are able to provide different IPsec
processing to applications according to
system QoSS settings. We are also able to
display responsiveness to a system status
change by adjusting the values of security
variables, like encryption algorithm used for
ESP processing and authentication algorithm
used for AH processing.

As a proof of concept we have developed
a demonstration in which the kind of IPsec
processing on the traffic originating from
three specific applications varies in response
to a Security Level QoSS parameter.

Assume that we have three example
applications in our system: finger, telnet and
ping.

• ping does not utilize any security
services.

• telnet may use the confidentiality service
provided by the ESP protocol of IPsec.
One of the security attributes for which
we have choices is the encryption
algorithm, it could be any of the: DES,
3DES, RC4, IDEA, CAST, BLOWFISH,
3IDEA, or AES.

Our security policy could say that we
can only utilize these algorithms: DES,
3DES, AES and a further refinement in
the policy, that takes into account the
notion of network modes, could say:

-in Normal Mode: DES, 3DES, AES

-in Impacted Mode: no encryption,
DES, 3DES

-in Emergency Mode: AES (in this
case the range is degenerate).

So the system is in one of the above
modes and the user/application could
request any of the available by the mode
choices for the encryption algorithm. We

Table 1: IPsec Processing for different security levels

Security Level

Application
LOW MEDIUM HIGH

telnet No IPsec processing
ESP processing with

DES
ESP processing with

3DES

finger No IPsec processing
AH processing with

HMAC-MD5
AH processing with

HMAC-SHA

ping No IPsec processing No IPsec processing No IPsec processing

could go ahead and do the mapping to
Security Levels for each Network Mode
and we illustrate this for the Impacted
Mode:

- Low Security Level in Impacted
Mode: no encryption

- Medium Security Level in Impacted
Mode: DES

- High Security Level in Impacted
Mode: 3DES.

• finger may use the integrity service
provided by the AH protocol of IPsec.
One of the security attributes for which
we have choices is the authentication
algorithm, it could be any of the:
HMAC-MD5, HMAC-SHA, HMAC-
RIPE-MD, DES-MAC, or KPDK. So if
our policy for the Impacted Mode says
that available choices are: no
authentication, HMAC-MD5, HMAC-
SHA, the security levels could be
mapped as:

-Low Security Level in Impacted
Mode: no authentication

-Medium Security Level in Impacted
Mode: HMAC-MD5

-High Security Level in Impacted
Mode: HMAC-SHA.

If our policy is as described above and
our system is in Impacted Mode, we apply

different IPsec processing to the applications
in response to the Security Level parameter,
as seen in Table 1: we apply no IPsec
processing to the traffic of any of the
applications when the Security Level is Low.
If we switch to High security, finger traffic
is authenticated with HMAC-SHA and we
encrypt telnet traffic with 3DES.

More IPsec settings could change as a
result of our selections, for example: the set
of hosts we are willing to communicate with
using IPsec, the SA lifetimes, the key
lengths or rounds for variable key-size /
variable round algorithms, the employment
of transport or tunnel mode.

4.3.2 Discussion - Future Work

Currently we are using predefined sets of
alternate IKE configuration data and local
security policies that describe the
characteristics we want our SAs to have for
each <network mode, security level> pair
and we make active the proper set of files
through our QoSS module. This technique is
not a mature solution and it has obvious
scalability and maintenance problems: the
addition of other QoSS parameters or the
further refinement of possible network
modes (such as adding a "crisis" mode) or
security levels (e.g. including INFOCON
levels) would increase noticeably the
number of necessary sets of files. And if we
decided to update our security policy and
requirements for any QoSS parameter this

would mean individual modification of
those files.

We are working on identifying an
architecture that would allow the automated
daemon and the trust management system to
take in QoSS parameters (like network
mode, security level) and deploy the proper
policy for those SA characteristics that are
negotiable. We describe below proposed
additional functionality we are currently
researching to potentially include in our set-
up.

Expand KeyNote to include Network
Mode and Security Levels: First of all the
KeyNote policy would include additional
attributes corresponding to QoSS
parameters. In order to enable the IPsec
mechan i sm to hand le fu r the r
parameterization and to provide more
granularity in security controls, we intend to
expand KeyNote’s parameter list to include
QoSS discriminators, like network mode and
security level.

As a result, the IKE daemon, when
querying KeyNote to check if the SA under
negotiation is in agreement with the local
policy, would have to include in its query
the current selections for the QoSS
parameters. So a mechanism for the IKE
daemon to retrieve the network mode and
security level values would be included.

Furthermore the IKE daemon would
generate its proposals according to the
current QoSS settings. Two techniques
could be utilized:

Dynamic IKE configuration data. Enhance
the current implementation of the
isakmpd.conf file to incorporate a range of
peer communication parameters relevant to
security level and network mode. This
would solve the awkward file version
replacement technique currently in use.

Peer communication parameter retrieval
from KeyNote. This technique would

eliminate the need to address the previous
improvement. An interface would be
developed to retrieve peer communication
parameters from KeyNote that currently
reside in isakmpd.conf. Since KeyNote
maintains all policy information, it would be
more efficient to simply retrieve policy
related information from one area. This
would solve concerns regarding dynamic
policy changes and updates required
throughout the various files and databases.
This is the approach that the OpenBSD
project is inclined to adopt in the future [14].

SPD Initial Policy Caching Routine.
Currently, SPD must be manually populated
with packet policy entries to allow an
initiating peer to establish IPsec
communications with another peer. This
does not scale well in a dynamic
environment. We intend to research methods
that will enable the SPD to be dynamically
populated by KeyNote to avoid direct access
by users to the policy databases.

Develop a Policy Editor for KeyNote.
Currently all modifications to the KeyNote
Database require raw data input involving an
intimate knowledge of the syntax language.
To allow for dynamic updates and usability,
we intend to develop a Policy Editor that
will provide the user with an interface to
modify the KeyNote policy files.

5. Summary

In this paper, we presented our concepts
for variant security and QoSS and examined
how these ideas can be applied to the
modulation of existing security mechanisms.
The ultimate goal of this work is to improve
security service and system performance in
QoS-aware distributed systems, by making
security variability accessible to both
users/applications and middleware systems.

We presented a QoSS framework for
managing:

- security choices presented to the users
in an abstract form

- limits on the choices presented to
users in accordance with network
operational status

- resource utilization costs due to
variant security

- adjustment of underlying security
mechanisms.

Finally, as a proof of concept, we
illustrated how a complex security
mechanism like IPsec, can be modulated to
provide variant security in harmony with
QoSS requests.

Our future work with IPsec is described in
Section 4.3.2. We plan to extend our efforts
for QoSS modulation to other security
mechanisms. We also plan to conduct more
experiments and measurements to help us
understand better the impact of QoSS on the
performance of applications under various
network operational modes and high level
policies.

6. References

[1] Blaze, M., Feigenbaum, J., Ioannidis,
J. and Keromytis, A.D., "The KeyNote
Trust Management System Version 2",
Internet RFC 2704, Internet
Engineering Task Force, September
1999.

[2] Blaze, M., Feigenbaum, J., Ioannidis,
J. and Keromytis, A.D., "The Role of
Trust Management in Distributed
Systems Security", Secure Internet
Programming: Issues in Distributed
and Mobile Object Systems, Springer-
Verlag Lecture Notes in Computer
Science State-of-the-Art series, Berlin
1999, pp. 185 - 210.

[3] Blaze, M., Ioannidis, J. and Keromytis,
A.D., "Trust Management for IPsec",
Proc. of the Internet Society
Symposium on Network and

Distributed Systems Security 2001,
San Diego, CA, February 2001, pp.
139-151.

[4] Chaterjee, S., Sabata, B., Sydir, J.,
“ERDoD QoS Architecture”, SRI
Technical Report, ITAD-1667-TR-98-
075, Menlo Park, CA, May 1998.

[5] Doraswamy, N., Harkins D., "IPsec,
The New Security Standard for the
Internet, Intranets, and Virtual Private
Networks", New Jersey: Prentice Hall,
PTR, 1999.

[6] Hallqvist, N. and Keromytis, A. D.,
"Implementing Internet Key Exchange
(IKE)", Proc. of the USENIX 2000
Annual Technical Conference, Freenix
Track, San Diego, CA, June 2000, pp.
201 - 214.

[7] Harkins, D. and Carrel, D., "The
Internet Key Exchange (IKE)",
Internet RFC 2409, Internet
Engineering Task Force, November
1998.

[8] Irvine, C. and Levin, T., “Toward a
Taxonomy and Costing Method for
Security Services”, Proc. of the
Computer Security Applications
Conference, Phoenix, AZ, December
1999, pp. 183-188.

[9] Irvine, C. and Levin, T., “A Note on
Mapping User-Oriented Security
Policies to Complex Mechanisms and
Services”, Technical Report NPS-CS-
99-08, Naval Postgraduate School,
Monterey, CA, June 1999.

[10] Irvine, C. and Levin, T., “Quality of
Security Service”, Proc. of New
Security Paradigms Workshop 2000,
Cork, Ireland, September 2000, pp. 91-
99.

[11] Juneman, R.R., "Novell Certificate
Extension Attributes-Novel Security
Attributes: Tutorial and Detailed
Design", Version 0.998, Novell, Inc.
122 East 1700 St., Provo, UT, August
1997.

[12] Kent. S. and Atkinson, R., "Security
Architecture for the Internet Protocol",
Internet RFC 2401, Internet
Engineering Task Force, November
1998.

[13] Keromytis, A. D., Ioannidis, J., and
Smith, J.M., "Implementing IPsec",
Proc. of the IEEE Global Internet
(GlobeCom) 1997, Phoenix, AZ,
November 1997, pp. 1948-1952.

[14] K e r o m y t i s , A . D , p e r s o n a l
communication, March 14, 2001.

[15] Linn, J., Generic Security Service
Application Program Interface, IETF
Request for Comments: 1508,
September 1993.

[16] Maughan, D., Schertler, M.,
Schneider, M. and Turner, J., "Internet
Security Association and Key
Management Protocol (ISAKMP)",
Internet RFC 2408, Internet
Engineering Task Force, November
1998.

[17] Schneck, P.A. and Schwan, K,
“Dynamic Authentication for High-
P e r f o r m a n c e N e t w o r k e d
Applications”, Technical Report GIT-
CC-98-08, Georgia Institute of
Technology, College of Computing,
Atlanta, GA, 1998.

[18] Spyropoulou, E., Levin, T., and Irvine,
C., "Calculating Costs for Quality of
Security Service", Proc. of the
Computer Security Applications
Conference, New Orleans, LA,
December 2000, pp. 334-343.

[19] Stankovic, J .A., Supri , M.,
Ramamritham, K., and Buttazo, G.C.,
"Deadline scheduling for Real-time
S y s t e m s , Kluwer Academic
Publishers", Norwell MA, 1998, pp.
13-22.

[20] Vendatasubramanian, N. and
Nahrstedt, K., “An Integrated Metric
for Video QoS”, ACM International

Multimedia Conference, Seattle, Wa.,
November 1997.

