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MA3232 Numerical Analysis 

Week 2 

 
To explain all nature is too difficult a task for any one man or even for any 
one age. `Tis much better to do a little with certainty, and leave the rest for 
others that come after you, than to explain all things. 

   --- Isaac Newton (1643-1727)  

Isaac Newton was the great English mathematician of his generation. He 
laid the foundation for differential and integral calculus. His work on optics 
and gravitation make him the greatest scientist the world has known. 

Go through Assignment 1. In Plot_1D_2D, add tic and toc in plot_fxy.m and plot_fxy_0.m to see 
why it is good to use vectors directly in MATLAB.  

  plot_fxy_0.m runs about 0.60 seconds 

  plot_fxy.m runs about 0.15 seconds 

 

Example: Solve    exp 0f x x x     

We have used dsolve and bisection method to solve it. Now we introduce another method. 

 

Newton’s method 

Suppose f x   is differentiable. We start with a point x0. 

The goal of Newton’s method is to find one root of f x   0 . 

Taylor expansion of f x   around x0: 


f x   f x0  f x0  x  x0  f x0 

2
x  x0 2

  

Near x0, f x   is well approximated by f x0  f x0  x  x0  (tangent line 

approximation or linear approximation) 

Strategy: 

Start with x0 

Instead of solving f x   0 , we solve f x0  f x0  x  x0  0. 

Let x1 be the solution of f x0  f x0  x  x0  0. 

f x0  f x0  x1  x0  0  

==> x1  x0 
f x0 
f x0   
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(Draw the graph of f x   and the tangent line at x0) 

Take x1 as the new starting point and repeat the process. 

x2  x1 
f x1 
f x1  

  

xn1  xn 
f xn 
f xn   

If xn 1  xn  tol, stop. 

 

Matlab code (solving exp x  x  0 ; note that    , 1x xf x e x f x e      ) 

clear; 

x0 = 0; 

err = 1.0; 

tol = 1.0e10; 

n = 0; 

while err  > tol, 

n = n+1; 

f0 = exp(x0)x0; 

fp0 = exp(x0)1; 

x1 = x0f0/fp0; 

err = abs(x1-x0); 

x0 = x1; 

end 

r = x0; 

For this code, it takes N = 5 iterations to reach tol 1010. You can also add “tic; toc” to see how 
long it takes to run the codes. 

See NL_solvers/newton.m.  

Question: If we want to solve 0xe x    with Newton’s method, can we use 0 0x   as the initial 

value? 

        0
0, 1, 0 1 0x xf x e x f x e f x f e             . 

So we cannot use 0 as the initial guess. 
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See NL_solvers/newton_divg.m for an example where Newton’s method diverges 

vs NL_solvers/newton_convg.m for an example where Newton’s  method converges 
quadratically. 

 

In order to write more user-friendly codes, one should use functions.  

Explain Comp_curve/calc_data.m etc. and problem 1 of homework assignment 2. 

Comparison of the bisection method and Newton’s method 

The bisection method: 

has guaranteed convergence, converges slowly, cannot be extended to non-linear 
systems. 

Newton’s method: 

may not converge, converges very fast if it converges, can be extended to non-linear 
systems, requires the calculation of f x . 
 

We have not analyzed the convergence of Newton’s method yet. 

Questions: 

Q1: Does Newton’s method converge? 

Q2: If so, does it converge to a root of f x   0 ? 

To answer these questions, we study a class of methods, called fixed point iterative methods. 

 

Fixed point iterative methods (for solving f x   0 ) 

The goal is to find one root of f x   0 . 

Strategy:  

Start with x0 (an initial approximation to a root of f x   0 ) 

Use an iteration function g x   to improve the approximation 

x1  g x0  
  

xn1  g xn  
If xn 1  xn  tol, stop. 

This class of methods is called the fixed point iterative methods. 

Here g x   is called the iteration function. 
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Even though the choice of g x   is not unique, it has to satisfy certain conditions. 

Consistency 

First, we study Question #2. Suppose lim
n

xn  x . 

xn1  g xn     assume g is continuous

1lim lim limn n nn n n
x g x g x  

    

==> x  g x  
Definition: 

If x  g x , then x  is called a fixed point of g x  . 

We want to make sure that if xn converges, it converges to a root of f x   0 . 

Consistency condition: 

We require that all fixed points of g x   be roots of f x   0 . 

That is, x  g x  implies f x  0. 

Example: Newton’s method satisfies the consistency condition. 

xn1  xn 
f xn 
f xn   

We write it in the form of fixed point iterative methods 

xn1  g xn ,   g x   x 
f x 
f x   

Let us check the consistency condition. Let x  be a fixed point of g x  . 

x  g x  

==> x  x 
f x 
f x   

==> 
f x 
f x   0  

==> f x  0 

Other examples of fixed point iterative methods: 

Example: Design an iterative method for solving sin x  2  2x  0 . 

sin x  2  2x  0  
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==> x 
sin x  2 

2
 

We can try xn1 
sin xn  2 

2
. 

That is, xn1  g xn ,  g x   sin x  2 
2

 

Example: Design an iterative method for solving x 2  2x  0.75  0 . 

x 2  2x  0.75  0  

==> x 
x 2  0.75

2
 

We can try xn1 
xn

2  0.75
2

. 

That is, xn1  g xn ,  g x   x 2  0.75
2

. 

See NL_solvers/iter_divg.m.  

If 0 1.5x  , 0.5nx  ; 

If 0 1.5x  , nx  diverges. 

Example: Design an iterative method for solving 0xe x   . 

 xx e g x   

   1 expn n nx g x x     

The method converges linearly. 

See NL_solvers/iter_convg.m. 

 

Convergence 

Now, we study Question #1: “Under what condition does the iteration xn1  g xn  converge?” 

Let x  be a fixed point of g x   (also a root of f x   0 ). We have 

xn1  g xn  
x  g x  

==> xn1  x  g xn  g x  
Recall the mean value theorem 

If g x   is differentiable in a, b , then there exists c  a, b  such that 
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g b  g a   g c  b a   

Applying the mean value theorem, we get 

xn1  x  g xn  g x  g ˜ x n  xn  x , where nx  is between nx  and *x  

==> xn 1  x  g ˜ x n  xn  x  

We discuss 3 cases. 

Case #1: Suppose g x   q  1 for all values of x. 

==> xn 1  x  q xn  x  

==> xn  x  q xn1  x  q2 xn 2  x   

==> xn  x  qn x0  x  

==> xn  x  0  as  n   

Therefore, lim
n

xn  x   for all values of x0 

Conclusion for case #1: Suppose g x   q  1 for all values of x. Then the iteration 

xn1  g xn  converges to x  for all values of x0. 

Note: This case uses the global property of  g x  (i.e. g x   q  1 for all values of x) to 

derive property of convergence. 

Definition:  

g x   is called a contraction mapping if it satisfies that g x   q  1 for all values of x. 

Theorem: 

If g x   is a contraction mapping, then it has one and only one fixed point. 

Example: Use the iteration xn1 
sin xn  2 

2
 to solve sin x  2  2x  0 . 

xn1  g xn ,  g x   sin x  2 
2

 

==> g x  cos x  2 
2

 

==> g x   cos x  2 
2


1
2
 1   for all values of x. 

==> lim
n

xn  x  for all values of x0 

Example: Use the iteration  1
nx

n nx g x e
    to solve 0x xe x x e     . 
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     
 If 0, 1

x x xg x e g x e g x e

x g x

        

 
 

So we cannot apply the conclusion in case 1. 

Now we use the local property of  g x  at the fixed point to get convergence property. We will 

skip the proof and give the conclusion directly. 

Case #2: Suppose g x  1 at a fixed point x . 

Let q  g x   1. 

There exists   0 such that g x   q  1 for x  x   . 

If x0  x   , then ˜ x 0  x    

==> x1  x  g ˜ x 0  x0  x  q x0  x  

Noticing that x1  x   , we obtain 

x2  x  g ˜ x 1  x1  x  q x1  x  q2 x0  x  

  
==> xn  x  qn x0  x  

==> xn  x  0  as  n   

Therefore, lim
n

xn  x   if x0  x    

Conclusion for case #2: Suppose g x  1 at a fixed point x . Then the iteration xn1  g xn  
converges to x  if x0 is sufficiently close to x . 

 

Case #3: Suppose g x  1 at a fixed point x . 

Let q  g x     1. 

There exists   0 such that g x   q  1 for x  x   . 

If x0  x   , then ˜ x 0  x    

==> x1  x  g ˜ x 0  x0  x  q x0  x  x0  x  

It is clear that the sequence xn  will be pushed away from x . 

Therefore, the iteration xn1  g xn  does not converge to x . 
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Conclusion for case #3: Suppose g x  1 at a fixed point x . Then the iteration xn1  g xn  
does not converge to x  (it may diverge or it may converge to a different fixed point). 

 

Note: If   1g x   at a fixed point x , then we cannot draw any conclusion on convergence. 

 

Example: Use the iteration xn1 
xn

2  0.75
2

 to solve x 2  2x  0.75  0 . 

xn1  g xn ,  g x   x 2  0.75
2

 

g x   has two fixed points: r1  0.5 , r2  1.5. 

g x  x  

At r1  0.5, g r1   r1  0.5 1 

==> lim
n

xn  r1  if x0 is sufficiently close to r1. 

At r2 1.5 , g r2   r2 1.5 1 

==> The iteration xn1  g xn  does not converge to r2. 

Numerical experiments show that 

For x0 1.5 , the iteration xn1  g xn  diverges to ∞. 

For x0 1.5 , the iteration xn1  g xn  converges to r1. 

See NL_solvers/iter_divg.m. 

 

Go through the two MATLAB codes NL_solvers/iter_divg.m and iter_convg.m. 

 

Now we consider the convergence of Newton’s method. 

Example: Convergence of Newton’s method 

xn1  g xn ,  g x   x 
f x 
f x   

g x  1
f x  f x  f x  f x 

f x  2 
f x  f x 

f x  2  

      Apparently we cannot apply case 1 since we don’t have a global property of  g x .  

 So we look at the local property of  g x  at a fixed point. 
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Let x  be a fixed point of g x   (also a root of f x   0 ). 

If f x  0 , then    0 1  This is case 2.g x g x     . 

If f x  0 , then   0
 type 

0
g x  and to estimate its value we will try to avoid the 

calculation of  f x .  We take the following approach. 

First, we can use the Taylor expansion to find g x . 


f x   f x  f x  x  x  f x 

2!
x  x 2   




f p  x 
p!

x  x p
      for some p  2 

==> 

f x 

f p  x 
p1 ! x  x p1

  

==> 


f x 
f x  

1
p

x  x   

 

   
   

   

 
 

   
*

*

 is a fixed point of g

* *

*

1

1

1
1

1
1

x x

x

f x
g x x x x

f x p

x x
p

x x
p

x x

x

x x x

p
g x









      


   

 
     

 
 

    


















 

Compare the expansion above with the Taylor expansion of g x   

g x   g x  g x  x  x   

we obtain g x 1
1
p

 

Therefore, for Newton’s method we have g x  1 since g x 1
1
p

 and 2p  . 

 Newton’s method converges if x0 is sufficiently close to x . 
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Talk about Assignment 2 problem 1. Pay attention to the use of “function” in MATLAB. The 
function fp.m uses the analytical form of  f x  (which is problem-dependent) whereas the 

function fp_2.m uses the numerical differentiation (which is problem-independent). 

 


