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ABSTRACT 

This thesis considers the best use of network traffic data to increase cyber security. This 

operational problem is one of great concern to network administrators and users 

generally.  Our specific task was performed for the Network Security Division of the 

Army Research Laboratory, who requested we analyze a dataset of cyber-attacks masked 

in a background of representative network traffic (the “Skaion” dataset). We find that 

substantial preprocessing must done before statistical methods can be applied to raw 

network data, that no single predictor is sufficient, and that the most effective statistical 

analysis is logistic regression. Our approach is novel in that we consider not only single 

predictor events, but also combinations of reports from multiple tools. While we consider 

a number of different statistical techniques, we find that the most satisfactory model is 

based on logistic regression. Finally, we conclude that while the Skaion dataset is 

valuable in terms of its new approach to network traffic emulation, the 1999 KDD Cup 

and DARPA-MIT datasets—despite their many shortcomings—are more clearly 

organized and accessible to academic study. Cyber security is a globally important 

problem and datasets like Skaion’s must maximize opportunities for cross-disciplinary 

academic endeavors. 
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EXECUTIVE SUMMARY 

This thesis applies techniques of Military Operations Research to consider the optimal 

use of network traffic data to increase cyber security.  Our specific task was performed 

for the Network Security Division of the Army Research Laboratory, who requested we 

analyze a representative dataset of cyber-attacks masked in a background of 

representative network traffic (the “Skaion” dataset). 

The Skaion dataset was created as a test bed for staging attack simulations against 

notional Intelligence Community (IC) networks, which could then enable opportunities 

for further study and innovation for protection of valuable IC networks. Our approach is 

to consider which of the many predictor events in this dataset best determine when 

malicious activity is taking place.  Our approach is novel in that we consider not only 

single predictor events, but also combinations of reports from multiple tools.  While we 

consider a number of different statistical techniques, we find that the most satisfactory 

model is based on logistic regression.  

For comparison, we researched the DARPA-MIT 1999 dataset and the 1999 KDD 

Cup dataset, and we find that the Skaion dataset differs from these well-known network 

security datasets with regard to the following four key features: 1) the two Skaion 

scenarios we studied are far smaller in terms of the time and amount of data captured;  

2) the Skaion dataset is far less dense with attack activity; 3) the manner in which the 

Skaion dataset “labels” malicious activity from benign activity is unique in that it is 

organized by Internet Protocol (IP) address role (i.e., IPs are either attackers or normal), 

while the other two datasets label each conversation between two terminal IP addresses 

(i.e., a connection is either an attack or normal), which introduces the unrealistic 

implications the other data sets do not: that every conversation originating from an 

attacker IP is an attack, and any IP address that initiates with normal activity will never 

become and attacker and vice-versa; finally, 4) the Skaion data set includes predictions 

from intrusion detection system (IDS) alert logs and predictions of the roles of IP 

addresses, which offers an opportunity to explore methods of data fusion and suppression 

of “noise” in order to minimize and prioritize network alert analysis.   
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Our approach is to combine these predictions with network diagnostic alerts and 

basic network behavior statistics in an ordinal logistic regression to test its predictive 

ability relative to that of IDS alerts alone.  In doing so, we find that the detection 

percentage increased from 29% (28 of 98 attacks detected) with the IDS alerts alone to 

82.7% (74 of 98 attacks detected) with the ordinal logistic regression predictions.  The 

number of false alarms rises from zero with the IDS alerts to only 15 in the regression 

model, which equates to an overall misclassification rate of 0.13% (24 missed attacks and 

15 false alarms out of 10,894 connections in the validation set).  

The conclusions from our work are threefold: 

1)  No single detection tool or statistical method is adequate to keep the 
network secure, 

2) Given good predictors, simple models can be very powerful, 

3) That network emulators and experimenters need to consider data analysis 
when they design their projects so that detailed statistical analysis may be 
done rapidly.  This is the greatest opportunity for Operations Research and 
Network Security Analysts to bridge the gap between professions.   

The operational impact of our work is immediate.  By understanding the types of 

data that are most useful for detecting threats, the processing may be allocated optimally, 

and less metadata (currently 10% of network capacity) will be required.  Finally, we see 

this work as the first of many projects that will apply OR techniques in the Cyber 

domain. 
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I. INTRODUCTION  

A. BACKGROUND 

Security in cyberspace, or cyber security, is an area of growing National and 

Department of Defense (DoD) interest.  The formation of the US CYBERCOM, the 

Navy’s TENTH FLEET and the merging of the Office of the Chief of Naval Operations 

(OPNAV) Naval Intelligence (N2) and Communications (N6) directorates mark the 

recognition of cyber warfare as a primary warfare area, as well as the National Strategy 

for Cyberspace. 

 Applications of Operations Research to Cyber Security is a growing area, 

acknowledged both by the Cyber community of practice and the OR community.  In 

March of 2011 the Military Operations Research Society (MORS) held a special meeting 

titled Mission Assurance: Analysis for Cyber Operations for which seven working groups 

convened to discuss issues linking OR to cyber studies. Among the panels’ findings were 

the following opportunities for the application of OR capabilities: 

 Force-on-force analysis that accurately accounts for cyber effects and 
actions. 

 Statistical process control techniques to enhance situational awareness and 
threat awareness. 

 Design of experiments methodologies to help assess rapidly fielded 
equipment and systems. 

 Application of neural networks to help detect anomalies and hostile 
activity. 

 Decision analysis tools and techniques to facilitate response to attacks. 

 Optimization/matching techniques to address requirements prioritization. 

 Manpower analysis tools and methodologies to assist with those issues [1].  

The Synthesis Working Group closed their findings with the following 

recommendation: 

The Synthesis Working Group observes that the analysis communities 
across the Services need to make applying these and other methods in our 
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toolkits to the Cyber arena a priority. For this to be successful, however, it 
is critical that there be an associated “pull” from the Cyber community 
itself for this kind of help. We emphasize that the Leaders’ roles in both 
communities are key! [1] 

An example of this leadership “pull” was demonstrated in large part at the 80th MORS 

Symposium where General William Shelton, Commander, Air Force Space Command 

served as the keynote speaker and 28 working groups addressed issues related to OR 

applications to cyber operations [2].  Also, in September of 2011, the Naval Postgraduate 

School established the Cyber Academic Group and introduced a Cyber Systems and 

Operations Curriculum to address the cyber topics relevant to DoD leaders and operators 

[3].  Of the many facets of analysis in cyberspace, we focus on a specific problem—

intrusion detection on a trusted network.  In particular, we investigate the utility of a 

particular dataset intended to provoke innovative research in the detection of attacks on a 

U.S. Intelligence Community unclassified network. 

The transition in US Forces to increasing lightness and pin-point lethality has 

come at a cost of increased reliance on computers and the connections between them.  

We loosely call this “the network.”  Because data—both operational and planning—

transits this network, it is a ripe target for adversaries to attempt to either extract valuable 

information or deny the use of it.  A characteristic of conflict in cyberspace or cyber 

conflict is the speed at which it moves.  This rapidly changing landscape means that 

analysts rarely have the opportunity to ask higher-level, policy questions like, “What is 

the best statistical tool to use against cyber data generally.”  The acknowledgment that 

the operators are overtasked coupled with the sense that better analytical efficiency is 

possible has led directly to this work. 

In order to ensure the security of the network, operators—specifically, the U.S. 

Army—collect data from their analysis, but they also generate data sets for experimental 

purposes.  The reason that artificial datasets are required is twofold; first, real data is, for 

lack of better words, real.  This means that it contains security and personally sensitive 

information which organizations are reluctant to share.  Secondly, statistical analysis 
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requires knowledge of “ground truth;” in real-world data, we do not know which events 

are “bad,” how many “bad” events there are, just how many we think are “bad.”  

Both real and experimentally generated datasets can be quite large, in some cases 

exceeding one gigabyte for less than 15 minutes of captured network traffic.  The 

captured data flows back to headquarters on the same network “pipes” that the traffic 

itself flows on; therefore, the act of sending network data in some measure reduces the 

network’s effectiveness.  This creates a challenging analytic problem in that the data used 

to maintain the health of the network itself reduces the capability of the network.  The 

amount and type of data collected needs to be carefully chosen to balance between the 

desires to keep the network “fast” and “secure.”  A perfectly “fast” network that has no 

diagnostic data would not be safe; a perfectly “safe” network that is so clogged with 

metadata as to be unreasonably slow is of no use, either.   Our work seeks to find better 

predictors in the provided data to find a balance between security and speed. 

 Data that is currently collected on cyber-attack discoveries is used forensically by 

the Army and others to build and improve tools for detection and prevention of similar 

attacks, but work remains to be done to determine to what extent the same data can be 

used to detect larger trends and relationships, or whether any particularly useful signals 

exist in the data.   

 Software developed to analyze network traffic for security purposes can be 

developed to maximize sensitivity (i.e., better threat detection without regard to false 

positive rate), or specificity (i.e., better overall classification accuracy).  Tools for threat 

detection can be categorized by whether they detect threats based on specific signature 

characteristics or based on more general statistical characteristics. Signature-based 

detection tools detect known threats by seeking exact matches within network traffic to 

very specific rule sets developed from characteristics seen in previous attack attempts.  

These criteria can take many forms, but they usually require deep packet inspection of the 

information “payload” contained within a network packet.  This type of “fingerprint” 

analysis differs greatly from the more general data-collection and probabilistic analysis  
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associated with the use of statistical methods, which attempt to categorize traffic into 

categories based on more surface level data in order to discern “good” traffic from the 

“bad.” 

Statistical tools can be further categorized by the type of learning methods they 

employ.  Supervised methods are classification methods that rely on inputs of prior, 

correctly-labeled good and bad traffic in order to make predictions of the nature of future 

traffic.  Regression models, kernel function methods, trees, and neural networks are 

examples of supervised methods.  Unsupervised learning, on the other hand, occurs 

without a previously labeled set of data. These methods generally attempt to detect 

anomalous traffic based on its relationship to other traffic, or its “outlierness.”  These 

methods compare traffic data based on their attributes and attempts to establish clusters in 

order to discern normal from anomalous traffic.  This principle relies on good traffic 

falling into relatively “normal” categories, and on bad traffic having distinct, measurable 

characteristics.  Finally, while anomaly detection is generally done using unsupervised 

learning methods like clustering, there exist supervised methods of anomaly detection as 

well. 

Another distinction among detection tools is whether they operate on-line or off-

line.  This refers to whether a particular tool can inspect the traffic and make an 

evaluation in real or near-real time based only on what it has seen up to that point, or 

whether it must wait to analyze an entire interval of data either because the computation 

takes too much time and/or memory to conduct in real time, or because the evaluation is 

only meaningful in the context of the entire interval of data. 

Furthermore, anomaly detection tools of both types can also be developed to 

integrate alerts to general network performance characteristics, such as data throughput at 

a specific node (a server, or a client computer).  These can be useful in detecting the 

symptoms of an attack exploitation which may otherwise seem quite “normal” from the 

perspective of individual packet inspection or IP address statistics.  This signal 

integration could be particularly helpful in detecting so-called “zero-day” attacks, i.e., 

those that rely on previously unknown vulnerabilities.  For example, W32.stuxnet 
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contained 4 “zero-day” attacks [4].  For these novel attacks, analysts generally rely on 

more tailored tools and techniques—often developed and personalized by the analysts 

themselves—to apply what is best described as the art of network security analysis.   

Finally, the establishment and maintenance of what defines “normal” network 

activity is the most difficult part of anomaly detection.  The possible characterizations of 

malicious activity these tools must detect largely overlap the spectrum of normal network 

activity characteristics [5].  Malicious activity could present as seemingly “normal” e-

mail phishing attempts that lure users to malicious web-sites or into fraud scams.  

Another “normal” presentation of malicious activity is port scanning, in which an 

attacker probes servers and computers to find open, unused ports through which they can 

enter the network undetected.  At the other end of the spectrum could be specifically 

directed cyber-attacks which may include objectives such as denial of service (DOS) 

(such as those used by Russia in their conflict with Georgia)[6], attempted exfiltration of 

valuable proprietary, or national security related data from a targeted network location. 

B. OUR ANALYSIS 

For our study, the Army Research Laboratory Network Science Division, located 

in Adelphi, Maryland, and Aberdeen Proving Grounds has provided a labeled dataset 

derived from the Skaion Corporation’s Advanced Research and Development Agency 

(ARDA) Testbed. The primary data in the set is consists of three different scenarios, each 

of which includes simultaneous network packet captures from three different nodes, or 

sensors, in the simulated network.  For the two scenarios we analyze, these capture files 

record a 15 and a 30 minute window of network traffic from the three different locations 

in the form of packets, which are the basic unit of network communication. From these 

packets, characteristics such as source and destination IP addresses, source and 

destination port, network protocols used, packet size in bytes, etc. can be analyzed.  

These characteristics are described in detail in subsequent chapters. To illustrate the 

problems with collecting network data, the 45 minutes of data collected from the three 

different sensor locations has a size of approximately 4 gigabytes (uncompressed). 



 

 6

Included with these packet capture files are attack logs from four signature- based 

network intrusion detection systems as well as IP address keys that provide the 

“labeling,” or ground truth as to the roles of each IP address.  In other words, the point of 

origination of each network packet is classified in the file as an attacker, victim, 

background attacker, background scanner, server or user.  This $1.3 million network 

emulation project was contracted by the Defense Advanced Research Projects Agency 

(DARPA) in 2003 [7] to simulate realistic attacks on a notional U.S. intelligence 

community (IC) network for the purpose of fostering “innovative research on the 

protection of highly-sensitive assets such as the IC’s own networks and systems [8].” The 

data to be analyzed consists of network packet capture files (PCAP), alert logs from a 

variety of intrusion detection systems (IDS), and an IP key that provides ground truth as 

to the nature of an IP address’ role in the network (i.e., attacker, victim, or benign).  

While our analysis focuses on a 2003 dataset, the methods and techniques we propose are 

broadly applicable.   

C. LITERATURE REVIEW OF PREVIOUS WORK 

For high-level discussions of the cyber problem and its importance, we 

recommend the Cyberspace Policy Review [9].  The DoD Lexicon is given in Joint 

Publication 6-0 Joint Communication System [10].  For an in-depth description of 

different types of cyber-attacks, see The Art of Computer Virus Research and Defense 

[11], and for a DoD approved discussion of open problems and their import, see the 

JASON report The Science of Cyber-Security [5].  

For the precise application of statistical methods to network data analysis, we rely 

on Yale University’s Yun Wang [12].  Wang provides a guide to statistical methods in 

the field of network security by taking a comprehensive approach to network security 

history, term definitions, data mining and modeling techniques, and classification 

methods.  Most germane to this study are chapters 9 and 12, which examine supervised 

modeling and classification methods suitable for prediction as well as methods of 

comparing and rating those models. 

Gogoi, Bhattacharyya, Borah and Kalita outline eight supervised and three 

unsupervised approaches to outlier detection in network security [13].  Consistent with 
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our observations, they describe that the primary difficulties with anomaly-based network 

intrusion detection are in the assumptions that: 

1. The majority of the network connections are normal traffic.  Only a 
small amount of traffic is malicious. 

2. Attack traffic is statistically different from benign, i.e., ‘normal’ traffic. 

However, in a real-world network scenario, these assumptions may not 
always be true.  For example, when dealing with DDoS (distributed denial 
of service) or bursty attack detection in computer networks, the anomalous 
traffic is actually more frequent than the normal traffic. [13] 

The first assumption is generally reasonable. The second assumption may hold when the 

attacker is a disorganized, or loosely organized criminal activity.  However, a state- or 

state-sponsored effort should be expected to be sophisticated enough to “cover their 

tracks.”   

Mahoney and Chan [14] examine the 1999 DARPA/Lincoln Laboratory off-line 

evaluation data set (IDEVAL [1] – [3]) and compare the results of six basic anomaly 

detection (AD) systems against 244 labeled instances of 58 different attacks present in 

the data set. The six systems are chosen more for their collective utility with regard to 

different types of Internet traffic than for their particular detection abilities.  The purpose 

of their analysis is to confirm whether mixing real traffic in with the IDEVAL data set 

improved the AD systems’ learning.   

The study finds that mixing improves the detection percentages of all six AD 

systems. This improvement is attributed to the difference in prevalence of “poorly-

behaved artifacts with power law attributes” [14] in the IDEVAL set (low prevalence) 

and in the real traffic (high prevalence).  The higher prevalence of these poorly behaved 

artifacts in the real traffic had the effect of removing them as artifacts, even without 

having to define what the suspected artifacts were.  The results demonstrate that when 

using mixed data, the detection performances of the very basic AD systems chosen for 

the study are raised to levels comparable to the best-performing systems used in the 1999 

evaluation. 
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Yamanishi and Takeuchi, 2002, demonstrate that an online unsupervised outlier 

detection program called SmartSifter can be useful in detecting abnormal activity in both 

intrusion detection and health insurance pathology contexts.  SmartSifter performed well 

in a supervised mode at the 1999 KDD Cup Machine Learning competition where it 

detected 55% of 1,687 intrusions out of a set of 458,078 network accesses in its top 1% 

of ranked data and 82% in its top 5% of ranked data [15].  The novel features of 

SmartSifter are threefold: adaptability to non-stationary sources of data, its rank score has 

a clear statistical and information-theoretic meaning, and it is computationally 

inexpensive and it can handle both categorical and continuous variables [15]. 

Tavallaee, Bagheri, Lu, and Ghorbani [16] conduct a critical analysis of the KDD-

99 dataset mentioned above.  They discuss its design shortcomings and propose a new 

dataset, in which they mitigate two main issues they find with the original dataset; 

namely, that there are too many duplicated records in both the training and test sets, and 

that results among different methods are difficult to distinguish due to a narrow margin of 

difference in performance.  Their corrected dataset is a subset of the original data that 

eliminates duplicated records and adjusts the ratio of records based on a relative level of 

classification difficulty such that the numbers of records of each difficulty level are 

inversely proportional to the numbers found in the original set. Their results show both a 

lower overall accuracy among their chosen models as compared to the original dataset, 

(which shows the tendency of the original set to overestimate performance) as well as 

more varied performance among models.  Finally, they acknowledge that although the 

KDD-99 data is problematic, it remains a benchmark due to the lack of availability of 

publicly available datasets. 

Wang and Kim, 2008, attack the problem of insufficient and unavailable training 

data (and the subsequent unsuitability of regression models and neural networks) in 

network security problems.  Their supervised approach uses a bootstrap resampling 

method to develop a probability model for use when limited or no abnormal information 

is available in training data [17]. 
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D. OBJECTIVES 

This study investigates methods of variable selection, data coding and modeling 

in the context of the Skaion data set.  The intent is to analyze selected, likely successful 

data mining and statistical methods and report on their utility with respect to detection 

probabilities and false positive rates in the Skaion data set.  Our research questions are:  

“What are effective methods of data collection and organization in order to evaluate the 

performance of logistic regression in detection of cyber-attacks against the Skaion 

dataset, and what general conclusions may be drawn for statistical techniques for use in 

network detection?” 

This analysis provides the Army Research Laboratory specifically and the 

Department of Defense generally with insight into the Skaion data set, as well as 

foundational work for further Operations Research cyber security analysis efforts. 

E. SCOPE, LIMITATIONS AND ASSUMPTIONS 

The Skaion data set is composed of five attack vignettes and also has multiple 

releases.  This study focuses on attack vignettes 4s1 and 4s3 from release 4a.  Attack 4s1 

is a basic Common Gateway Interface (CGI) Overflow attempt.  A CGI is a commonly 

used application framework for programs like Internet shopping carts and website search 

engines and they can be hijacked by code intended to disable their ability to allow limited 

access to the information and program function of the host.  Instead of a shopping cart, 

Skaion uses a petition website linked to an SQL database for storing the signers’ data.  

The attacker uses a malicious code to overflow the CGI application’s buffer, allowing full 

access to the information in the database.  Scenario 4s3 is a variation of the same attack 

that attempts to mask its true point of origin of the main attacker by sending out decoy 

requests that trigger the same alerts from the Snort intrusion detection systems (IDS).  

Both attack scenarios also include the background attacks and scanners that are inherent 

in the Skaion test bed design.   

The study focuses analysis from an IP address-centric approach and investigates 

methods to detect whether, within the time frame of the data set, a particular IP address is 

malicious.  When examining packets, the response variable is determined by the ground-
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truth classification of the source IP address as either “ATTACKER,” “BACKGROUND 

ATTACKER” or “BACKGROUND SCANNER.” The primary attacker of interest and 

the background attackers and scanners comprise the subset of malicious IP addresses.  

Scanners are IP addresses that run programs designed to test which ports are open on a 

host or server.  When a port is open or active, the service that is running on that port may 

be used to exploit network security vulnerabilities [12].  

We are primarily concerned with the statistical aspects of the problem, and 

guiding investments at a mid- to high- level.  We do not attempt to conduct a detailed 

forensic analysis of the Skaion data set and we have necessarily abstracted away many of 

the more detailed aspects of computer coding, etc.  The primary reason for this is to avoid 

incorrect inferences relative to the context of the data and the precise nature of the 

relationships among the classifiers. 

Finally, the study does not provide an in-depth analysis of the strengths and 

weaknesses of the IDS tools that provide alert responses in the data set.  Rather, the 

responses serve as classifiers and their results are compared as subsets of the overall data 

set to draw out the significant characteristics of the types of traffic that generate alerts at 

varying levels of true and false positive and negative. 

F. COURSE OF STUDY 

The outline of the thesis is as follows:  In Chapter II, we cover the nature of the 

data set, providing a comparison of the two attack scenarios and a description of the 

Skaion ARDA Testbed Design.  In Chapter III, we describe the nature of the variables 

collected, the methodologies used. In Chapter IV, we discuss the results and analysis of 

the chosen methods against both the Skaion dataset and another representative dataset. 

Finally, in Chapter III, we cover the conclusions and recommendations for further 

research.  
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II. DATA 

A. DATA SET BACKGROUND 

1. Skaion ARDA Testbed Design 

Skaion chose to design its test bed after the Open Source Information System 

(OSIS), which in 2003 was the U.S. intelligence community’s unclassified open source 

intelligence network.  The OSIS network and its content were de-coupled in 2006 and 

replaced with DNI-U and Intelink-U, respectively [18]. 

This choice of OSIS was guided by Skaion’s contract requirement “to simulate 

realistic attacks on a notional U.S. intelligence community (IC) network for the purpose 

of fostering “innovative research on the protection of highly-sensitive assets such as the 

IC’s own networks and systems” [7].  Skaion did not conduct attacks against the actual 

network, but instead constructed a simulated model of the OSIS network and used 

network emulation algorithms to build realistic network traffic on a test bed of 

approximately 20 physical machines. The test bed includes real (i.e., physical) hosts 

(servers and clients that maintain websites), network infrastructure components (routers, 

hubs and firewalls that control network access and flow), and several hundred virtual 

hosts simulated by traffic generation machines using Skaion’s proprietary network 

emulation algorithms.  The simulated OSIS network is connected to a model Internet, 

which is simulated by two other traffic generation (emulation) machines. The structure of 

the complete OSIS-Internet model is given in Figure 1. 
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Figure 1.   Architecture of Skaion’s test bed design. Sensor locations are indicated by 
the blue arrows.  The machines labled “Sniffer” run a program called 
tcpdump, which collects and inspects each packet passing through the 

indicated point in the network.  The machines labeled “Snort” and 
“Dragon” are running intrusion detection system (IDS) programs by those 
names that do some automated analysis of the packets passing through that 

point in the network.  Alerts are generated based on pre-determined rule sets 
(i.e., correlation between a packet’s originating IP address and a “hot list” 

of known malicious IP addresses). (Image from unpublished documentation 
included within the Skaion Data Set). 
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The background traffic generated by the Skaion Corporation is representative of 

the Non-secure Internet Protocol Network (NIPRNET) traffic at the Air Force Research 

Laboratory (AFRL) in Rome, NY. NIPRNET is the common infrastructure for 

unclassified general administrative and training data and is the closest analogue in the 

DoD to civilian business IT Enterprise systems. The traffic is anonymized by 

transforming IP and Ethernet addresses and replacing IP and Transmission Control 

Protocol (TCP) payloads with simple checksums.  Anonymization is required to protect 

the privacy and personal information of the AFRL users.  The data collection portion of 

the scenarios we analyze was conducted in January and February of 2004 and consists of 

a 15 to 30 minute capture (scenario dependent) from three different network sensors.  

These sensors are placed at different locations in the network and operate like a 

listening/recording device.  These six separate 15–30 minute (~2 hours 15 minutes) of 

packet captures sum to approximately 4 gigabytes of total data.  To put this in context, 

this equates to about 8 hours of high definition recorded video, or about 1,000 mp3 music 

files. 

The entire project conducted more than the two attack scenarios that we address, 

but only one of these was included in the data set provided by ARL’s Network Science 

Division.  Because this attack scenario focused on an e-mail phishing attack, as described 

in Chapter I, its relevance to the other two data sets was minimal and we chose not to 

include it in our analysis.  Anonymization of the data is inherent in the design of the 

network emulation, since it does not retain any actual user activity.  This is an important 

feature due to the sensitivity of what otherwise could include personally identifiable, and 

exploitable, information. 

The Skaion dataset’s companion documentation outlines the following limitations 

that exist due to anonymization of the network traffic: 

 Cannot characterize the relative likelihoods of types of networks that 
could be used to probe another network 

 Cannot distinguish between probes, attacks, and non-malicious but broken 
traffic 

 Cannot tell when a non-standard protocol is run over a standard port (NFS 
over SMPT, or backdoors run over port 80). 
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2. Attack Scenarios 

The dataset provided by ARL’s Network Science Division was a partial dataset 

that included three attack scenarios.  We focused on two in particular, using the first 

scenario (4a4s1) as a training dataset, and the second scenario (4a4s3) as a test dataset. 

a. Dataset 4a4s1: Basic CGI-Overflow Attack 

The basic attack in this dataset is an attempt to conduct a buffer overflow 

attack against a Common Gateway Interface (CGI) script.  The CGI script allows users to 

log on and digitally sign a petition, the signatures of which are stored in an SQL database.  

The script connects with the database and uses the buffer overflow to query all the 

information in the database, gaining access to what should be protected information. 

b. Dataset 4a4s3: CGI-Overflow with Chaff 

Attack scenario 4a4s3 is similar to 4a4s1 except that the attack is preceded 

by sending sporadic requests that produce the same Snort IDS alerts as the actual attack, 

thus masking the true attempt.  

3. Summary Statistics from Scenarios 4a4s1 and 4a4s3 

Table 1 illustrates some of the major differences between the two attack 

scenarios.  The most notable difference is in the distribution of malicious activity, but the 

difference is not as clear-cut as one might initially suspect.  Because the intent of 4a4s3 is 

to create more chaff traffic to mask the intrusion, one might think this means more 

overall malicious activity, or at least a higher density of malicious activity.   

While 4a4s3 does have 47% more malicious IP addresses active within a capture 

period that is half as long as 4a4s1, the overall numbers of packets and kilobytes 

associated with these malicious IP addresses drops by 80% and 93%, respectively, from 

4a4s1 to 4a4s3.  While it makes sense that the 50% decrease in time of capture should 

necessarily decrease the amount of overall malicious traffic, this does not account for the 

fact that the overall density of malicious traffic, represented by the ratio of malicious 

activity to total activity, drops from 4a4s1 to 4a4s3 by a factor of 10. 



 

 15

Table 1.   This table lists some of the key differences between the two attack  
scenarios.  4a4s1 captures twice as much time and approximately 30% more  
data, but generates less than half the number of Diagnosis Events as 4a4s3,  
which has more attackers (25 versus 17 in 4a4s1), but is ten times less dense  
with activity from malicious IP addresses. 

Differences between 4s1/4s3 
4s1  4s3 

Capture Duration (min)  25  13 
Traffic Totals 

Kilobytes  904,634 592,336 
Packets  1,240,299 892,219 

IP Addresses  1974 1878 
Benign IP Addresses  1957 1853 
Malicious IP Addresses  17 25 
Percent Malicious IP Addresses  0.86% 1.33% 
Percent Malicious IP Packets  0.09%     0.02% 
Percent Malicious IP Kilobytes  0.10%     0.01% 

Total Conversations  23,443 16,256 
Physical Conversation  44 49 
IP Conversation  2,423 2,260 
TCP Conversation  20,165 13,041 
UDP Conversation  811 906 

All Diagnosis Events  8,507 26,884 
Application  Layer Events  2,795 2,527 

DNS Server Slow Response  11 1 
DNS Host or Domain Does Not Exist  1,132 1,270 
DNS Server Error  1,250 836 
SMTP Server Slow Response  28 21 
POP3 Server Slow Response  31 1 
POP3 Server Returned Error  299 41 
FTP Server Slow Response  8 345 
FTP Server Returned Error  1 3 
HTTP Client Error  2 2 
HTTP Suspicious Conversation  2 1 
HTTP Server Slow Response  31 6 

Transport Layer Events  5,510 24,130 
TCP Connection Refused  588 12,065 
TCP Connection Retry  1,370 696 
TCP Retransmission  102 6,796 
Illegal TCP Checksum  52 68 
TCP Slow Response  2,813 3,707 
TCP Duplicated Acknowledgement  585 798 

Network Layer Events  202 227 
Illegal IP Checksum  202 215 
General network layer fault alarm  0 12 
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Furthermore, although scenario 4a4s3 is half as long and less dense with traffic 

from malicious IP addresses by a factor of 10, the traffic those IP addresses are sending 

results in more than twice the number of diagnosis events as compared to 4a4s1 (see 

Table 1).  Diagnosis Events are system and security alerts that occur in the normal 

interaction between systems and are encoded in the packet details.  Many Diagnosis 

Events are benign indications of system performance issues and incorrect settings, but 

some can be direct indications of malicious activity.  For example, the main attacker in 

both scenarios is the only IP address to cause the alert below “HTTP Suspicious 

Conversation,” which occurred because it sent non-HTTP encoded traffic through an 

HTTP port.   

B. ACCESSING THE DATA 

Pre-processing the data for analysis represented a significant portion of our 

analytic effort, and took approximately 400 analyst-man hours (or 10 man-weeks) to 

accomplish.  More than anything else, our experience with transforming the data to a 

useful analytic form highlights the difficulties with applying statistical methods to 

computer network data, as the formats are typically not amicable to analysis.  Much of 

what follows was determined by working with software that was poorly documented—

when it was documented at all—therefore much of this work was performed by trial-and-

error.  For some Visual Basic (VBA) code used in preprocessing data, see Appendix A.  

Because of the difficulties involved with anonymization of data and 

generalization of network vulnerabilities, there are few publicly available network 

security datasets.  Those that are available can be placed in two basic categories.  The 

first is, like the Skaion dataset, largely unprocessed packet capture data accompanied by 

some kind of key which indicates attacks or attackers.  The second category comes with 

some amount of pre-processing already complete.  This type of dataset allows the analyst 

to bypass the major data storage and processing overhead and simply test models 

assuming the variables included in the dataset are sufficient. 

A good example of the second type of data set is the 1999 KDD-Cup data set.  

This is an older data set that was developed for The Third International Knowledge 

Discovery and Data Mining Tools Competition, and it is considered an industry standard 
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for testing statistical methods against network security threats [19].  The main difference 

between the KDD-cup and Skaion data sets is that the KDD-cup is presented as 

collections of comma separated values (.csv) files in which each row represents a 

connection between two IP addresses. Each row is labeled as either “normal” or as one of 

24 attack types, and each connection is described by 41 predictor variable columns.  The 

other main difference between the data sets is that KDD-cup is far more attack dense than 

Skaion.  For a more in-depth description of the KDD-cup dataset, see Appendix B. 

1. Unpacking, Opening and Exporting Data from Packet Capture Files 

Skaion captured their packet data using freeware called TCPDump, stored the 

files using the .dmp (“dump”) file extension, and compressed that file into a .tar.gz file.  

The .tar extension name is derivative of a holdover term, tape archive, which is an 

outmoded method of data capture and storage.  The .gz extension means GNU (which is a 

recursive acronym that stands for Gnu’s Not Unix) Zipped Archive file (.gz).  This 

compression method is optimized for packet data and is easily decompressed in a Unix 

environment or with open source software on a non-Unix machine.  We used a program 

called 7-Zip to decompress and unpack the .tar.gz file. 

Our choice of software for inspection and pre-processing the capture files was 

also an open source program called Capsa from Colasoft®.  This program is available in 

both free version and enterprise versions.  Because we were only viewing and processing 

already captured data and not setting up a network monitoring sensor ourselves, the 

freeware version was sufficient. 

Because Capsa could not read the .dmp file format of Skaion’s capture files, we 

used another popular network protocol analyzing software package called Wireshark 

(Development Version 1.7.0) to open the .dmp file and save it as a Wireshark capture file 

(.pcap).  Once open, Capsa was used to accomplish the following: 

1. Combine all three files and collect summary statistics on the entire capture 

file from all three sensor locations, 

2. Open each sensor capture file individually for pre-processing and export 

of data sorted by IP address, 

3. Export all IP Statistics (.csv), 
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4. Export all Diagnosis Events (.csv), 

5. Export all Diagnosis Items (.csv). 

 

Figure 2.   The datasets were manipulated exclusively in a Microsoft Windows® 
environment, using Wireshark® to convert the capture file extension so 

Capsa® could be used to extract statistics.  Microsoft Excel® was used to 
organize the data in a format exportable to SAS’s JMP® statistical software. 

2. Processing the Exported Data 

Along with the raw packet data, Skaion included an IP Address Key that 

identified the majority of IP Addresses in the file as attackers, victims, client servers, 

background attackers, background scanners or as nothing at all (these amounted to 

relatively few, and thus were assumed to be the source of additional benign background 

traffic).  These IP Keys were used to “label” the data set according to the roles the IP 

Address plays in each scenario.   

Another file, external to both Capsa and the provided capture files, was a key 

providing descriptions and the event code number to each diagnosis event.  These code 

numbers can be used as dependent variable labels and their columns would indicate how 
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many of each diagnosis event could be attributed to each IP Address.  These codes can 

also be summed by IP or conversation based on the priority of the event (Alarm, Notice 

or Information), or by the nature of the event (Security, Performance or Fault).  The file 

was not all-inclusive of every diagnosis event possible, but only the ones seen in the two 

attack scenarios in the data set.  This amounted to 18 events.  

Once the pertinent data was exported from Capsa, the following steps were 

completed in Microsoft Excel® (See Appendix A. for macro code): 

 For each sensor location (COLO, BPRD, TRUNK) and each scenario 
(4a4s1 and 4a4s3) combine IP Statistics.csv, Diagnosis Events.csv, Error 
Key.csv, and IP Key.csv, 

 Rename each tab using the following generic names: IP Stats, Diagnosis 
Events, Error Key, ip-key  

 Save file as 4a4sX XXXX IP Stats.xlsx (XXXX = COLO, BPRD or 
TRUNK),  

 Import macro module (consisting of the macros in Section C. below), 

 Run AddErrorClassColumns() macro, 

 Run DeleteCountryRows() macro, 

 Delete Column BC, then scroll down and delete all excess rows (those 
without IP addresses in Column A) at the bottom of the active worksheet, 

 Run FillErrorClassCols() macro, 

 Rename new tab “4A4SX XXX Final.xlsx,” 

 Run DeleteExtraDataTags() macro, 

 Run AddClassCols() macro, 

 Delete extra rows at the bottom of the worksheet, 

 Close active workbook and repeat for all locations and scenarios. 
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C. VARIABLES 

1. Dependent Variables 

We identify the following variables as dependent, as they are derived from the 

ground truth IP key provided by Skaion.  Their use as target variables can be enhanced by 

recoding on a binary scale (malicious IP or benign IP) or an ordinal scale (ranking of IP 

addresses by their relative threat levels).  There is only one main attacker IP address in 

each data set, and there are 23 and 24 background attackers and scanners in 4a4s1 and 

4a4s3, respectively. 

These dependent variables can be explored from two different perspectives in this 

data set.  One way to organize the data is by IP address, which yields one row of data for 

each of the 1,976 or 1,883 IP addresses in each attack scenario.  The other method is from 

the perspective of connections, or conversations, between two different IP addresses.  We 

address the advantages, disadvantages and model performance from both perspectives. 

Table 2.   IP Key and ground truth of dependent variables. IP classifications can be  
ranked categorically by classifier, by ordinal threat level, or by a binary flag 
indicating malicious or benign.  These recoded classifiers help facilitate multiple 
modeling methods. 

Key 
Classification 

Explanation Binary 
Recoding 

Ordinal 
Recoding 

No. 
4a4s1 

No. 
4a4s3

ATTACKER 
Primary attacker of interest (only 
one in each file) 

MALICIOUS 
(1) 

4 1 1 

BACKGROUND 
ATTACKER 

Attackers inherent in the Skaion 
ARDA test bed design, provided for 
realism 

MALICIOUS
(1) 

3 4 5 

BACKGROUND 
SCANNER 

Scanners inherent in the Skaion 
ARDA test bed design, provided for 
realism 

MALICIOUS
(1) 

2 21 21 

CHAFF 

Attackers provided in 4a4s3which 
emulate characteristics of the actual 
attacker’s behavior in order to mask 
the actual attacker’s origin/identity 

BENIGN (0) 1 0 5 

SERVER Neutral role description BENIGN (0) 0 1596 1509 
CLIENT Neutral role description BENIGN (0) 0 289 277 

VICTIM Target of ATTACKER  BENIGN (0) 0 1 1 

[Blanks] 
Unclassified (benign) background 
traffic 

BENIGN (0) 0 65 64 

TOTAL    1976 1883 
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2. Predictor Variables 

We divide the dependent variables into three categories based on their sources. 

The first set comes from comma separated value (.csv) files within the data set that give 

IP address role predictions of four different intrusion detection (IDS) tools.  These 

predictions are similar in format to the dependent variables described in Table 1.  We 

refer to these variables as Tool Predictions.  The IDS tools used by Skaion were Dragon, 

and three different versions of Snort (versions 1.2.1, 2.3.2, and 2.4.1).  The basic 

differences between the rule sets for these tools are described in Appendix X, but the 

scope of this thesis does not include an in-depth discussion or analysis of these rule sets.  

Rather, we utilize these tools as a radar operator may view four different radar systems 

designed to detect different types of threats or operate better in different types of 

environments.  Leveraging the responses from these tools allows us to explore methods 

of comparing IDS performance and determining how to best utilize the valuable 

information provided by these tools and their highly contextual rule sets. 

The second set of variables, which we will refer to as Diagnostic Events, are 

summations of the types and severity levels of alarms generated by the Capsa software 

we used to access the packet data.  Like the Tool Predictions, the coding and computing 

overhead associated with generating the responses is already completed by the software, 

so collecting the data for these variables is a simple process that consists of exporting the 

event log using the software’s graphics user interface (GUI) and associating the alarms 

with IP addresses in the main data set.  The categories and codes associated with the 

different alarms are described in Table 2. 

The third set of variables, which we refer to as Conversation Statistics, reflect 

the nature of the data transfer that occurs between two IP addresses.  These variables are 

listed and described in Table 3. 

The following predictor variables represent aggregated network statistics for each 

individual IP address collected over approximately a 15 minute window.  The data was 

analyzed and aggregated using a combination of Wireshark and Capsa.  These programs 

decompress, decode and organize data stored in packet form so that it can be reorganized 
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and output in .csv or .xls file formats for statistical analysis.  The variables described in 

Table 3 result from organizing the packet statistics by IP Address.  They describe the 

behavior of each IP address in its role as an originator or end receiver of data. 

Table 3.   Predictor variables.  Generated from data encoded in packets, these variables 
provide easily aggregated numerical statistics describing the network behavior of 
a particular IP address over a short time period (continued on next page). 

PREDICTOR VARIABLES 

INTRUSION DETECTION SYSTEM (IDS) PREDICTION CATEGORY 

SNORT 2.1.2 
IP role prediction generated by the SNORT IDS, version 2.1.2 (see Table 2 
for values) 

SNORT 2.3.2 
IP role prediction generated by the SNORT IDS, version 2.3.2 (see Table 2 
for values) 

SNORT 2.4.1 
IP role prediction generated by the SNORT IDS, version 2.4.1 (see Table 2 
for values) 

Dragon  IP role prediction generated by the Dragon IDS (see Table 2 for values) 

IP CONVERSATION STATISTICS CATEGORY 

Name  IP Address 

Bytes  Number of total bytes (in kilobytes) sent or received by the IP address 

Packets  Number of total packets sent or received by the IP address 

Bytes Received  Number of bytes received by the IP address (in megabytes) 

Packets Received  Number of packets received by the IP address 

Bytes Sent  Number of bytes sent by the IP address (in megabytes) 

Packets Sent  Number of packets sent by the IP address  

Protocol  The type of information being sent (TCP, HTTP, etc.) 

Source Port  The port used by the sender (i.e., Port 80 for HTTP traffic) 

Destination Port  The port used by the recipient 

DIAGNOSTIC EVENTS 

NUMBER ALARMS 
Total number of alerts with a priority level “alarm” generated by the IP 
Address 

HTTP Suspicious 
Conversation 

A HTTP 80/TCP connection contains non‐HTTP traffic. 

TCP Duplicated 
Acknowledgement 

Number of times a TCP ACK packet is captured more than 3 times. This is 
a performance fault generated either because of a mis‐sequence or 
retransmission of a lost packet. 

NUMBER NOTICES 
Total number of Total number of alerts with a priority level “notice” 
generated by the IP Address 

DNS Server Error 
A DNS Server returns an error except “host name or domain name which 
client requests is inexistent,” which means the client requests or domain 
fail to return. 

SMTP Server Slow  The average server response time is equal to or higher than the Slow 
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Response  Response Time threshold. 

HTTP Server Slow 
Response 

The average server response time is equal to or higher than the Slow 
Response Time threshold. 

NUMBER 
INFORMATIONS 

Total number of Total number of alerts with a priority level 
“information” generated by the IP Address 

TCP Connections Refused 

Number of times a client’s initial TCP connection has been rejected by the 
target host.  This fault is generated either because a client is requesting a 
service a host does not offer or the server is overloaded and cannot 
establish new connections. 

Repeated Attempts to 
Establish TCP Connection 

Number faults generated due to a client making repeated unsuccessful 
attempts to establish a TCP connection.  This could be due to a firewall 
blocking the synch (SYN) request packet from the server to the client. 

TCP Retransmissions 

Number of times an IP address resubmits a packet.  This is a network 
performance problem due to network or receiver overload, or a network 
delay causing acknowledgement packets to be sent slower than the 
incoming packets. 

TCP Checksum Error 

Number of times a TCP header contains an erroneous checksum.  This 
fault could be due to a faulty device in the network or, if all local packet 
checksums are invalid, it is due to an incorrect setting (checksum offload 
function enabled). 

TCP Slow Response 
The number of times an IP address generates a fault due to the average 
response time of TCP connections exceeds the average response time of 
the connection plus the Slow ACK Time threshold. 

DNS Host of Domain Does 
Not Exist 

Host name or Domain name which client requests does not exist. 

FTP Server Slow 
Response 

The average server response time is equal to or higher than the Slow 
Response Time threshold. 

FTP Server Returned 
Error 

A FTP connection or request is rejected by a FTP server after a TCP 
connection has already been established. 

Illegal IP Checksums 

Number of times a packet has an error in the checksum of an IP header. 
The checksum value is calculated by the sender and written to the packet, 
and then recalculated from the received packet by the receiver. It 
indicates an error if the two values are different. This is typically caused 
by a faulty device in the network (Colasoft help). 

HTTP Client Error 
HTTP server returns a 4xx error code other than 404 (Request Not Found) 
to indicate a client error. The client's request is incomplete or forbidden. 

Table 3. Predictor variables (Continued from previous page). 
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III. METHODOLOGY 

The regression results in Chapters III and IV are generated by default models in 

SAS’s statistics package, commonly referred to as “JMP” (Pro Version 10), implemented 

on a Gateway ZX6971 with an Intel® Pentium® 260GHz processor running the 64-bit 

Windows 7 Home Premium operating system with 4 GB RAM.  For details reference the 

online JMP documentation [20]. 

During data exploration, we experimented with several methods including neural 

networks, classification and regression trees, and clustering.  Given the same types of 

variables, these methods either returned results that were less accurate than logistic 

regression or achieved better predictive results through over-fitting the data. 

A. EXPLORING DEPENDENT VARIABLE PERSPECTIVES 

The data created by Skaion is “labeled” according to the roles played by 

individual IP addresses (attacker, background attacker, background scanner, victim, 

server, etc.).  In other words, whether the data is sorted by IP address (~2000 rows), 

conversations (~20,000 rows), or packets (~500,000 rows), ultimately the value taken by 

the response variable is directly related to the labeled role of the IP address, the IP 

address associated with the machine initiating a connection, or the source IP address of 

the packet. 

Sorting the data by packets allows the most detailed analysis because the data is 

broken down to its most basic level.  Unfortunately, because our data set does not label 

individual packets as being specifically malicious, we cannot achieve any more resolution 

beyond a particular packet’s association with a maliciously labeled IP address as its 

originator.  We could label each packet according to its source, but we would be 

assuming that every packet sent by a malicious IP address is a malicious packet.  While 

this method of labeling may be sufficient for the purpose of characterizing the behavior 

of a malicious IP address, it is counterproductive to the purpose of classifying benign and 

malicious packets because it classifies benign packets from malicious IP addresses as 

malicious, which makes benign packets from benign IP addresses less distinguishable. 
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Sorting the data by IP address condenses the data into the fewest number of rows, 

but has the limitation of aggregating predictor data in such a way as to limit the 

sensitivity of prediction and classification models by decreasing the dispersion of the 

data.  For example, at the packet level one can determine the number of bytes contained 

within the packet, but at the IP level, only the mean, median and standard deviation of all 

the packets sent by that IP address for the entire time period can be captured.  While this 

level of data can still be useful, the processing required for collection and calculation of 

that data for each IP address is computationally expensive.  

The compromise between these two approaches is to organize the data and collect 

aggregated statistics associated with the conversations (or connections) between IP 

addresses.  This preserves more resolution than aggregating statistics by IP address, but 

also compresses the data more than packet-based analysis.  While the aggregation is 

somewhat more contextual than IP-based organization, because of the labeling scheme, it 

is still necessary to assume that every conversation originating with a maliciously labeled 

IP address is a malicious conversation. 

Finally, the choice of whether to code the response variable as either categorical 

or binary depends on the goal of the analysis.  From a practical perspective, as long as the 

malicious conversations are distinguished from the benign, the binary response variable 

sufficiently separates the signal and the noise from the perspective of a network security 

analyst.  On the other hand, if one desires to know which categories of activity are more 

or less reliably modeled, then the categorical coding should be used.  

B. SELECTING PREDICTOR VARIABLES FOR ORDINAL LOGISTIC 
REGRESSION 

Each of the three main categories of predictor variables has its own set of 

advantages.  Use of the Intrusion Detection System (IDS) tool prediction values return 

zero false positives because they are designed to maximize specificity, which means their 

resulting low sensitivity makes their detection rate as a group relatively low.  The 

Diagnostic Event variables are easy to access and collect, but perform very poorly as 

predictors due to their high sensitivity.  IP Conversation statistics alone perform better 
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than the other two categories in terms of detection percentage, but not well enough to 

stand on their own.  Our task is to determine how best to combine or layer these 

predictors to maximize detection rates while minimizing false positive rates. 

1. Comparison of IDS Tools: 

While all four IDS tools are distinct in terms of their rule sets, SNORT 2.3.2 and 

SNORT 2.4.1 respond identically to each other in the context of this data set, thus for our 

purposes they are interchangeable. Furthermore, neither tool makes any novel predictions 

as compared to SNORT 2.1.2 and Dragon, so for our purposes they are identical.   

Table 4 shows the different prediction performance of these IDS tools taken 

independently.  All three have a 0% false positive rate. Although SNORT 2.1.2 is the best 

performer, with an overall detection rate of only 21.5% it is by no means a suitable stand-

alone detection tool.  When combined with Dragon’s unique positive predictions, they 

detect 29.3% of the intrusions.  Table 4 presents the confusion matrix for the various 

tools, which compares the true and false positive rates of the various tools with ground 

truth. 

Table 4.   The highlighted diagonals show false positive (top right) and false negative 
(bottom left) for each of the tools.  SNORT 2.1.2 and Dragon perform well 
against the main attacker (4) and background attackers (3), but misclassify 
background scanners (2) as benign (0).  Although the tools do not make a 
prediction for chaff (1), they correctly distinguish the chaff from the main 
attacker, which is desirable.  SNORT 2.4.1 performs worst and adds no value as a 
predictor since the main attacker is missed and it makes no additional detections 
from those already covered by the first two IDS tools. 

IDS Tool Confusion Matrices 

 
SNORT 2.1.2  Dragon SNORT 2.4.1  

0 2 3 4 0 3 4 0 2 3
Ground 
Truth 

Row% Row % Row % Row % Row % Row % Row % Row % Row % Row %

0 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
1 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
2 85.81% 14.19% 0.00% 0.00% 100.00% 0.00% 0.00% 94.19% 5.81% 0.00%
3 14.29% 0.00% 85.71% 0.00% 28.57% 71.43% 0.00% 35.71% 0.00% 64.29%
4 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00%
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2. IP Conversation Statistics and Diagnostic Events 

By themselves in a logistic regression, the IP Conversation Statistics group of 

variables accurately detects 66% of the threats against a categorical response variable and 

68% against a binary response variable, but this higher detection comes at the expense of 

.61% false positive rate.  Because only 1.2% of the data meets the threshold for a 

malicious prediction, this level of performance means that more than half of the hits 

resulting from the regression are false positives.  It is important in this context to 

remember the size of the dataset and realize that .61% translates in real terms to 

approximately 270 false positive events per sensor, per hour. 

Diagnostic events, on the other hand, provide virtually no prediction value at all.  

Because the alerts are spread so evenly across benign and malicious traffic alike, there is 

no resolution among them and therefore no added value from the variables as a group in a 

logistic regression.   

C. ORDINAL LOGISTIC REGRESSION RESULTS: GROUPED 
VARIABLES 

Tables 5 and 6 display modeling results for variables by category based on their 

performance in first-order ordinal logistic regression models.  The statistics in these 

tables indicate that misclassification rates alone are not a good indication of the 

suitability of a model.  First of all, because less than 1% of the data is malicious, there is 

little resolution among the misclassification rates.  Second, the penalties for false positive 

predictions are the same as false negative predictions even though false negatives are less 

desirable.  For example, Diagnostic Events—which classify every record as benign—

achieve a lower misclassification rate than all but two of the models due to their higher 

false positive rates.  Thus, we use the ratio of detection rates to false positive rates to 

compare predictive performance. 
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Table 5.   The green to red trends indicate relative goodness of the variable group statistics 
in the context of ordinal logistic regression.  The best performing individual group 
is IP Stats and the best combination of groups is the IP Stats and IDS predictions.  
The negative contribution of the Diagnostic Event variables individually and as an 
addition to the others in a logistic regression model is made clear by the drop in 
performance in the far right column. 

Logistic Regression Statistics Using Ordinal Response Variable 

 

Table 6.   Similar to Table 5, the results from the same modeling techniques applied to a 
binary response variable show marginal benefits in false positive rate.  The basic 
trends remain consistent, however.  IP Stats and IDS predictions are the best 
group combination. 

Logistic Regression Statistics Using Binary Response Variable 

 

Diagnostic 

Events IDS Pred.

IP Conv. 

Stats

IDS Pred., 

Diagnostic 

Events

IP Conv. Stats, 

Diagnostic Events

IP Conv. 

Stats, IDS 

Pred.

IP Conv. Stats, IDS 

Pred., Diagnostic 

Events

Chi2 4.52 138.57 812.58 142.48 812.58 882.81 882.81

‐LL Difference 2.26 69.28 406.29 71.24 406.29 441.41 441.41

RMSE 0.0993 0.0860 0.0917 0.0860 0.2638 0.0891 0.0897

AIC 952.06 822.02 160.04 824.12 174.09 99.85 113.91

N(validation) 10890 10890 10890 10890 10890 10890 10890

Misclassification Rate

Training 0.0062 0.0054 0.0016 0.0054 0.0017 0.0004 0.0004

Validation 0.0099 0.0074 0.0102 0.0074 0.0716 0.0092 0.0093

Validation Performance

True Positives 0 27 65 27 65 75 74

True Negatives 10890 10863 10759 10863 10090 10749 10750

False Positives 0 0 66 0 735 66 66

False Negatives 98 71 33 71 33 23 24

Intrusion Detection% 0.0000 0.2755 0.6633 0.2755 0.6633 0.7653 0.7551

False Positive % 0.0000 0.0000 0.0061 0.0000 0.0681 0.0061 0.0061

Overall Accuracy % 1.0000 1.0000 0.9939 1.0000 0.9325 0.9939 0.9939

Detection%/False Pos% 0.00 0.00 108.45 0.00 9.74 125.14 123.47

Diagnostic 

Events

IDS 

Pred.

IP Conv. 

Stats

IDS Pred., 

Diagnostic 

Events

IP Conv. Stats, 

Diagnostic Events

IP Conv. 

Stats, IDS 

Pred.

IP Conv. Stats, IDS 

Pred., Diagnostic 

Events

Chi2 4.52 102.98 835.26 106.86 798.45 847.19 847.19

‐LL Difference 4.52 51.47 417.63 53.43 399.22 423.60 423.60

RMSE 0.0944 0.0805 0.0890 0.0804 0.3686 0.0827 0.0891

AIC 910.43 801.99 95.72 812.09 146.58 87.80 101.86

N(validation) 10890 10890 10890 10890 10890 10890 10890

Misclass Rate

Training 0.0062 0.0054 0.0013 0.0054 0.0015 0.0004 0.0004

Validation 0.0090 0.0065 0.0092 0.0065 0.1378 0.0081 0.0094

Validation Performance

True Positives 0 27 67 27 64 75 75

True Negatives 10890 10863 10754 10863 9359 10750 10736

False Positives 0 0 69 0 1467 65 79

False Negatives 98 71 31 71 34 23 23

Detection% 0.0000 0.2755 0.6837 0.2755 0.6531 0.7653 0.7653

False Pos% 0.0000 0.0000 0.0064 0.0000 0.1359 0.0060 0.0073

Overall Accuracy % 1.0000 1.0000 0.9937 1.0000 0.8653 0.9940 0.9927

Detection%/False Pos% 0.00 0.00 106.93 0.00 4.80 127.06 104.55
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Although Diagnostic Events as a group showed poor results, we considered that 

individual variables within the group may have some significance in the presence of 

variables from the other groups.  To investigate this possibility as well as whether a better 

model could be achieved with a mix of variables from each of the three variable groups, 

we began with a full first order logistic regression model and conducted backwards 

elimination.  We eliminated variables one at a time based on their individual performance 

in the presence of the other variables.   

The variable elimination criteria were as follows: variables with = 0 were 

eliminated, then those with Standard Error = 0, followed by those with the least 

significant chi-squared (2) statistics. After eliminating each variable, the resulting model 

performance was checked using a validation set.  The process was stopped when the 

AICc reached a local minimum. 
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IV. RESULTS 

A. ORDINAL LOGISTIC REGRESSION RESULTS: MIXED MODEL 

Ultimately, the Diagnostic Event variables were eliminated early and were not 

included in the final model, however a combination of IP Conversation Statistics and IDS 

Tool Predictions did yield an improved model.  It should be noted here that the process 

was repeated with the Source Port and Destination Port variables coded as ordinal as well 

as categorical.  Although categorical coding of the port numbers is more appropriate, 

JMP’s ordinal logistic regression algorithm would only converge with them coded as 

ordinal.  Ultimately, both port variables were eliminated, but an argument could be made 

on behalf of the advantages of each coding method.   

Table 7 shows the progression of the elimination steps.  We use minimum AICc 

as a stopping rule to identify a suitable model that avoids over-fitting.  In the several runs 

we attempted, using different variable coding methods, we noted that although the model 

resulting with the step after minimum AICc occurs was typically an improvement in 

prediction performance, it was usually also accompanied by a sharp increase in AICc, 

thus suggesting the improvement was due to over-fitting.  The parameters we eliminated 

in the final model are listed below in the order of their elimination: 

Step 1: NumberSecurity (Diagnostic Event) 
Step 2: NumberFault (Diagnostic Event) 
Step 3: Duration (IP Conversation Statistics) 
Step 4: NumberInfomation (Diagnostic Event)  
Step 5: NumberNotices (Diagnostic Event) 
Step 6: NumberPerformance (Diagnostic Event) 
Step 7: Packets Received (IP Conversation Statistics) 
Step 8: Bytes Received (IP Conversation Statistics) 
Step 9: NumberAlarms (Diagnostic Event) 
Step 10: Number of Diagnostic Events (Diagnostic Event) 
Step 11: Dragon (IDS Prediction) 
Step 12: Protocol (IP Conversation Statistic) 
*Step 13: Bytes (IP Conversation Statistic) 
*Step 14: Packets (IP Conversation Statistic) 
 
* Steps 13 and 14 taken to observe further performance trends only. 
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Table 7.   At the 11th and 12th steps, the model reaches its minimum AICc  
(the stopping rule).  After the 12th step, performance against the training set 
declines.  Each of the four previous models (9-12) performs statistically similarly 
on the training set, so using AICc as the stopping criterion minimizes the 
likelihood of an over-fit model.  The performance statistics at the bottom show 
that the same four models return identical results up to the 12th step.   
Beyond the 14th step, the model fails to converge. 

Stepwise Model Statistics and Training Set Performance 

   VARIABLE ELIMINATION STEPS 

  Full  1  …  10  11  12  13*  14* 

ChiSquare  835.25  835.25  835.25  835.25  835.25  835.25  788.27  788.27 

RSquare  0.9291  0.9291  0.9291  0.9291  0.9291  0.9291  0.8769  0.8769 

Entropy R^2  ‐0.073  ‐0.023  0.1876  0.1844  0.1771  0.1746  0.4547  0.45 

Generalized R^2  ‐0.078  ‐0.024  0.1955  0.1922  0.1847  0.1821  0.4671  0.4627 

Mean ‐Log p  0.0551  0.0551  0.0417  0.0419  0.0423  0.0424  0.028  0.0282 

RMSE  0.0843  0.0843  0.0757  0.0757  0.0757  0.076  0.0723  0.0719 

‐Loglikelihood Difference  417.62  417.62  417.62  417.62  417.62  417.62  394.14  394.14 

AICc  109.78  105.77  93.73  91.73  89.72  87.72  122.67  118.67 

BIC  279.46  260.69  204.41  195.03  185.65  176.26  166.95  148.19 

Mean Abs. Dev.  0.0089  0.0089  0.0076  0.0076  0.0076  0.0076  0.0077  0.0076 

Training Observations  11862  11862  11862  11862  11862  11862  11862  11862 

Total Detections  89  89  89  89  89  89  101  101 

True Positives  74  74  74  74  74  74  74  74 

True Negatives  11773  11773  11773  11773  11773  11773  11761  11761 

False Positives  15  15  15  15  15  15  27  27 

False Negatives  0  0  0  0  0  0  0  0 

Detection %  1  1  1  1  1  1  1  1 

Accuracy %  0.9987  0.9987  0.9987  0.9987  0.9987  0.9987  0.9977  0.9977 
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Table 8.   The 13th step returns the best predictive value because it is over-fit.   
The 12th step has sufficient accuracy and detection rates, with better protection 
against over-fitting. 

Stepwise Model Test Set Performance 
   VARIABLE ELIMINATION STEPS 

   Full  1  …  10  11  12  13  14 

    

Validation Observations  10890  10890  10890  10890  10890  10890  10890  10890 

Total Detections  163  163  150  150  150  149  156  151 

True Positives  81  81  82  82  82  81  83  81 

True Negatives  10710  10710  10724  10724  10724  10724  10727  10722 

False Positives  82  82  68  68  68  68  73  70 

False Negatives  17  17  16  16  16  17  15  17 

Detection %  82.65  82.65  83.67  83.67  83.67  82.65  84.69  82.65 

Accuracy %  99.09  99.09  99.23  99.23  99.23  99.22  99.27  99.2 

 

Table 9.   Final ordinal regression model parameters and their estimates. High 
multicollinearity among the variables means that many variable combinations can 
combine to make comparably good models, but results in high standard errors and 
low significance among the predictor variables.   

Mixed Ordinal Regression Model Parameter Estimates 
Term Estimate () Std Error ChiSquare (2) Prob>ChiSq 

Intercept [0] -18.772168 2568.1529 0 .9942 

Bytes -75.588597 15281.839 0 .9961 

Bytes Sent 28.2899936 7037.365 0 .9968 

Packets 103.856275 21718.97 0 .9962 

Packets Sent -83.156536 19618.83 0 .9966 

SNORT 2.1.2 -934.5543 182404.1 0 .9959 

 

Ultimately, high multicollinearity among the variables means that many variable 

combinations can combine to make comparably good models.  For example, an 

alternative method of eliminating variables in order of their standard errors (from high to 

low) results in models of similar fit and predictive quality, but standard errors of zero and 

Chi-Square statistics of 10,000 (which is the default value the JMP software enters rather 

than “undefined” due to the zero value in the denominator of the Chi-Square calculation). 

Because we suspect these regression results are due to highly correlated predictor 
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variables, and that this is due to the lack of sophistication of the predictor variables, we 

apply the same method to the 1999 KDD Cup dataset in the next section in order to test 

whether more sophisticated predictor variables result in a logistic regression model that is 

both sufficiently predictive and significant. 

To evaluate our predictive performance among the different categories of activity, 

we fit a new logistic regression using the same five predictor variables, but instead of 

using a binary response variable (0=Benign, 1=Malicious), we partitioned the response 

variable into its five ordinal categories to show clearly how well the model predicts each 

one.  The ability to correctly predict normal (Benign) conversations is quite good, with 

99.33% of normal conversations accurately predicted.  Background Scanner 

conversations, which were confused with either Benign or Attacker conversations, were 

the most misclassified, at 72.94% accuracy.  As the next section will describe, these are 

strong results when compared against the KDD-99 competition results. 

Table 10.   Confusion matrix results of ordinal logistic regression versus the Skaion test 
dataset. The bottom marginal values show the percentage of correct predictions 
made for that column (i.e., 99.77% of the “normal” predictions were actually 
“normal”).  The marginal percentages on the right show the percentage of each 
category that were correctly identified (i.e., 99.33% of “normal” connections were 
predicted correctly). It is also interesting to note that the model correctly filters 
chaff from the categories of records that require further inspection.  This occurs 
despite 1) the Chaff connections were designed to mimic the Attacker’s signature 
in order to mask the Attacker’s origin, and 2) there is no chaff in the training 
dataset so that the model can define it. 

Skaion Ordinal Logistic Regression Model (Test Set) 

  PREDICTED           

ACTUAL  Benign (0)  Chaff (1) 
Bkgrd 
Scan (2) 

Bkgrd 
Atk (3) 

Attacker 
(4) 

Benign (0)  10710  0 72 0 0  99.33% 

Chaff (1)  10  0 0 0 0  0.00% 

Bkgrd Scan (2)  13  0 62 0 10  72.94% 

Bkgrd Atk (3)  2  0 0 9 0  81.82% 

Attacker (4)  0  0 0 0 2  100.00% 

99.77%  0.00%  46.27%  100.00%  16.67% 

 



 

 35

Table 11.   The winning results score (or “cost”) 0.2331 per observation.  The bottom 
marginal values show the percentage of correct predictions made for that column 
(i.e., 74.61% of the “normal” predictions were actually “normal”).  The marginal 
percentages on the right show the percentage of each category that were correctly 
identified (i.e., 99.45% of “normal” connections were predicted correctly). 
From  [19]  

1999 KDD Cup Winning Results (Based on Training Dataset) 

  PREDICTED           

ACTUAL  0  1  2  3  4 

0  60262  243 78 4 6  99.45% 

1  511  3471 184 0 0  83.32% 

2  5299  1328 223226 0 0  97.12% 

3  168  20 0 30 10  13.16% 

4  14527  294 0 8 1360  8.40% 

74.61%  64.81% 99.88% 71.43% 98.84% 

 

It is worth noting that the results posted on the KDD Cup results web page report 

performance against the training set only.  To compare the performance of nominal 

logistic regression against that of the 1999 KDD Cup winner in the next section, we 

report performance against both the training set (Table 14) and the test set (Table 15).   

B. KDD-99: VALIDATION OF LOGISTIC REGRESSION AS A 
CLASSIFIER  

1. KDD-Cup Scoring Method 

The competition participants were scored relative to one another based on the 

application of the cost entries in Table 12 to each misclassification made by the fitted 

models and divided the sum by the total number of observations (311,029) to achieve an 

average cost per observation.  The scores range from the winning score of 0.233 to 

0.9414.  The distribution of the results among the 24 participants is shown in Table 13.   

The winner of the 1999 KDD Cup, Bernhard Pfahringer of the Austrian Research 

Institute for Artificial Intelligence, achieved the results shown in Table 11 using decision 

trees with bagging and boosting [21].  The different modeling techniques used by the 

participants resulted in narrow margins of performance among the top 17 performers, but 
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it is worth noting within the results that 8th best submission used a simple 1-nearest 

neighbor classifier to achieve a score of 0.2523 [19]. 

 

Table 12.   The 1999 KDD Cup competition categorized attacks based on type, similar to our 
method.  The values in this matrix are multiplied by each number in the 
classification matrices used to report predictions.  The objective is to minimize 
the cost incurred by making correct predictions, thus maximizing the sum along 
the diagonal so that no cost is incurred. The cost matrix establishes penalties such 
that the overall cost (or score) for classifying every observation as “probe” is 
approximately 1.0, provided categories U2R (3) and R2L (4) are relatively rare. 
From [19]  

 

Table 13.   KDD Cup Participant Scores. The results varied widely, with a mean=0.3114, 
median=0.2548 and standard deviation=0.1468.  The best 17 submissions all 
performed well, and final 7 submissions (scores of 0.2952 and greater) are 
considered inferior. From [19] 

1999 KDD Cup Cost Matrix 
PREDICTED 

ACTUAL  normal (0)  probe (1)  DOS (2)  U2R (3)  R2L (4) 

normal (0)  0 1 2 2  2 

probe (1)  1 0 2 2  2 

DOS (2)  2 1 0 2  2 

U2R (3)  3 2 2 0  2 

R2L (4)  4 2 2 2  0 

KDD Cup Participant Scores 

0.2331 (Winner)  0.2474 0.2552 0.3344 

0.2356  0.2479 0.2575 0.3767 

0.2367  0.2523 0.2588 0.3854 

0.2411  0.253 0.2644 0.3899 

0.2414  0.2531 0.2684 0.5053 

0.2443  0.2545 0.2952 0.9414 
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2. Logistic Regression Performance on the KDD-99 Dataset 

While the previous comparison of our logistic regression results with the Skaion 

dataset against the results of the 1999 KDD Cup showed better performance, we 

determine the comparison to be biased for two main reasons: 1) our response variable 

categories are much broader, and 2) our dataset is far less dense with attacks.  

Additionally, the Chi-Squared statistics of the variables within the model were not 

significant. 

To show the strength of logistic regression as a classifier, we used a similar 

backwards variable elimination process to determine a good logistic regression fit of the 

KDD-99 data.  Because the KDD-99 dataset had such a large number of variables, we 

first divided the variables into four different models.  Three of the sets were divided per 

the three feature categories described in the online task descriptions (see Appendix B), 

and the remaining variables comprised the fourth model.  Significant variables from each 

model were chosen to be included in the “full” model of 34 variables.  This model was 

then used to run backwards stepwise regression, using AICc as a stopping rule.  

The regression model parameters from our resulting best model, provided in 

Table 14, show that the significance of the KDD-99 predictor variables is much higher 

than those we chose for the Skaion dataset.  This both highlights the importance of 

variable development as well as validates the utility of logistic regression as a predictor. 
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Table 14.   Nominal logistic regression model parameters for the KDD-99 dataset show that the significance of the variables  
is improved dramatically over those of the Skaion dataset. 

Term Estimate Std Error ChiSquare Prob>ChiSq Estimate Std Error ChiSquare Prob>ChiSq Estimate Std Error ChiSquare Prob>ChiSq Estimate Std Error ChiSquare Prob>ChiSq

Intercept 16.618 1.3675 147.66 <.0001 ‐4.3042 1.418 9.21 0.0024 ‐4.9307 1.3866 12.64 0.0004 7.7133 3.6772 4.4 0.0359

count 0.0025 0.0111 0.05 0.8207 0.0091 0.0111 0.68 0.4098 0.0108 0.0111 0.94 0.3316 ‐0.0514 0.085 0.37 0.5454

srv_count 0.3648 0.0138 694.88 <.0001 0.3514 0.0139 639.36 <.0001 0.3568 0.0138 664.67 <.0001 0.3046 0.0753 16.37 <.0001

serror_rate ‐3.7385 11.226 0.11 0.7391 ‐0.8053 11.231 0.01 0.9428 7.2828 11.24 0.42 0.517 ‐225.24 137743 0 0.9987

srv_serror_rate 4.8322 11.237 0.18 0.6672 5.5038 11.242 0.24 0.6244 ‐2.4976 11.251 0.05 0.8243 ‐237.95 184245 0 0.999

rerror_rate ‐1.2876 0.6274 4.21 0.0401 4.6953 0.7056 44.28 <.0001 9.9407 0.7789 162.88 <.0001 ‐63.878 69489 0 0.9993

srv_rerror_rate ‐0.0043 0.6861 0 0.995 ‐1.8642 0.8768 4.52 0.0335 ‐8.518 0.8362 103.78 <.0001 ‐156.98 100343 0 0.9988

same_srv_rate ‐10.008 1.3228 57.24 <.0001 0.3431 1.3329 0.07 0.7969 ‐6.9594 1.3278 27.47 <.0001 ‐7.4418 3.5321 4.44 0.0351

diff_srv_rate ‐4.1345 0.693 35.6 <.0001 7.6566 0.7308 109.77 <.0001 ‐5.0916 0.7438 46.86 <.0001 ‐6.3973 3.4364 3.47 0.0627

srv_diff_host_rate 6.5204 0.4053 258.77 <.0001 9.2252 0.4645 394.49 <.0001 ‐0.3839 0.4516 0.72 0.3953 2.9911 0.9283 10.38 0.0013

dst_host_count ‐0.0285 0.001 858.91 <.0001 ‐0.0179 0.0014 153.51 <.0001 0.0168 0.0012 209.42 <.0001 ‐0.0154 0.0025 39.08 <.0001

dst_host_srv_count 0.027 0.0011 583.1 <.0001 0.037 0.002 359.75 <.0001 ‐0.002 0.0013 2.32 0.1277 ‐0.0118 0.0047 6.34 0.0118

dst_host_same_srv_rate ‐6.8489 0.2835 583.67 <.0001 ‐13.768 0.5573 610.43 <.0001 3.2142 0.3731 74.22 <.0001 ‐6.1091 0.7469 66.91 <.0001

dst_host_diff_srv_rate 17.113 1.0968 243.42 <.0001 17.61 1.1379 239.5 <.0001 17.239 1.1168 238.25 <.0001 18.875 1.3552 194 <.0001

dst_host_same_src_port_rate 2.4641 0.282 76.34 <.0001 12.923 0.3979 1054.7 <.0001 11.905 0.2984 1592.1 <.0001 5.144 0.6859 56.25 <.0001

dst_host_srv_diff_host_rate ‐0.7625 1.1369 0.45 0.5024 14.152 1.2364 131.01 <.0001 6.5764 1.1932 30.38 <.0001 2.7699 1.4038 3.89 0.0485

dst_host_serror_rate 7.5285 3.1889 5.57 0.0182 13.729 3.2349 18.01 <.0001 13.187 3.1904 17.08 <.0001 9.8995 3.2412 9.33 0.0023

dst_host_srv_serror_rate ‐0.611 2.8998 0.04 0.8331 10.766 2.956 13.26 0.0003 11.595 2.8926 16.07 <.0001 6.5888 3.0899 4.55 0.033

dst_host_rerror_rate ‐4.203 0.4852 75.04 <.0001 5.195 0.5351 94.27 <.0001 8.5551 0.5149 276.07 <.0001 ‐2.5496 1.1112 5.26 0.0218

dst_host_srv_rerror_rate ‐3.7988 0.445 72.89 <.0001 ‐0.3508 0.7167 0.24 0.6245 ‐2.7576 0.5346 26.61 <.0001 1.0217 0.9286 1.21 0.2712

logged_in 0.256 0.0275 86.95 <.0001 ‐2.8125 0.3687 58.19 <.0001 3.6662 0.0712 2654.8 <.0001 2.4158 0.3253 55.15 <.0001

is_guest_login ‐2.9538 0.1857 253.04 <.0001 ‐23.214 187745 0 0.9999 4.5302 0.1936 547.36 <.0001 ‐2.7602 0.6608 17.45 <.0001

num_file_creations 1.9007 0.8664 4.81 0.0282 ‐22.457 234978 0 0.9999 ‐4.0126 1.2211 10.8 0.001 1.9221 0.8665 4.92 0.0265

is_host_login ‐7.2283 1.4508 24.82 <.0001 ‐28.581 1E+06 0 1 ‐6.7878 1.5003 20.47 <.0001 ‐2.3971 1.2229 3.84 0.05

Log Odds for 0/4 Log Odds for 1/4 Log Odds for 2/4 Log Odds for 3/4
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As with the Skaion dataset, we attempted both nominal and ordinal logistic 

regression, and in the case of KDD-99 we found nominal coding of the response 

variables led to earlier convergence of the model (i.e., model converged after fewer 

variable elimination steps).  Our results against the training set, shown in Table 15, 

represent a 7.8% improvement over the winning results.  Our performance against the test 

dataset, shown in Table 16, represents a 66.8% improvement over the winner’s training 

set results.  Again, because the test set results were not posted, we can only compare 

against the winner’s training set.   

Table 15.   Cost score using the 1999 KDD Cup cost matrix on results of ordinal logistic 
regression versus the KDD Cup training dataset is 0.2150 (7.8% lower than the 
winning score of 0.2331). 

Nominal Logistic Regression Results vs.  
1999 KDD Cup Training Dataset 

  PREDICTED           

ACTUAL  0  1  2  3  4 

0  50997  189 1338 4 8065  84.16% 

1  159  3890 104 0 13  93.37% 

2  5490  100 225814 0 51  97.56% 

3  2  0 15 17 4  44.74% 

4  9043  0 36 4 5644  38.32% 

77.63%  93.08%  99.34%  68.00%  40.97% 
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Table 16.   Cost score using the 1999 KDD Cup cost matrix on results of ordinal logistic 
regression versus the KDD Cup test dataset is 0.0774.  Again, we cannot compare 
these results to KDD Cup test set results, since they were not posted. 

 

 

Nominal Logistic Regression Results vs.  
1999 KDD Cup Test Dataset 

  PREDICTED           

ACTUAL  0  1  2  3  4 

0  78249  9118 3085 47 6779 80.44% 

1  124  3674 301 0 8 89.46% 

2  2679  333 388278 0 188 99.18% 

3  32  0 22 3 4 4.92% 

4  62  1 1033 1 0 0.00% 

96.43%  27.99% 98.87% 5.88% 0.00%
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

1. Individual Tools and Methods are Inadequate by Themselves 

There are many approaches to both signature and anomaly detection in network 

security.  Each category and each tool have their strengths and weaknesses and all must 

be responsive to the dynamic nature of the threat.  Since requiring analysts to continue 

stacking detection tools or rule sets indefinitely is untenable, methods of combining 

responses generated by these tools should be used to help streamline analysis.  Our 

method showed the merits of one approach which drastically improved the predictive 

performance of an intrusion detection tool and basic IP conversation statistics. 

Furthermore, no tool or method we studied was 100% effective against all threats.  

Although ranking methods can help prioritize investigation of more immediate or more 

dangerous known threats, it will do nothing to protect against unknown threats (novel or 

zero-day attacks).  Thus, learning systems that adjust their definition of “normal” and 

take into account network environment statistics should be improved.  Good examples of 

these types of systems fall under the anomaly detection category. 

2. With Good Predictors, Simple Methods Can Be Very Powerful 

Our classification of the Skaion dataset’s threats was accomplished with an 

elementary set of significantly collinear predictor variables, yet they performed 

comparatively well in a logistic regression.  The validation of that performance against a 

much more complex dataset was due to the high quality of the predictor variables 

available in that dataset, which were more contextual and more independent than those 

we chose for Skaion.  Of course, balance must be sought between the goals of 

constructing powerful predictor variables and minimizing the computational overhead 

associated with their construction. 
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3. Experimental Network Design Needs to Consider Analysis 

One of the most important findings on which we can report from this study is the 

difficulty associated with data exploration in this field.  First, the amount of data 

available in even a simple scenario conducted over a short period of time can be difficult 

to manage.  Second, understanding the context of the data can be problematic for those 

unfamiliar with network design and security.  Third, even with that background 

knowledge, the ground truth must be both detailed and clear in order to avoid wasting 

analysis opportunities and making false assumptions. 

The Skaion dataset was created using novel methods of network traffic generation 

and emulation while maintaining data anonymity, which is crucial to its academic utility.  

Unfortunately, due to imprecise labeling, disorganized file structure, and lack of 

preprocessing, that utility is inaccessible to analysts without a strong computer science 

background. Conversely, the 1999 KDD Cup dataset was presented to participants with 

enough pre-processing complete that statisticians and data miners who were not computer 

scientists were able to participate.  Although it has its own shortcomings [16], this 

accessibility is why that dataset is still used as an industry standard for academic study. 

 We recommend that network emulators create a set of companion files based on 

their scenarios that provide analysis opportunities similar to the 1999 KDD Cup dataset.  

The types of predictor variables could be identical, or they could add more that they have 

found to be good performers.  While the raw data is valuable, there are many dimensions 

to the network security problem that do not require getting down to a deep packet 

inspection level. 

Additionally, Skaion should add more intrusion detection predictions similar to 

the four they include, but that vary more in their responses.  The intent should be to 

simulate the data overload an analyst might experience from having too many inputs to 

analyze in a reasonable amount of time in order to allow study on how to compress those 

incoming signals to minimize duplication of effort on common events while maintaining 

enough resolution to detect rare events.  These classic signal-to-noise ratio problems are 

fertile ground for human system interface, data visualization, and data mining analysts of 
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all flavors, many of whom may not have the computer science background necessary to 

“break the code” of the Skaion data set’s file system. 

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Further Exploitation of the Skaion Dataset 

Since we feel we have only scratched the surface of what the Skaion dataset has 

to offer, we recommend that further effort be made to extract better predictor variables in 

order to test more robust methods.  Our desire to work primarily in a Microsoft Windows 

environment limited full assimilation of the ground truth and network flow data included 

in the dataset.  Being able to manipulate this data using the Unix programs for which they 

were intended would have allowed us two advantages: 

1. Variables created from the IDS tool alert logs could be matched to 

each individual conversation, as opposed to just their predictions of 

IP address role, as we used them; 

2. Network flow statistics could be accessed and new variables 

created. 

This work would require either an analyst with a network security background, or 

collaboration with the Skaion Corporation to accomplish the necessary pre-processing of 

the dataset. 

2. Use the 1999 KDD Cup Dataset to Test Better Data Fusion Methods 

The accessibility of the 1999 KDD Cup dataset makes it a perfect candidate as a 

foundation for testing new modeling techniques.  Since the competition occurred over 13 

years ago, the remaining opportunities for first-order detection models are probably few.  

However, since data visualization and fusion are perhaps an even bigger challenge now 

due to the increased complexity and sophistication of the threat, opportunities here may 

actually be increasing.  Using the KDD Cup dataset as a backdrop, and multiple intrusion 

detection systems of varied detection abilities, more work could be done to improve 

prioritization of threat response as well as optimize both computational and analytical 

workload involved with intrusion detection. 
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APPENDICES 

A. MACROS USED TO SORT AND CLEAN EXPORTED PACKET DATA 

The following Visual Basic for Applications (VBA) code was implemented with 
Microsoft Excel to pre-sort and clean the raw data. The runtime to process a dataset of 
200 kilobytes is approximately five minutes.   

 

Sub AddErrorlClassColumns() 
' 
' AddErrorlClassColumns Macro 
' Adds error sum columns and classification columns 
' 
 
' 
    Sheets(“Error Key”).Select 
    Range(“A2:A22”).Select 
    Selection.Copy 
    Sheets(“IP Stats”).Select 
    Range(“AH1”).Select 
    Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=True 
    Columns(“A:A”).EntireColumn.AutoFit 
    Columns(“B:B”).EntireColumn.AutoFit 
    ActiveWindow.SmallScroll Down:=96 
    Columns(“B:B”).Select 
    Application.CutCopyMode = False 
    Selection.ClearContents 
    Range(“B1”).Select 
    ActiveCell.FormulaR1C1 = “IP Classification” 
    Range(“B2”).Select 
End Sub 
  
Sub DeleteCountryRows() 
' 
' DeleteCountryRows Macro 
' 
 
' 
    Selection.AutoFilter 
    ActiveCell.FormulaR1C1 = “=IF(RC[12]=0,0,1)” 
    Range(“B2”).Select 
    Selection.AutoFill Destination:=Range(“B2:B2270”), Type:=xlFillDefault 
    Range(“B2:B2270”).Select 
     
    Range(“BC1”).Select 
    ActiveCell.FormulaR1C1 = “Country” 
    Range(“BC3”).Select 
    ActiveCell.FormulaR1C1 = “N/A” 
    Range(“BC4”).Select 
    ActiveCell.FormulaR1C1 = “=IF(RC[-53]=1,R[-1]C,IF(RC[-53]=0,RC[-54]))” 
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    Range(“BC4”).Select 
    Selection.AutoFill Destination:=Range(“BC4:BC972”), Type:=xlFillDefault 
    Range(“BC4:BC972”).Select 
    Selection.AutoFill Destination:=Range(“BC4:BC2270”), Type:=xlFillDefault 
    Range(“BC4:BC2270”).Select 
     
    Range(“E25”).Select 
    Columns(“BC:BC”).Select 
    Selection.Copy 
    Columns(“BD:BD”).Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Columns(“BC:BC”).Select 
    Application.CutCopyMode = False 
     
    Rows(“1:1”).Select 
    ActiveWorkbook.Worksheets(“IP Stats”).AutoFilter.Sort.SortFields. _ 
        Clear 
    ActiveWorkbook.Worksheets(“IP Stats”).AutoFilter.Sort.SortFields. _ 
        Add Key:=Range(“B1”), SortOn:=xlSortOnValues, Order:=xlDescending, _ 
        DataOption:=xlSortTextAsNumbers 
    With ActiveWorkbook.Worksheets(“IP Stats”).AutoFilter.Sort 
        .Header = xlYes 
        .MatchCase = False 
        .Orientation = xlTopToBottom 
        .SortMethod = xlPinYin 
        .Apply 
    End With 
     
End Sub 
 
Sub FillErrorClassCols() 
' 
' FillErrorClassCols Macro 
' Fill all the error columns and rows as well as classification column 
' 
 
' 
    Range(“B2”).Select 
    ActiveCell.FormulaR1C1 = “=LOOKUP(RC[-1],'ip-key'!C[-1],'ip-key'!C)” 
    Range(“B2”).Select 
    Selection.AutoFill Destination:=Range(“B2:B2390”), Type:=xlFillDefault 
    Range(“AH2”).Select 
    ActiveCell.FormulaR1C1 = _ 
        “=COUNTIFS('Diagnosis Events'!C7,'IP Stats'!RC1,'Diagnosis Events'!C1,'IP 
Stats'!R1C)” 
    Range(“AH2”).Select 
    Selection.AutoFill Destination:=Range(“AH2:BB2”), Type:=xlFillDefault 
    Range(“AH2:BB2”).Select 
    Range(“AH2:BB2”).Select 
    Range(“BB2”).Activate 
    Selection.AutoFill Destination:=Range(“AH2:BB2439”), Type:=xlFillDefault 
    Range(“AH2:BB2439”).Select 
    Range(“AW2439”).Select 
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    Application.Calculation = xlManual 
    Range(“A1”).Select 
     
    Sheets.Add After:=Sheets(Sheets.Count) 
    Sheets(“IP Stats”).Select 
    Range(“A1:BC2439”).Select 
    Range(“A1753”).Activate 
    Selection.Copy 
    Sheets(“Sheet4”).Select 
    Range(“A1”).Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
        :=False, Transpose:=False 
    Sheets(“IP Stats”).Select 
    Application.CutCopyMode = False 
    ActiveWindow.SelectedSheets.Delete 
    Application.Calculation = xlAutomatic 
   
End Sub 
 
Sub DeleteExtraDataTags() 
' 
' DeleteExtraDataTags Macro 
' Clean up errant KBs 
' 
 
' 
    Columns(“C:C”).Select 
    Selection.TextToColumns Destination:=Range(“C1”), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, FieldInfo _ 
        :=Array(Array(1, 1), Array(2, 9)), TrailingMinusNumbers:=True 
    Columns(“E:E”).Select 
    Selection.TextToColumns Destination:=Range(“E1”), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, FieldInfo _ 
        :=Array(Array(1, 1), Array(2, 9), Array(3, 9)), 
TrailingMinusNumbers:=True 
    Columns(“F:F”).Select 
    Selection.TextToColumns Destination:=Range(“F1”), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, FieldInfo _ 
        :=Array(Array(1, 1), Array(2, 9), Array(3, 9)), 
TrailingMinusNumbers:=True 
    Columns(“H:H”).Select 
    Selection.TextToColumns Destination:=Range(“H1”), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, FieldInfo _ 
        :=Array(Array(1, 1), Array(2, 9)), TrailingMinusNumbers:=True 
    Columns(“J:J”).Select 
    Selection.TextToColumns Destination:=Range(“J1”), DataType:=xlDelimited, _ 
        TextQualifier:=xlDoubleQuote, ConsecutiveDelimiter:=True, Tab:=False, _ 
        Semicolon:=False, Comma:=False, Space:=True, Other:=False, FieldInfo _ 
        :=Array(Array(1, 1), Array(2, 9)), TrailingMinusNumbers:=True 
    Columns(“C:J”).Select 
    Columns(“C:J”).EntireColumn.AutoFit 
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    Range(“C1”).Select 
    ActiveCell.FormulaR1C1 = “Kilobytes” 
    Range(“E1”).Select 
    ActiveCell.FormulaR1C1 = “Kilobits Per Second” 
    Range(“F1”).Select 
    ActiveCell.FormulaR1C1 = “Kilobytes Per Second” 
    Range(“H1”).Select 
    ActiveCell.FormulaR1C1 = “Kilobytes Received” 
    Range(“J1”).Select 
    ActiveCell.FormulaR1C1 = “Kilobytes Sent” 
    Range(“J2”).Select 
End Sub 
Sub AddClassCols() 
' 
' AddClassCols Macro 
' 
 
' 
    Columns(“C:C”).Select 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Columns(“D:D”).Select 
    Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove 
    Range(“C1”).Select 
    ActiveCell.FormulaR1C1 = “Binary IP Classification” 
    Range(“D1”).Select 
    ActiveCell.FormulaR1C1 = “Ordinal IP Classification” 
    Range(“C2”).Select 
    ActiveCell.FormulaR1C1 = _ 
        “=IF(RC[-1]=““ATTACKER”“,1,IF(RC[-1]=““BACKGROUND ATTACKER”“,1,IF(RC[-
1]=““BACKGROUND SCANNER”“,1,0)))” 
    Range(“C2”).Select 
    Selection.Copy 
    Range(“C2”).Select 
    Range(Selection, Selection.End(xlDown)).Select 
    Application.CutCopyMode = False 
    Selection.FillDown 
    Range(“D2”).Select 
    ActiveCell.FormulaR1C1 = _ 
        “=IF(RC[-2]=““VICTIM”“,0,IF(RC[-2]=““SERVER”“,0,IF(RC[-
2]=““CLIENT”“,0,IF(RC[-2]=““BACKGROUND SCANNER”“,1,IF(RC[-2]=““BACKGROUND 
ATTACKER”“,2,IF(RC[-2]=““ATTACKER”“,3,0))))))” 
    Range(“D2”).Select 
    Selection.Copy 
    Range(Selection, Selection.End(xlDown)).Select 
    Application.CutCopyMode = False 
    Selection.FillDown 
    Range(“A1”).Select 
    Calculate 
End Sub 
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B. KDD CUP 1999 DATASET DETAILS (FROM THE KDD-CUP 1999 
WEBPAGE)[19]  

This document is adapted from the paper Cost-based Modeling and Evaluation 
for Data Mining With Application to Fraud and Intrusion Detection: Results from the 
JAM Project by Salvatore J. Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and 
Philip K. Chan. 

1. INTRUSION DETECTOR LEARNING 

Software to detect network intrusions protects a computer network from 
unauthorized users, including perhaps insiders.  The intrusion detector learning task is to 
build a predictive model (i.e., a classifier) capable of distinguishing between ``bad'' 
connections, called intrusions or attacks, and ``good'' normal connections.  
 

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and 
managed by MIT Lincoln Labs. The objective was to survey and evaluate research in 
intrusion detection.  A standard set of data to be audited, which includes a wide variety of 
intrusions simulated in a military network environment, was provided.  The 1999 KDD 
intrusion detection contest uses a version of this dataset.  
 

Lincoln Labs set up an environment to acquire nine weeks of raw TCP dump data 
for a local-area network (LAN) simulating a typical U.S. Air Force LAN.  They operated 
the LAN as if it were a true Air Force environment, but peppered it with multiple attacks.  
 

The raw training data was about four gigabytes of compressed binary TCP dump 
data from seven weeks of network traffic.  This was processed into about five million 
connection records.  Similarly, the two weeks of test data yielded around two million 
connection records.  
 

A connection is a sequence of TCP packets starting and ending at some well-
defined times, between which data flows to and from a source IP address to a target IP 
address under some well-defined protocol.  Each connection is labeled as either normal, 
or as an attack, with exactly one specific attack type.  Each connection record consists of 
about 100 bytes.  
 

Attacks fall into four main categories:  
  DOS: denial-of-service, e.g. syn flood; 

 R2L: unauthorized access from a remote machine, e.g. guessing 
password; 

 U2R:  unauthorized access to local superuser (root) privileges, e.g., 
various ``buffer overflow'' attacks; 

   Probing: surveillance and other probing, e.g., port scanning. 
 
It is important to note that the test data is not from the same probability 

distribution as the training data, and it includes specific attack types not in the training 
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data.  This makes the task more realistic.  Some intrusion experts believe that most novel 
attacks are variants of known attacks and the “signature” of known attacks can be 
sufficient to catch novel variants.  The datasets contain a total of 24 training attack types, 
with an additional 14 types in the test data only.  
 

2. DERIVED FEATURES 

  Stolfo et al. defined higher-level features that help in distinguishing normal 
connections from attacks.  There are several categories of derived features.  
 

The ``same host'' features examine only the connections in the past two seconds 
that have the same destination host as the current connection, and calculate statistics 
related to protocol behavior, service, etc.  
 

The similar ``same service'' features examine only the connections in the past two 
seconds that have the same service as the current connection.  
 

“Same host” and “same service” features are together called  time-based traffic 
features of the connection records.  
 

Some probing attacks scan the hosts (or ports) using a much larger time interval 
than two seconds, for example once per minute.  Therefore, connection records were also 
sorted by destination host, and features were constructed using a window of 100 
connections to the same host instead of a time window.  This yields a set of so-called 
host-based traffic features.  
 

Unlike most of the DOS and probing attacks, there appear to be no sequential 
patterns that are frequent in records of R2L and U2R attacks. This is because the DOS 
and probing attacks involve many connections to some host(s) in a very short period of 
time, but the R2L and U2R attacks are embedded in the data portions  
of packets, and normally involve only a single connection.  
 

Useful algorithms for mining the unstructured data portions of packets 
automatically are an open research question.  Stolfo et al. used domain knowledge to add 
features that look for suspicious behavior in the data portions, such as the number of 
failed login attempts.  These features are called ``content'' features.  
 

A complete listing of the set of features defined for the connection records is 
given in the three tables below.  The data schema of the contest dataset is available in 
machine-readable form. 
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feature name description  type 
duration  length (number of seconds) of the connection  continuous 
protocol_type  type of the protocol, e.g. tcp, udp, etc.  discrete 
service  network service on the destination, e.g., http, telnet, 

etc.  
discrete 

src_bytes  number of data bytes from source to destination  continuous 
dst_bytes  number of data bytes from destination to source  continuous 
flag  normal or error status of the connection  discrete  
land  1 if connection is from/to the same host/port; 0 

otherwise  
discrete 

wrong_fragment  number of “wrong'' fragments  continuous 
urgent  number of urgent packets  continuous 

Table 17.   Basic features of individual TCP connections. 

 
 
feature name description  type 
hot  number of “hot'' indicators continuous 
num_failed_logins  number of failed login attempts  continuous 
logged_in  1 if successfully logged in; 0 otherwise  discrete 
num_compromised  number of “compromised'' conditions  continuous 
root_shell  1 if root shell is obtained; 0 otherwise  discrete 
su_attempted  1 if “su root'' command attempted; 0 otherwise  discrete 
num_root  number of “root'' accesses  continuous 
num_file_creations  number of file creation operations  continuous 
num_shells  number of shell prompts  continuous 
num_access_files  number of operations on access control files  continuous 
num_outbound_cmds number of outbound commands in an ftp session  continuous 
is_hot_login  1 if the login belongs to the ``hot'' list; 0 

otherwise  
discrete 

is_guest_login  1 if the login is a ``guest''login; 0 otherwise  discrete 

Table 18.   Content features within a connection suggested by domain knowledge. 
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feature name description  type 
count  number of connections to the same host as the 

current connection in the past two seconds  
continuous 

 Note: The following features refer to these same-
host connections. 

 

serror_rate  % of connections that have ``SYN'' errors  continuous 
rerror_rate  % of connections that have ``REJ'' errors  continuous 
same_srv_rate  % of connections to the same service  continuous 
diff_srv_rate  % of connections to different services  continuous 
srv_count  number of connections to the same service as the 

current connection in the past two seconds  
continuous 

 Note: The following features refer to these same-
service connections. 

 

srv_serror_rate  % of connections that have ``SYN'' errors  continuous 
srv_rerror_rate  % of connections that have ``REJ'' errors  continuous 
srv_diff_host_rate  % of connections to different hosts  continuous 

Table 19.   Traffic features computed using a two-second time window. 
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