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ABSTRACT  

We develop an extension to differential equation models of dynamical systems to allow 
us to analyze probabilistic threshold dynamics that fundamentally change system 
behavior.  We apply our novel modeling approach to two cases of interest:  a model of 
cyber infection, where a detection event drastically changes dynamics, and the 
Lanchester model of armed conflict, where the loss of a key capability drastically 
changes dynamics.  We derive and demonstrate a step-by-step, repeatable method for 
applying our novel modeling approach to an arbitrary system, and we compare the 
resulting differential equations to simulations of the system’s random progression.  Our 
work leads to a simple and easily implemented method for analyzing probabilistic 
threshold dynamics using differential equations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



1 Introduction
Differential equation models have wide applicability in the study of dynamic systems. They are

attractive because they are fast, tractable, and transparent in the sense that it is easy to understand

how the inputs directly relate to the outputs. The focus of our research is to consider how

differential equation models may be used to model systems with stochastic, sharp thresholds.

An example of a system with a sharp threshold is a computer network where malicious code

is introduced, subject to probabilistic detection and subsequent eradication. In this system, one

instant the malicious code is undiscovered, and the following instant it is discovered; discovery

defines the sharp threshold change in system dynamics. For a cyber infection system, statements

such as “half discovered” are misleading as they do not refer to any realizable state of the

system.

A sharp threshold may also be seen in a combat model where loss of a single key capability

results in a change in combat dynamics. A practical example may be seen in naval combat,

where the loss of a capital ship, such as an aircraft carrier, may be considered a threshold

event. Statements such as “half sunk” do not refer to a realizable state of the system; however,

statements about the probability distribution of a carrier surviving have meaning.

The current method of handling dynamical systems with sharp thresholds is to appeal to sim-

ulation of the threshold event by simulating the entire system’s random progression. This is

useful because it is easily understood, but is expensive, both in terms of computation and time.

Often, many simulations are required to analyze the average behavior of the system and derive

intuition about its development.

It seems that the threshold process and the differential equation model are irreconcilable, chiefly

because the threshold event is not divisible in the sense that its expected state is generally not

reachable. We overcome this difficulty by applying a mean field approximation to the threshold

process in a novel manner. By doing so, we create differential equation models that capture the

average performance of systems with probabilistic threshold dynamics.

Our approach is novel in that we incorporate the distribution of the threshold time, which may

be dependent on the dynamic system state, to create a representation of the average value of the

thresholded process. Our model produces a time-trace of the expected state of the system, as

well as an explicitly time-dependent, cumulative distribution of the threshold time.
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The advantages to be had are numerous. First, by creating a differential equation model, we

are able to verify simulation models by comparing them against analytic results derived from

the differential equations. Second, we may use the fast, cheap, differential equation model

as a scoping tool to help us focus on areas of interest for complex, expensive simulations.

Additionally, as a by-product, the model produces the time-dependent cumulative distribution

of the threshold time, which prior to modeling may be expressed in terms of the dynamic system

state and therefore may not have explicit time dependence. Finally, after developing the theory,

we provide two worked examples, along with a step-by-step tutorial on how to apply this method

to any thresholded system with a differential equation model.

The organization of the paper is as follows: In Section 2, we review the applicable literature.

In Section 3, we derive our novel methodology through mean-field approximations of a cy-

ber infection example, and extract the step-by-step procedure for applying it to other systems.

In Section 4, we apply the step-by-step procedure to the Lanchester model of armed conflict.

In Section 5, we provide numerical examples comparing the differential equation models to

simulations. In Section 5, we also demonstrate that the differential equations from our novel

methodology are fundamentally different from differential equations for a nonthresholded sys-

tem; in other words, no choice of parameters of the nonthresholded differential equations may

replicate the behavior of the thresholded differential equations. Finally, in Section 6, we provide

some discussion of and directions for future research.
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2 Literature Review
The general theory and application of differential equation models for physical and social phe-

nomena is a common topic that spans several disciplines, including applied mathematics, biol-

ogy, and operations research. Many good overviews of the topic exist; for a general text, we

recommend Differential Equation Models by Braun (1983). For an overview of basic analysis

and solution techniques, we recommend Advanced Engineering Mathematics (O’Neil, 1991).

The history and specific application differential equation models to epidemics is covered in

detail in Epidemic Modeling (Daley & Gani, 1999) (see also Anderson & May [1979a, b]).

For an accessible overview, we recommend the recent tutorial by Dimitorv and Meyers (2010).

Specific applications of epidemics are addressed in the literature as well; fitting data is addressed

by Mollision (1995), and stochastic epidemics are reviewed in detail by Andersson (2000).

Specific system behaviors related to our research, such as time of discovery thresholds, are

addressed by Metz, Wedel, and Angulo (1983). The distribution of the number of infected

individuals at the moment of first detection is studied by Trapman, Christofel, and Bootsma

(2009).

The application of infectious disease models to computer infections has been recommended by

Project JASON (2010), an independent group of scientists advising the United States govern-

ment. A related and noteworthy reference is the case study of the Code Red worm by Moore,

Shannon, and Brown (2002).

The work most closely related to our model of cyber infections is Vojnovic and Ganesh (2005).

Their model closely matches the dynamics of ours in that machines may be in two compet-

ing states—infected or patched—and the system operator wishes to maximize the number of

patched machines. We extend their work by making the detection process an explicit function

of the infection process.

Two recent books by Newman (2006, 2010) describe the formulation and analysis of network

models and include cases of epidemics spread on networks as well as the general theory of

mean-field approximations. Our work is different in that we consider both epidemic detection

and spread simultaneously in a single, integrated framework.

Mean-field approximations are frequently used in physics; for an in-depth overview, see the

second chapter of Freericks (2006). An overview of approximation methods for probabilistic

methods is given by Darling and Norris (2008). Mean-fields have been applied in epidemic
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models of network infections by Lelarge and Bolot (2008), and a development of their ap-

plicability to general infectious disease models is given in Kleczkowski and Grenfell (1999),

who justify the use of the mean-field approximation for sufficiently large, nonhomogeneous

networks.

For differential equation combat models, we recommend the original paper by Lanchester

(1916). An historical application to the Battle of Iwo Jima appears in Engel (1954), and is

further developed by Samz (1971). Comprehensive reviews of Differential equations models

may be found in the books by Hartley (2001), and Washburn and Kress (2009). Of particu-

lar relevance a paper by Bracken appearing in Bracken, Kress, and Rosenthal (1995) applying

Lanchester models to the Ardennes campaign. This formulation includes a threshold similar to

the one we propose.
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3 Modeling Sharp Thresholds
In this section, we describe a basic discrete-time, discrete-state system that models the spread

of a cyber infection. We use mean-field approximations to derive our novel methodology of

modeling the system using differential equations. Finally, in Section 3.4, we step back from the

analysis of the cyber infection to pull out a generalized, step-by-step process for repeating the

derivation in other systems.

3.1 Individual Discrete-Time Dynamics
We begin by considering a model of the spread of malicious code in a finite population of

machines in discrete time. For ease of exposition, we use the term virus loosely to describe all

malicious code that spreads via intramachine contact, to include worms, viruses, etc. Similarly,

we use the term infected to mean that a machine currently has a virus somewhere in the machine.

We begin with a few basic definitions to facilitate the exposition. There is a fixed population of

N machines. At any time, a machine may be in one of the following three states:

Class S: a machine is susceptible, in class S, if it is not currently infected, but may become

infected if it interacts with an infected machine.

Class I : a machine is infected, in class I , if it is currently infected and may spread the infection

by interaction with a machine of class S.

Class R : a machine is removed, in class R, if it is currently not infected and is immune

to infection. A machine may join class R from either class S or I by having a patch

installed.

As a preventative measure, a system administrator may specifically design or designate m ma-

chines as sentinels, which are machines that are monitored for infection. A virus may only be

detected when it infects a sentinel. After detection, antivirus measures, which we collectively

refer to as patches, may be developed and distributed.

Our model has three linked processes: predetection spread, detection, and postdetection spread.

Next, we describe a discrete-time, discrete-state mathematical model of infection progression

for each process individually.
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3.1.1 Predetection Process
In this section, we describe the discrete-time, discrete-state infection process before detection

occurs, which is a standard S-I model of infectious disease see (Daley & Gani, 1999). We denote

the number of predetection infected machines in round t with IPt , and predetection susceptible

machines in round t with SP
t . Spread starts at t = 0 with I0 infected machines and S0 susceptible

machines.

The predetection discrete-time infection process proceeds in rounds. During each round, each

machine in class IP selects a partner machine from the population, uniformly at random, for

interaction. If the partner machine is of class IP , no changes occur. If the partner machine is

of class SP , the partner machine transitions from SP to IP with probability β. The number of

infected and susceptible machines in round t is random, and the evolution of
(
SP
t , I

P
t

)
forms a

Markov chain. We can express the conditional expectation of each coordinate in round t+ 1 in

terms of the coordinates in round t as:

E
[
SP
t+1 | SP

t , I
P
t

]
= SP

t −
βSP

t I
P
t

N
(1)

E
[
IPt+1 | SP

t , I
P
t

]
= IPt +

βSP
t I

P
t

N
. (2)

Equation (2) states that the expected number of infecteds in round t+1 is the number of infecteds

in round t plus the expected number of newly created infecteds, IPt · SP
t · β

N
. Similar reasoning

gives the first equation. The expectation expressions are an approximation, assuming large

population size, N , I small relative to N , so that the likelihood of two infecteds choosing the

same susceptible is negligible.

3.1.2 Postdetection Process
In this section, we describe the infection process after detection occurs, which is similar to the

classic S-I-R model (see Daley & Gani, 1999). When detection occurs, a patch is distributed

to all machines in the population: this is a piece of code that, if installed, removes any existing

infection and makes the machine(s) resistant to any future infections. Each machine adopts

the patch independently with probability μ in each round. We denote postdetection infecteds

in round t by IDt , postdetection susceptibles in round t by SD
t , and postdetection removeds in

round t by RD
t .

Postdetection dynamics begin immediately after detection occurs. When detection occurs, say

in round t∗, members of the population who were infected remain infected; i.e., IDt∗ = IPt∗ . The
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virus continues to spread with the same dynamics as predetection; i.e., the expected number

of newly created infecteds in round t + 1 is
βIDt SD

t

N
. However, both susceptible machines and

infected machines are removed with probability μ.

The random variables
(
SD
t , I

D
t , RD

t

)
form a Markov chain in a manner similar to the

(
SP
t , I

P
t

)
variables. Assuming that detection has occurred in round t∗ ≤ t, the expectation of these

random variables in round t+ 1 is:

E
[
SD
t+1 | SD

t I
D
t RD

t

]
= SD

t −
βSD

t I
D
t

N
− μSD

t

E
[
IDt+1 | SD

t I
D
t RD

t

]
= IDt +

βSD
t I

D
t

N
− μIDt

E
[
RD

t+1 | SD
t I

D
t RD

t

]
= RD

t + μ
(
IDt + SD

t

)
.

The above equations are nearly identical to the classic S-I-R model, except that they include

transitions directly from S to R by patch installation. Because they are difference equations,

the rates β and μ are assumed to be less than one; this is a restriction that will be lifted when

moving to continuous time.

3.1.3 The Detection Process
We are now ready to consider the detection process probabilistically, which is our main contri-

bution. During each round, the m sentinels have the opportunity to contract and detect the virus.

We assume that the m sentinels are reselected in a uniform random manner from the population

of N machines in each round; this simplifies the model by removing the necessity to track the

number of infected sentinels. Detection at an infected sentinel occurs probabilistically. Let α

be the probability that a single infected sentinel does not detect the infection in a single time

period. This choice of parameterization will prove useful in the following development. Let Dt

be an indicator random variable of the detection event:

Dt =

⎧⎨
⎩1 if detection has occurred by time t

0 otherwise.

Consider the sequence of differences, Dt −Dt−1. Members of this sequence are equal to zero
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everywhere, except in the round of detection. For the round of detection, when t equals t∗, the

difference is equal to one. We may write the expectation of this difference as

E[Dt −Dt−1] = Pr[Dt−1 = 0] · E [Dt −Dt−1 | Dt−1 = 0]

+ Pr[Dt−1 = 1] · E [Dt −Dt−1 | Dt−1 = 1] . (3)

The second term in Equation (3) is equal to zero because if detection occurred by round t − 1,

it has also occurred by round t. Because the difference expression is nonzero only if detection

occurs in round t, we can rewrite the first term in the expression as

Pr[Dt−1 = 0] · E [Dt −Dt−1 | Dt−1 = 0] = Pr[Dt = 1, Dt−1 = 0]. (4)

The right-hand side of Equation (4) expresses the probability that detection occurs on round t

and has not occurred in rounds 1 through t− 1. Given IPi , the probability that detection occurs

in round i is 1 − α
IPi m

N , where the exponent comes from computing the expected number of

infected sentinel machines if sentinel machines are chosen uniformly from the population. Let

IPt:0 denote the sequence IPt , . . . , I
P
0 . From Equations (3) and (4), we have

E[Dt+1 −Dt | IPt:0] =
(
1− α

IPt m

N

) t−1∏
k=0

α
IPk m

N , (5)

which is the fundamental difference equation for the D process in this example.

3.2 Coupling the Postdetection and Predetection Processes
The key to properly modeling the sharp change in infection dynamics is the coupling of the pre-

detection process and the postdetection process, as governed by the random detection process.

In particular, in the round of detection, it is necessary to move all machines from the predetec-

tion dynamics to the new postdetection dynamics. For a graphical depiction of coupling, see

Figure 1.
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Figure 1: Depiction of Coupling. In the round of detection, which we call t∗, the state of the

predetection process is transferred to the postdetection process.

Let (St, It) be a Markov chain that evolves as an undetected predetection process for all t. Using

the notation in the previous sections for predetection and postdetection machines, we can then

write the coupled predetection process as

SP
t = (1−Dt)St

IPt = (1−Dt)It.

Intuitively, the above expressions say that before detection has occurred—when Dt is 0—the

predetection process evolves as specified in Section 3.1.1; and after detection has occurred—

when Dt is 1—there are no machines in the SP and IP classes. For brevity, let

At = (St, It, S
P
t , I

P
t , Dt, Dt−1, SD

t , I
D
t , RD

t )

denote the state of a Markov chain describing evolution of the cyber infection. We can write the

evolution of the coupled postdetection process as

E
[
SD
t+1 | At

]
= (Dt −Dt−1)St + SD

t −
βSD

t I
D
t

N
− μSD

t

E
[
IDt+1 | At

]
= (Dt −Dt−1)It + IDt +

βSD
t I

D
t

N
− μIDt

E
[
RD

t+1 | At

]
= RD

t + μ
(
IDt + SD

t

)
.

Intuitively, the above expressions say that in the round when detection occurs—the only time

that Dt−Dt−1 is 1—a sudden inflow of of machines, equal to the machines in the undetected I

and S classes, comes into the postdetection classes. Afterward, the postdetection classes behave

as described in Section 3.1.2. This allows us to write the discrete time difference equations for
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all of the variables involved as

E
[
St+1 | At

]− St = −βStIt
N

(6a)

E
[
It+1 | At

]− It =
βStIt
N

(6b)

E[Dt+1 | IPt:0]− E[Dt | IPt:0] =
(
1− α

IPt m

N

) t−1∏
k=0

α
IPk m

N (6c)

SP
t = (1−Dt)St (6d)

IPt = (1−Dt)It (6e)

E
[
SD
t+1 | At

]− SD
t = (Dt −Dt−1)St − βSD

t I
D
t

N
− μSD

t (6f)

E
[
IDt+1 | At

]− IDt = (Dt −Dt−1)It +
βSD

t I
D
t

N
− μIDt (6g)

E
[
RD

t+1 | At

]−RD
t = μ

(
IDt + SD

t

)
. (6h)

Intuitively, the superscript in the difference equation for D is IP instead of I because the dif-

ference E[Dt+1 | IPt:0] − E[Dt | IPt:0] is zero after detection occurs. As written, indeed, after

detection occurs, IP is zero, and the difference E[Dt+1 | IPt:0] − E[Dt | IPt:0] is zero. If I

were used instead, the difference would never be zero because the I process is not affected by

detection, and asymptotically approaches the total population as t increases.

3.3 Moving to Continuous Time
To move to continuous time from the unit time, discrete difference equations, (6a)–(6h), we

create a sequence of random processes, each moving at a smaller and smaller time interval,

Δt. In each of these processes, we scale the parameters β, μ, and α so as to keep the expected

number of events per unit time constant.

The parameter β gives the expected number of infections per unit time. For a process that

proceeds in time intervals of Δt, the parameter should be scaled to Δtβ because the faster-

moving process has 1
Δt

attempts at infection per unit time. Similar reasoning shows that the

parameter μ should be scaled to Δtμ.

The correct scaling for the parameter α is more delicate. In the unit time progression process,

a single infected sentinel does not detect the infection with probability α in each round. The

scaling of the parameter should be such that the probability an infected sentinel does not detect
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the infection remains α for a unit of time. Let αΔ denote the scaled parameter. The property we

seek is α
1
Δt
Δ = α, because in the faster-moving process, an infected sentinel has 1

Δt
attempts at

detection. Preserving the desired property gives us a scaling of αΔ = eΔt ln(α) .

The next step of the derivation involves the mean-field assumption, which equates a random

variable and its expectation. In general, this step is controversial because it is a heuristic ar-

gument, in the sense that it is not explicitly predicated on taking limits of random processes

using tools like the functional central limit theorem (Billingsley, 1968). On the other hand,

it is possible to rigorously derive convergence results based on these heuristic approaches, at

the cost of a significant increase in mathematical complexity (McNeil, 1973). It is even possi-

ble to derive results on the variance of the stochastic process from the means described by the

differential equations (Barbour, 1974). Practically, many researchers jump directly to the differ-

ential equation models, without considering the underlying Markov chain at all (Keeling, 2007;

Newman, 2010). For our purposes, we choose to be explicit in the heuristic limiting argument,

without predication on functional central limit theorem, and numerically check the accuracy of

the resulting differential equation against a simulation of the Markov chain in Section 5.

With the appropriately scaled parameters, we can begin with the discrete time difference equa-

tions for a process moving in time steps of Δt, apply the mean-field assumption equating a

random variable and its expectation, and take the limit as Δt approaches zero to derive the

continuous time differential equations. We can follow these steps for each of the Equations

(6a)–(6h), but for exposition we give a few examples highlighting the important details.

For Equation (6a), the process moving at Δt time intervals has the equation

E
[
St+Δt | At

]− St = −ΔtβStIt
N

.

Applying the mean-field assumption, and dividing both sides by Δt, we have

St+Δt − St

Δt
= −βStIt

N
.

Taking the limit of both sides as Δt goes to zero, we have

dS(t)

dt
= −βS(t)I(t)

N
,
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which is the final continuous time equation for the S class. The equation for the I class can be

derived similarly.

Deriving the continuous time equation for D is slightly more involved, but consists of the same

set of steps. First, we begin with the difference equation for a process moving at Δt time

intervals,

E[Dt+Δt | IPt:0]− E[Dt | IPt:0] =
(
1− eΔt ln(α)

IPt m

N

) t−1∏
k=0

eΔt ln(α)
IPk m

N .

Applying mean-field, dividing both sides by Δt, and taking the limit as Δt approaches zero, we

have

lim
Δt→0

Dt+Δt −Dt

Δt
= lim

Δt→0

(
1− eΔt ln(α)

IPt m

N

)
eΔt ln(α)m

N

∑t−1
k=0 I

P
k

Δt
.

We apply L’Hopital’s rule on the right-hand side to derive

dD(t)

dt
= lim

Δt→0

[
− ln(α)

IPt m

N
eΔt ln(α)m

N

∑t
k=0 I

P
k

+

(
1− eΔt ln(α)

IPt m

N

)
eΔt ln(α)m

N

∑t−1
k=0 I

P
k

(
ln(α)

m

N

t−1∑
k=0

IPk

)]

= − ln(α)
IPt m

N
,

which gives the final continuous time equation for the D variable.

To finish deriving the continuous time system, Equations (6d) and (6e) directly translate into

their continuous time equivalents.

SP (t) = (1−D(t))S(t)

IP (t) = (1−D(t))I(t).

However, for the purposes of a uniform presentation, it may be desirable to represent these as
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differential equations, which, by the chain rule are:

dSP (t)

dt
= −dD(t)

dt
S(t) + (1−D(t))

dS(t)

dt
dIP (t)

dt
= −dD(t)

dt
I(t) + (1−D(t))

dI(t)

dt
.

Finally, Equations (6f)–(6h) can be converted into continuous equivalents through the standard

route of applying the mean-field approximation and taking limits to derive the complete contin-

uous system of equations for the sharp threshold process:

dS

dt
= −βSI

N
(7a)

dI

dt
=

βSI

N
(7b)

dD

dt
= − ln(α)

IPm

N
(7c)

dSP

dt
= −dD

dt
S + (1−D)

dS

dt
(7d)

dIP

dt
= −dD

dt
I + (1−D)

dI

dt
(7e)

dSD

dt
=

dD

dt
S − βSDID

N
− μSD (7f)

dID

dt
=

dD

dt
I +

βSDID

N
− μID (7g)

dRD

dt
= μ

(
ID + SD

)
, (7h)

where we have dropped the explicit dependence on t for brevity. The initial conditions for these

equations place the starting number of infected machines in I(0) and IP (0), the starting number

of susceptible machines in S(0) and SP (0), and set the start of all other variables to zero.

3.4 Discussion
To gain some understanding of Equations (7a)–(7h), we discuss their intuitive interpretation and

the general steps to rederive them for different sharp-threshold random processes.

13



Equations (7a) and (7b) are tracking a prethreshold process as though the random threshold

will never occur. Equation (7c) and the variable D provide a probability distribution for the

threshold time. Specifically, D(t) represents the cumulative distribution function of the random

threshold time. The value of dD
dt

can be interpreted simply as the probability density function of

the random threshold. For this particular example, D(t) posesses a closed-form solution (see

Appendix B).

Equations (7d) and (7e) capture the expected random process trajectories that remain prethresh-

old. This can be seen in two ways, first by considering the equations SP = (1 − D)S and

IP = (1−D)I . The factor (1−D) represents the probability that threshold has not occurred,

and only those trajectories where threshold has not occurred stay in the prethreshold classes.

The corresponding derivatives in Equations (7d) and (7e) also have natural interpretations. The

first term subtracts any trajectories where threshold instantaneously occurs. The second term

dampens the rate of change, making sure it is proportional to the trajectories where threshold

has not occurred.

Equations (7f)-(7h) capture the random process trajectories that are postthreshold. The first

term in Equations (7f) and (7g) captures the instantaneous inflow of new trajectories, while the

second term computes the change for the postthreshold dynamics. There is no direct inflow of

prethreshold trajectories into the RD class, so it does not have a term with dD
dt

. Also, there is no

need to dampen the postthreshold changes, the second and third terms of (7f) and (7g), as they

are naturally dampened by the fact that only the trajectories that inflow postthreshold are used

to compute postthreshold changes. The general steps to derive similar sharp threshold equations

for other systems are the following:

1. Write down an unencumbered prethreshold system of equations. This is the equivalent of

Equations (7a) and (7b), and variables S and I .

2. Define a variable D to describe the cumulative distribution function of threshold time.

Its differential equation with respect to time is the probability density function for the

threshold time. This is the equivalent of Equation (7c). This probability density function

may depend on both t and the expected prethreshold variables, the equivalent of SP and

IP .

3. Set the expected prethreshold variables to be (1−D) times the unencumbered prethresh-

old variables. This also defines differential equations of the expected prethreshold vari-

14



ables with respect to t. This is the equivalent of Equations (7d) and (7e).

4. Write a postthreshold system of equations. Add terms of dD
dt

times the unencumbered

variables for direct inflow due to threshold occurrence. This is the equivalent of Equations

(7f)–(7h).

As we demonstrate computationally in Section 5, these steps are necessary to correctly track

sharp threshold dynamics. Without a similar approach, as adding the unencumbered system

and the D variable, there is insufficient state memory to capture sharp threshold dynamics, and

we see inaccuracies in the deterministic predictions versus the expected state of the underlying

random process.
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4 Application to Lanchester Equations
In this section, we employ steps 1-4 from the previous section to develop a novel thresholded

model of combat based on Lanchester’s equations. This is important both in its own right as a

contribution to combat models, as well as an example of steps 1-4 in Section 3.4.

Our mathematical model concerns cases where there is an immediate, global loss of effec-

tiveness for one of the combatants. Such a loss of effectiveness stems from the loss of a key

capability, such as a communication network or vital asset, and could be the result of adversary

action or other failure.

Lanchester’s original model involves two opposing teams: the blue forces and the red forces.

The total amount of blue forces available at time t is denoted by the variable B(t), and the total

amount of red forces available at time t is denoted by the variable R(t). Lanchester’s original

aimed fire equations assume that each red unit has a likelihood of ρ of removing a blue unit,

while each blue unit has a likelyhood of β of removing a red unit. Lanchester describes the

evolution of the battle as:

dB(t)

dt
= −ρR(t) (8a)

dR(t)

dt
= −βB(t), (8b)

where ρ, β are effectiveness parameters of the red (blue) sides, respectively. These equations

have been well studied and applied to numerous case studies (see Washburn & Kress, 2009).

We seek to generalize Lanchester’s equations to consider cases where one of the effectiveness

parameters, say β is suddenly and irrevocably reduced its prethreshold value to a lower, post-

threshold value, say β−. This models the loss of a key capability for the blue forces. To create

the threshold model of the Lanchester equations, we follow steps 1-4 outlined in Section 3.4.

1. We write the unencumbered prethreshold system of equations. In this case, they are

identical to Lanchester’s original formulation as shown in Equations (8).

2. We define a variable D(t), that describes the cumulative distribution function of threshold

time. For this example, we choose an exponentially distributed threshold time, with rate

parameter λ. This gives
dD(t)
dt

= λe−λt, the probability density function, and D(t) =

1− e−λt, the cumulative distributed function, with D(0) = 0.

16



3. We now write the prethreshold equations, dropping the dependence on t for brevity,

dBP

dt
= −dD

dt
B + (1−D)

dB

dt
dRP

dt
= −dD

dt
R + (1−D)

dR

dt
.

Similarly to the cyber infection example, these equations result from setting BP = (1 −
D)B and differentiating.

4. We now write the postthreshold equations, adding terms of dD
dt

, which model inflow,

where appropriate:

dBD

dt
=

dD

dt
B − ρRD

dRD

dt
=

dD

dt
R− β−BD.

The four steps generate the complete set of differential equations

dB

dt
= −ρR (9a)

dR

dt
= −βB (9b)

dD

dt
= λe−λt (9c)

dBP

dt
= −dD

dt
B + (1−D)

dB

dt
(9d)

dRP

dt
= −dD

dt
R + (1−D)

dR

dt
(9e)

dBD

dt
=

dD

dt
B − ρRD (9f)

dRD

dt
=

dD

dt
R− β−BD. (9g)

The model can be initialized by B(0) and BP (0) to the initial blue forces, setting R(0)

and RP (0) to the initial red forces, and all other variables to zero.
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5 Numerical Analysis

In this section, we compare our theoretical results with simulations to verify that the differential

equations do indeed track the average state of the underlying Markov chain. This is a critical

step in verifying the differential equation models because mean-field approximations assume

equality between a random variable and its mean—and thus provide no mathematical guarantee

on the result. We do this numerical analysis and verification for both the cyber infection model

developed in Section 3 and the Lanchester model of Section 4. We also demonstrate that the

models we develop are fundamentally different than the original systems of differential equa-

tions by showing that no parameterization of the original differential equations yields correct

behavior.

Figure 2 depicts a comparison of a simulation of cyber infection to thresholded model as pre-

sented in Equations (7). Both the simulation and the differential equations use a parameteriza-

tion of (β, α,m,N, μ) = (0.01; 0.99; 20; 100, 000; 0.2) and 100 initially infected machines. The

dashed lines indicate the average state of 2, 000 simulation runs; i.e., the average state of the

Markov chain at time t, for each of the predetection and postdetection classes. The solid lines

with markers indicate the numerical integration of the differential equations. For all pre and

postdetection classes, the average of the simulation runs agrees with the differential equations.

Our choice of parameterization, in particular μ = 0.2, results in highly variable postdetection

classes, SD and ID. This variance is a result of the quick adoption of the patch after detection

has occurred. The plots of SD and ID indicate a benefit of the differential equations—that they

can produce the mean state of the system without the requirement for thousands of simulations.

In addition, Figure 2 depicts agreement between the empirical distribution of detection time, de-

rived from the simulation and pictured as a histogram, versus the variable D in the differential

equation system. This demonstrates another benefit to the differential equation system: the dif-

ferential equation system can produce a distribution of threshold time even when the threshold

time is a function of the system state, as is the case for the cyber infection model.

The model described by Equations (7) split pre and postdetection susceptibles and infecteds into

different classes; however, an analyst may be interested simply in the number of susceptibles

and infecteds at time t. Figure 3 depicts a comparison between simulation and differential

equations on the number of susceptibles at time t, SP +SD, and the number of infecteds at time

t, IP + ID. The dashed lines indicate the average state of 2,000 simulation runs, and the solid

marked lines indicate the result of the differential equations. In addition, the figure includes a
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Figure 2: Cyber infection model simulation versus differential equations. Both methods use a

parameterization of (β, α,m,N, μ) = (0.01; 0.99; 20; 100, 000; 0.2) and 100 initially infected

machines. The dashed lines indicate the average state of 2, 000 simulation runs, and the solid

lines with markers indicate the numerical integration of the differential equations. The param-

eter μ = 0.2 models quick adoption of the patch and results in variable postdetection classes,

SD and ID. The differential equations produce the mean state of the system accurately, even

with this variance. The top right graph depicts agreement between the empirical distribution of

detection time, derived from the simulation and pictured as a histogram, versus the variable D
in the differential equation system. In this process, the detection time is a function of the system

state.

[h!]

Figure 3: Total susceptibles and infecteds in cyber infection model. The dashed lines indicate

the average state of 2, 000 simulation runs, and the solid marked lines indicate the result of

the differential equations, SP + SD and IP + ID. The black dots depict a scatter plot of

the state of the 2, 000 simulations. The models use the same parameterization as in Figure 2.

The striations in the scatter plot for susceptibles is due to the fast adoption of the patch, μ =
0.2. Approximately 20% of machines adopt the patch in each round. The differential equation

system accurately captures the average state of the system.
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scatter plot for the 2,000 runs. The variance due to the fast adoption of the patch, μ = 0.2, is

evident in the bands in the scatter plot for susceptibles. Once detection occurs, approximately

20% of machines adopt the patch in each round, resulting in the striation in the figure. Even

with this large amount of variance in the individual simulation runs, the differential equation

system accurately captures the average state of the system.

Figure 4 depicts a comparison of a Lanchester combat model simulation to the corresponding

differential equation model as presented in Equations (9). Both the simulations and the differ-

ential equations use a parameterization (ρ, β, β−, λ) = (0.01, 0.02, 0.001, 1
25
) and initial sizes

of 100,000 for both the blue and red forces. The differential equations agree with the mean

state of the system, except at higher values of t. This disagreement is due to the well-known

inaccuracy of the standard Lanchester aimed fire model as presented in Equations 8 (8) (see

Washburn & Kress, [2009] and Taylor, [1983]). The standard Lanchester model is inaccurate

because it overestimates the effectiveness of a large force against a small force, possibly even

resulting in negative force sizes. The inaccuracy in the standard Lanchester model, which is

beyond the scope of this work, gives the disagreement between the simulations and the differ-

ential equations for the class BD at high values of t. For small values t, less than approximately

120 in the figure, the average state of the simulations agrees with the differential equations.

Figure 5 depicts the expected size of the blue and red forces at time t. The dashed lines depict

the average of 2, 000 simulations, while the solid marked lines depict the sums BP + BD and

RP +RD. The figure also includes a scatter plot of the states of the 2,000 simulation runs. The

striations in the scatter plot for the red forces is due to variance in the threshold time. Before the

threshold, the blue forces are highly effective against red, and after the threshold they become

ineffective. For an individual simulation, the red forces would follow the sharp down curve,

until threshold time, at which point they would follow one of the flatter striations. Even with the

highly variable force sizes between individual simulations, Equations (9) accurately captures

the expected force sizes at time t.

Finally, Figure 6 demonstrates that our modeling method is fundamentally different than a sim-

ple application of previously existing models. Specifically, consider the Lanchester threshold

system, where the sharp threshold simply reduces the effectiveness of the blue forces from β to

β−. One modeling approach may be to simply replace the parameter β in the standard Lanch-

ester mode,l as presented in Equation (8), with an expected effectiveness parameter of the blue

forces. In Figure 6, the solid lines represent the expected size of the red and blue forces under
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Figure 4: Lanchester combat model simulation versus differential equations. Both methods

use a parameterization (ρ, β, β−, λ) = (0.01, 0.02, 0.001, 1
25
) and initial sizes of 100,000 for

both forces. The standard Lanchester model has inaccuracies at high values of t that give the

disagreement between the simulations and the differential equations for the class BD at high

values of t. For small values t, less than approximately 120 in the figure, the average state of

the simulations agrees with the differential equations.

Figure 5: Total force sizes in Lanchester combat model. The dashed lines depict the average of

2,000 simulations, while the solid marked lines depict the sums BP + BD and RP + RD. The

scatter plot depicts states of the 2,000 simulation runs. The models use the same parameteriza-

tion as Figure 4. For an individual simulation, the red forces follow the sharp down curve, until

threshold time, at which point they follow one of the flatter striations. Even with the highly vari-

able force sizes between individual simulations, Equation (9) accurately captures the expected

force sizes at time t.
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Figure 6: Best fit of a standard Lanchester model to a sharp threshold Lanchester model. The

solid lines represent the expected size of the red and blue forces under Equation (9), while the

dashed lines represent the closest fitting parameterization of Equation (8), a standard Lanchester

model. The best fit optimization finds the parameter β for the standard Lanchester model that

minimizes the squared error between the model’s force sizes and Equationl (9)’s force sizes. All

other parameters for both models are the same as those in Figure 4. The fit between the closest

Lanchester model and our modeling method is poor, demonstrating that the sharp threshold

models yield fundamentally new behavior. For this example, the red forces initially diminish

rapidly, but after the sharp threshold, overwhelm the blue forces.

the model presented in Equations (9), while the dashed lines represent the closest fitting stan-

dard Lanchester model (see Equations [8]). The best fit standard Lanchester model results from

a least-squares optimization on the parameter β, attempting to minimize the difference from the

force sizes given by the model in Equations (9). The fit between the closest Lanchester model

and our modeling method is poor. Our modeling approach yields fundamentally new behavior

in that the red forces initially diminish rapidly, but after the sharp threshold, overwhelm the blue

forces. Appendix A demonstrates that a naive approach—one which does not include the un-

encumbered system required by Step 1 in Section 3.4—to modeling the more complex problem

of cyber infections also does not work.
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6 Conclusions and Future Research
We extend the utility of differential equation models by incorporating the novel ability to model

a probabilistic sharp threshold in system dynamics. We demonstrate our results with two appli-

cations: modeling cyber infections and capability loss in combat—both of which are of interest

in their own right. For example, we hope that our cyber infection model will be useful in

determining the relative merits of investment in additional detectors versus more rapid patch

dissemination. Similarly, we hope that our Lanchester extension will be useful in quantifying

the uncertainties and concerns inherent in unreliable, but powerful, capabilities. Beyond these

two applications, we develop a simple, step-by-step procedure to model sharp thresholds in

other systems. The steps described in Section 3.4 provide intuition and allow other modelers to

create probabilistic sharp threshold models, without re-creating the steps in Section 3.

Future areas of study, based on our results, include: (1) to consider a broader set of problems

against which to apply our novel modeling method; (2) to consider cases with multiple thresh-

olds; e.g., the probabilistic loss of capabilities on both sides of the Lanchester model, or the

restoration of a lost capability; and (3) to use the differential equations to describe the variance

in the underlying Markov chain; the large amount of variance is visible in the numerical anal-

ysis for both examples we consider, and it would be interesting and relevant to describe that

variance by perhaps using stochastic diffusion approaches.
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A Naive Model for Cyber Infections
A naive approach to modeling the probabilistic sharp threshold for cyber infections ignores the

unencumbered variables described in step 1 in Section 3.4. The naive approach results in the

following system of equations:

dŜP

dt
= −βŜP ÎP

N
+

ln(α)ŜP ÎPm

N
(A.1)

dÎP

dt
=

βŜP ÎP

N
+

ln(α)ÎP ÎPm

N
(A.2)

dŜD

dt
= − ln(α)ŜP ÎPm

N
− βŜDÎD

N
− μŜD (A.3)

dÎD

dt
= − ln(α)ÎP ÎPm

N
+

βŜDÎD

N
− μÎD (A.4)

dR̂D

dt
= μ

(
ÎD + ŜD

)
. (A.5)

The differential equations of model (A) follow from the difference equations for the underlying

Markov chain, and are natural. For example, intuitively, Equation (A.1) says that the prede-

tection susceptible class decreases either through infection, which occurs instantaneously with

probability βIP

N
, or detection, which occurs instantaneously with probability − ln(α)SP IPm

N
. The

other equations of model (A) can be derived and described similarly.

Figure 7 shows that this naive approach does not track the average state of the underlying

Markov chain. Both the simulation and model (A) are parameterized with the same parameters

as those in Figure 2. Across all state variables, the differential equation and the simulation begin

in agreement, but later drift apart. Intuitively, this is because model (A) reaches states that can

never be reached by the simulation. An accurate model requires more state—the unencumbered

system that tracks the prethreshold progression—and explicit modeling of the sharp threshold

event—the D variable. This intuition leads to the development of the method in Section 3, and

results in the correct model presented as Equations (7).
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Figure 7: Comparison of simulation to naive cyber infection model. These figures parallel those

of Figure 2. The simulation and the naive model, (10), are parameterized in the same way as

the models in Figure 2. The naive approach simply does not hold a sufficient amount of state

to accurately describe the evolution of the system. The simulation and the naive differential

equation model begin in agreement, but quickly drift apart in all state variables.

B Solution of the D Equation

Equation (7c) is equivalent to

IP (t) = (1−D(t))I(t)

It is known that I(t) has a closed solution,

I(t) =
I0N

I0 + S0e−βNt
.

For details see Daley and Gani, (1999). We use the equation for I(T ) to define IP (t) in terms

of D(t), and substitute the result into (7c) to get

dD

dt
=
− ln(α)m

N
(1−D)

I0NeβNt

I0eβNt + S0

.
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Separating variables gives

dD

1−D
=
− ln(α)m

N

I0NeβNt

I0eβNt + S0

dt,

which is valid because D(t) < 1 ∀t, and therefore 1−D(t) > 0. The key step is that both sides

of this equation are of the form dU/U . We let U = 1−D and V = I0e
βNt + S0 to derive

−dU
U

=
− ln(α)m

Nβ

dV

V
.

Multiplying both sides by −1 and integrating gives

ln(1−D) =
ln(α)m

Nβ
ln(I0e

βNt + S0) + C.

The above expression reduces to

D = 1− κ
[
I0e

βNt + S0

] ln(α)m
Nβ ,

where κ = N
− ln(α)m

Nβ to ensure the initial condition D(0) = 0.
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