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Abstract:  We study cyber conflict as a two-person zero-sum game in discrete time, where each 
player discovers new exploits according to an independent random process. Upon discovery, the 
player must decide if and when to exercise a munition based on that exploit. The payoff from using 
the munition is a function of time that is (generally) increasing. These factors create a basic tension: 
the longer a player waits to exercise a munition, the greater his payoff because the munition is more 
mature, but also the greater the chance that the opponent will also discover the exploit and nullify the 
munition. Assuming perfect knowledge and under mild restrictions on the time-dependent payoff 
function for a munition, we derive optimal exercise strategies and quantify the value of engaging in 
cyber conflict.  Our analysis also leads to high level insights on cyber conflict strategy. 
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1.  Introduction 

Conflict in Cyberspace, or cyber conflict, is important at both the strategic and tactical levels. In this 
paper we consider the strategic decisions made by states or other groups about when and how to 
engage in cyber conflict.  The increasing dependency on interconnected networks both in military and 
civilian life means that little is beyond the reach of cyberspace. Cyberspace plays a central role in our 
social, economic, and civic welfare. It is, therefore, not surprising that the United States “has identified 
cyber security as one of the most serious economic and national security challenges we face as a 
nation” (National Security Council, 2010). Consequently, security and defense in cyberspace has 
become an increasingly large part of the defense budget (Stervstein, 2011).  
 
A defining characteristic of cyber conflict is the way in which weapons in cyberspace are discovered, 
developed and employed. Players search for mechanisms that can cause cyber systems to perform in 
ways not intended in their original design, called exploits, and, once found, develop them into one or 
more cyber munitions. These munitions can then be used as part of a cyber attack.  In searching for 
exploits to use against an adversary, a player may also discover flaws in their own system and decide 
to patch them so an adversary cannot use them.   Moreover, a player could develop munitions based 
on an exploit that the adversary independently fixes, thereby making the munitions obsolete.  Thus, 
collections of cyber munitions, or arsenals, are dynamic and their effectiveness depends on the 
relative state of knowledge of the opponents.   
 
In this context, apparently simple questions, such as ”how long should we hold a munition in 
development before using it in an attack?” and  ”how should we allocate limited resources to offense 
versus defense?” require novel analytical models. Moreover, the dynamic nature of cyber weapons 
development and obsolescence makes it difficult to assess the potency of an arsenal; this is true for 
assessing our own arsenal as well as an arsenal belonging to an adversary. Clear, useful analysis at 
the national level is important both for making sound future investment decisions and for creating 
informed strategic and policy guidance.  
 
To analyze the strategic decisions involved in cyber conflict, we use a game theoretic framework—we 
view cyber warfare as a game consisting of attacks that opposing players exercise at a time of their 
choosing.  Each player discovers, develops, and chooses to exercise attacks to maximize the value of 
their cyber operations. Our analysis is independent of specific technologies, and does not assume an 
explicit cyber system or exploit.  
 
 
 
 



Using minimal assumptions, our model leads to two fundamental insights: 

 Success requires rapid action. Our model shows that delays in taking action reduce the 
chance of a player’s success in cyber conflict. Such delays can come from a variety of 
sources, including bureaucratic or command restrictions. A byproduct of our model is the 
calculation of how proficient a player must be in other areas to make up for delays in taking 
action; in most cases the required capability is unattainable. The immediate consequence of 
this is that command structures in cyberspace should be agile with the correct level of 
delegation of authority. 
 

 Prospects for deterrence in cyber conflict may be limited.  The ability of players to deter 
their opponents from attacking depends on an assured second strike.  In cyber conflict, 
opposing players may have munitions based on the same exploit, and the first player to use 
the exploit effectively removes second strike munitions from the opponent’s arsenal.   
Complicating factors to the cyber conflict game, such as an inability to identify the player who 
performed a cyber attack, or a player’s ability to respond with kinetic munitions, also have an 
effect on deterrence in cyber conflict. 

 

2.  Related work 
 
The JASONS 2010 report, The Science of Cyber-Security (JASON, 2010), recommends a variety of 
analytic approaches and recommends borrowing ideas from other sciences, such as physics, 
cryptography, and biological sciences, including epidemiology. The JASONS introduce a two-player, 
stationary, discrete time model called the Forwarder’s Dilemma as an example of what a game-
theoretic analysis might look like. This game considers whether an administrator should forward 
another system’s messages on their network and is similar both in format and solution to the well-
known Prisoner’s Dilemma (Fudenberg and Tirole, 1991).  Lye and Wing (2002) and Shen (2007) also 
consider cyber attacks in the context of a game. The most comprehensive survey of game theory and 
cyberspace is by Shiva et al. (2010). They develop a taxonomy of game theoretic models with two 
broad categories:  

 Static vs. Dynamic. A ‘one shot’ cyber conflict game, where players choose plans of action 
and then execute them simultaneously, is a static game. A cyber conflict game with multiple 
stages and sequential decisions is a dynamic game. 
 

 Available Information. Players may have exact, imperfect or no knowledge about their 
opponent’s intentions or capabilities. If the players know the actions of other players once 
taken, this is called a game with perfect information. If the players know the structure of the 
game and payoffs, but not the actions, this is called a game with complete information. 
Finally, a game in which the payoffs evolve in time in a random process is a stochastic game. 

While game theory considers both cooperative and non-cooperative games, work to date on cyber 
conflict deals only with non-cooperative games. In the taxonomy of Shiva et al. our proposed model is 
a non-cooperative, dynamic, stochastic game with perfect information.  
 
The previous study which has the most commonality with our approach is that of Lye and Wing 
(2002). They consider a two-player, stochastic game between an attacker and administrator. Their 
model is at the machine level; it focuses on an attacker attempting to find the best policy among a 
portfolio of several attacks to damage a university computer network.  This game theoretic model of 
Lye and Wing maps to the tactical level of conflict as opposed to our model that is focused at the 
strategic level between two players engaged in cyber conflict.  
 
Our work differs from previous work by abstracting cyber conflict away from individual machines and 
instruction sets in the same manner that Lanchester equations (Washburn and Kress, 2009) abstract 
physical conflict away from soldiers and weapons. The goal of this paper is to provide a foundation 
from which to build more complex models towards the ultimate goal of integrating the cyber domain 
into the spectrum of conflict analysis, to support strategic models for decision makers at the national 
level. 
 



 
3.  Analysis 
 
3.1 Foundation 
 
As defined previously, a computer system may contain exploits; these are unknown until discovered, 
after which they can be fixed in the form of a patch or weaponized into a munition. We model the life-
cycle of a single cyber exploit as a four-stage process. 
 
3.1.1 Discovery of the exploit 

We model the discovery of a single exploit by each player as a random process, occurring 
independently for each player, which may depend on factors such as training, investment, experience 
and luck. 

3.1.2 Development of munition 

Once an exploit is discovered, a player can develop a munition based on the exploit.  We assume that 
there is a relationship between the length of time that a player knows about an exploit and the 
effectiveness of the munition he develops based on that exploit. Munitions may only be developed for 
known exploits. 

3.1.3  Employment 

Once a munition is developed, it can be employed at will against an adversary in an attack.   

3.1.4  Obsolescence 

Consider a game between two players, Player 1 and Player 2. If Player 1 discovers an exploit in his 
system and patches it before Player 2 can develop a munition based on that exploit is employed, then 
that munition becomes obsolete.   

Uncertainties about the obsolescence of a player’s own arsenal are a key dimension in the analysis of 
cyber conflict. For the purposes of this analysis, we assume that a player who is aware of an exploit 
also knows whether the other player(s) are aware of the same exploit; this removes one type of 
uncertainty.  For a player who is unaware of an exploit, we assume neither player knows the time until 
the unaware player discovers the exploit. This uncertainty in discovery times is the fundamental 
tension that our model seeks to explore.  
 
We model cyber warfare as a Markov game (Thie, 1983; Fudenberg and Tirole, 1991) where the 
choices available to each player depend on the number of exploits known by each player and the 
strength of each player’s munitions.  In general, there may be multiple exploits that each player 
discovers, develops into munitions, and uses to attack, but we choose to focus our analysis on a 
scenario where there is only a single exploit to be discovered. At the beginning of this scenario, 
neither player knows the exploit. Each player probabilistically discovers the exploit, and when either 
player chooses to attack, then payoffs are determined and the game terminates. 
 
3.2 Formulation  
 
Our model focuses on a strategic cyber conflict between two players, where there is a single exploit to 
be discovered. Let i  index the players {1,2}i . The mathematical notation used to describe the 

game falls into three broad categories: Discovery, Development, and Employment.  
 
3.2.1 Discovery 
 
Let T  be the duration of time that an exploit has existed, which we also call the clock time.  Without 
loss of generality, we assume that the game starts when the exploit is created.  We create a discrete 
time model, with T increasing over the set of positive integers. If the exploit was part of the original 
system, then T  is the age of the system.  If the exploit was introduced as part of a software upgrade, 



then T  is the age of the upgrade. Let id  be the moment in clock time that player i discovers the 

exploit. We define max(0, )i iT d    to be the relative time that player i has known about the 

exploit; we call this player i ’s holding time.  By definition, if player i  is not aware of the exploit, then

0i  .  We define a state of the cyber game, S , as: 

 1 2, ,S T  
, 

where the elements of this three-tuple represent how long the exploit has existed, how long Player 1 
has known the exploit, and how long Player 2 has known the exploit, respectively. 

3.2.2 Development 

A player’s success in cyber conflict depends both on his ability to discover exploits and his ability to 

develop effective munitions.  We assume that at any moment following the discovery id , player i has 

the ability to create and deploy a perfectly effective patch.  However, we assume that the act of 
deploying the patch effectively announces it to the adversary; so patching nullifies everyone’s 

munitions based on that exploit, and this ends the game for both sides. Let  ip T  denote the 

probability that player i  discovers an exploit as clock time progresses from period T  to period 1T  . 

For convenience, let    1i iq T p T  . Let  i ia  be the value of an attack by player i  using a 

munition developed using a holding time of i . The value of an attack is a function of   instead of T  

because we assume that once the exploit is known the effectiveness of the munition depends on 

holding time and not clock time. We impose two constraints on  i ia  .  First, we assume a
i

0 0, 

namely that if an exploit is not known, then an attack based on it has no value.  Additionally, we 

assume 0  a
i
 B

i
, where iB  is an arbitrary upper bound, thus disallowing cyber attacks with 

either a negative value or an infinite value.   
 
3.2.3 Employment 
 

Once a player has a cyber munition, he may choose to use it. Let  i T
 
denote the action set of 

player i  at time T . We define   { , }i T W A   where:  

 

 W : Wait. While a player is waiting, he is either waiting to discover the exploit (
i
0)  or he 

may know about the exploit (
i
0)  

and
 
be working to make his munitions more effective. 

 
 A :Attack. When a player attacks he receives the value of his attack at that time. Attacking 

also broadcasts the attack’s underlying exploit to all players.  
 

A player who does not know the exploit has a singleton action set,  W , and a player that does know 

the exploit has the full action set,  ,W A . 

 
3.3 Zero sum game with perfect information 
 
To fully specify the game, we must define action sets for each player, and the utilities for player’s 
actions. We assume a zero sum strategic conflict; i.e. that any utility gain by one player results in an 
equal utility loss by the opponent. We use the convention that Player 1 is a maximizing player and 
Player 2 is a minimizing player. We assume that each player knows the state of the Markov game, S. 
But this perfect information assumption does not mean that a player knows the exploit. A player is still 
limited by his action set. For example, if the state of the game is ,1,0T , it means that: Player 1 



knows the exploit, has a holding time of 1, and has an action set of  ,W A ; while, Player 2 does not 

know the exploit, has a holding time of 0, and therefore has an action set of solely  W . 

 
3.3.1 Markov game transitions 
 
The discovery and development of attacks is modeled as transitions in the state of the Markov game. 
The game begins in the state 0,0,0  and proceeds in discrete rounds. In each round, the clock time 

T  increases deterministically. For each player i, the holding time 
i
 0  until the player discovers the 

exploit.  Exploit discovery happens with probability  ip T  for player i in round T . Once an exploit is 

discovered by a player, the player’s holding time increases deterministically. The resulting transitions 
of the Markov game state are summarized in Table 1.  A visual depiction of the states of the game is 
presented in Figure 1. 
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Table 1:  Markov game action sets and state transitions as a function of 1 2, ,T   , the state of the 

game.  The game always starts in ,0,0T .  As player i  discovers the exploit, i , becomes greater 

than zero and player i ‘s action set includes attack.   
 
 
 
 
 



 
Figure 1. Diagram of states in the Markov Game.  The arrows in the diagram show the possible 
transitions from one state to another, as described in Table 1.  The horizontal axis describes 

increases in holding time for Player 1, 1 ,and the vertical axis describes increases in holding time for 

Player 2, 2 . 

Let V T ,
1
,

2
define the value of the game in state 1 2, ,T   ; this value represents the expected 

value to the players if they play the game starting at that state.  Because the game is zero-sum, 
payoffs for both players can be described by a single value. To analyze the game, we seek to 

characterize this value function. In particular, 0,0,0V  is the value of engaging in cyber conflict.  

We seek to characterize 1 2, ,V T   for every state of the Markov game. We proceed in our analysis 

by considering three cases on 1 2,  .  

 
3.3.2 Both players know the exploit 
 

In this case, we have 1 20, 0    and both players have full action sets, meaning each may attack 

or wait. Table 2 represents the payoffs of the Markov game in such a state in matrix form. Each entry 
in the matrix contains a single real number, since the game is zero sum. If both players wait, the value 
is determined by future play. If one player attacks and the other waits, the attacking player receives 
the full value of his munition. If both players attack simultaneously, the sum of the munition values 
gives the result of the game. 
 
Table 2:  Payoff matrix for the Markov game when both players know the exploit.  The payoff 
associated with “Wait, Wait” depends on future evolution of the game.  
 

 Player 2 plays:  W Player 2 plays: A 
Player 1 plays: W

1 21, 1, 1V T      2 2a   

Player 1 plays: A  1 1a      1 1 2 2a a   

 
This leads to the following observation. 
 

Theorem 1.  For any game state 1 2, ,T    such that 1 0  and 2 0  ,
 
”Attack, Attack” is an iterated 

elimination of dominated strategies equilibrium with a value of    1 1 2 2a a  . 

 

Proof. Suppose 1 21, 1, 1 0V T      .  Then  1 2 2 21, 1, 1V T a      and 

     1 1 1 1 2 2a a a    , therefore “Attack” is a dominating strategy for Player 2. Given Player 2 

chooses “Attack”, Player 1 must also play “Attack” and “Attack, Attack” is an equilibrium.  A symmetric 

argument holds if 1 21, 1, 1 0V T      .                                                               



 
Theorem 1 results in the following corollary. 
 

Corollary 1.  If the game starts in state 1 2, ,T    with 1 0  and 2 0  the game terminates 

immediately and  

     1 2 1 1 2 2, ,V T a a     . 

Interpreting the results of Theorem 1 and the above corollary, a game starting in , 0,0 , 0T T   

ends optimally no later than one of the following states is reached: 2,1,T  or 1, ,1T  .  However, 

the game may also end earlier, if a player who discovers the exploit chooses to attack before the 
second player has discovered the exploit.   

Because for each i,  ·ia  has a unique associated i , for ease of exposition we drop the index i from 

future uses of  .  For the remainder of this paper, statements like  2a   should be understood to 

mean  2 2a  . 

 
3.3.3 Only one player knows the exploit 

For simplicity, we develop the theory from a state where Player 1 has the exploit and Player 2 does 
not.  The analysis follows identical lines in the opposing situation.  In this case, Player 1 has a full 

action set and Player 2 may only wait to discover the exploit,    1 2, ,A W W   .  Suppose the 

state of the game is , , 0T  .  We define   

      2 1 2 11 1, 1,0 1, 1,1Y p T V T p T V T        , 

to be the expected utility if both players choose to wait at time T.  Table 3 displays the payoffs in 
matrix form.   

 

 Player 2 Plays:  Wait
Player 1 Plays:   Wait Y 

Player 1 Plays:  Attack  1a   

Table 3:  Payoffs for the case where Player 1 knows the exploit and Player 2 does not.  By definition, 

Player 2 has a singleton action set and the matrix reduces to a single column.   

Player 1 prefers to attack if  1Y a  .  The fundamental analytic question is ‘from which states does 

Player 1 prefer to attack?’  If Player 2 discovers the exploit, the game transitions to the scenario 
described in section 3.3.2, and immediately concludes as specified in Theorem 1.  We characterize 

states , ,0T   from which Player 1 prefers to attack as follows.  We define  v h as the expected 

utility to Player 1 if he waits h time periods before attacking, starting in state , ,0T  .   

 

 

 

 



In particular, we have: 

 

   
            
                

      

1

2 1 2 1 2

2 2 1 2 2 1 2

2 1 2

0

1 1 1 1

2 1

· ·

· ·2 1 2 1

1· 1

v a

v q T a p T a a

v q T q T a p T q T a a

p T a a









 

 





    

       

 

  

              
1 11

1 2 1 2 2 2
00 0

1· ·1
h kh

kk j

v h a h q T k a k a p T k q T j  
 

 

 
         

 
 

            

(1) 

The definition of  v h allows us to evaluate the states from which Player 1 prefers to attack.  Player 

1 prefers to attack rather than wait in state , ,0T 
 
if and only if the following holds: 

       1 0a v v h     for all 1.h                  (2) 

This statement mirrors our intuition that a player should attack if only if an immediate attack results in 
a higher utility than waiting for any number of turns before attacking.    

Theorem 2.  If  1a  is concave and nondecreasing, and  2p T is nondecreasing, then 

   0 1v v   implies that Player 1 should attack in state , ,0T   (i.e., Player 1 can never do better 

by waiting). 

Proof.  We proceed by showing that the theorem assumptions imply that  

  (0) ( )v v h   for all  2h  . 

Consider the quantity 
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We know that  (0) (1)v v  , which implies that 
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where the last inequality came from the fact that  1(·)a is concave and nondecreasing.  Continuing 

with the last expression above, we have 
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where the last inequality came from the fact that  2(·)p is nondecreasing and  2 (1)a is nonnegative.  

Finally, multiplying both sides of the inequality by the positive number
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We can complete the proof as follows: 
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Each of the paired terms on the right hand side is smaller than zero, by equation (2), thus we have 

( ) (0) 0,v h v    

completing the proof.                                                                                                                 

For the remainder of this paper we assume stationary probabilities  i ip T p T  .  Theorem 2 

shows that v 0 v 1  is sufficient to prefer Attack at a holding time of  while equation (1) shows 

that    0 1v v  is necessary to prefer Attack at  .  Therefore, from state ,1,0T  player 1 waits 

for     * min 0 1k kk
k v v  turns before attacking.  Substituting the definition of (·)v we can write 

this as       *
1 1 2 2min 1 1

k
k a k a k p a    .  The set in the definition of *k is never empty when 

1(·)a is bounded, concave, and nondecreasing and 2 2 (1)p a
 
is not identically zero, meaning that 

Player 1 will eventually prefer to attack.  We conclude that: 
 

   *
0,1,0V T v k

 
(4) 

While we presume that most cases will have nondecreasing 1 2 1 2, , ,a a p p functions, there is no 

reason that it must be so. Nondecreasing functions model situations where the passage of time brings 

increased capability, both in development and detection. However, there may be interesting, and 

operationally relevant, cases where the functions are decreasing.  Although we do not present 



detailed results here, the value functions in these alternate situations may evaluated directly by using 

equations (1) and (2). 

 
3.3.4 Neither player has the exploit 
 

In this case, the game has been in play for an unknown amount of time and 1 2 0   ; therefore 

both players have singleton action sets,  

 
 
 

1

2

W

W








 

Using the theory previously developed, the value of the game given Player 1 discovers the exploit first 

is: ,1,0V T . Similarly, if Player 2 discovers the exploit first the value is: , 0,1V T .  In the case 

where both players simultaneously discover the exploit:    1 2,1,1 1 1V T a a  .  Because the state 

,0,0T transitions into previously analyzed states, we are only concerned with the first transition. For 

stationary discovery probabilities the next state transition probabilities out of ,0,0S T  are: 
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where we have introduced the  values for brevity. 

The value of the game starting from ,0,0T  is 

 
    

1,0 0,1 1,1

1 1* 2*
1,0 0 0,1 0 1

2
1 2,1

,0,0 ,1,0 ,0,1 ,1,1

( ( 1) 1 ,)

V T V T V T V T

v k v k a a

  

  

  

   
  (5) 

where the negative sign comes from the fact that Player 1 is a maximizing player, and Player 2 is a 

minimizing player; and 1
0 (·)v ,

*
1k denote results of equations (3) and (4)   if Player 1 is the first to 

discover the exploit while 2
0 (·)v ,

*
2k denote the results of equations (3) and (4) if Player 2 is the first to 

discover the exploit. 

 

4.  Numerical analysis 
 
In this section, we consider some concrete examples of the theory developed in the previous section. 

Unless otherwise specified, we assume ( )i ip T p T   and 0ip  .   

As a notational convenience we will denote the value of any particular example as nV  where n  is the 
example number. 
 
 
 
 
 



4.1  Scenario 1: Constant ia  functions 

 
Suppose that Players 1 and 2 both have attack value functions such that: 
 

 
(0) 0

( ) 1
i

i i

a

a c 


  
 

Because ( )ia   is concave and increasing for both players, we can use Theorem 2 to compute the 

optimal attack time for each player, 
*
ik for 1,2i  , which is 1 for both players. We may directly 

compute the value of the game using equation (5): 
 

 1 1 2 1 2 1 2 1 2 1 2

1 2 2 1 1 2

(1 ) (1) (1 ) (1) ( (1) (1))

(1 ) (1 )

p p a p p a p p a a
V

p p p p p p

    


   
 

In particular, Player 1 will have a positive expected payoff if and only if: 
 

   1 1 2 21 1p pa a  

 
In this case, a player may make up for a deficiency in either discovery or development by being strong 

in the other area. Because 0 1ip   these tradeoffs are implicitly limited.  

 

4.2  Scenario 2: Linearly increasing 1a   

 
Suppose Players 1 and 2 have attack functions such that: 
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This function is also concave, increasing and we may use Theorem 2 to determine the optimal attack 

time,
*
ik , for both players.  Specifically, *

2 1k   and *
1k  is dependent on the values of 2p  and c as 

follows: 
 

 
2*

1

11   if 

5  otherwise

p c
k


 


 

As verification, we compute the values of ( )v h  for 1,2...5h  .  We see in Figure 2 that the 

maximizing value is 5h  . For example, if 2 2(1) 1, .2a p   

 



 
 

Figure 2:  Value of Scenario 2 from Player 1’s point of view.  The vertical axis plots the value, ( )v h , 

as a function of the number of time periods Player 1 waits before attacking, h .   The value function 
increases to the point 5h  , and decreases afterward.  By Theorem 2, this implies that Player 1’s 

optimal attack time, 
*
1k , is 5. 

 

Knowing *k  for both players, we may compute the value of the game, 2 ,0,0V T   as a function of 

1p ; see Figure 3. 

 

 
 

Figure 3:  Value of Scenario 2 as a function of Player 1's probability of discovering the Exploit, 1p .  

Here we see that the value of the game is a concave function of Player 1’s probability of detecting the 
exploit;  increases in detection probability at low detection values provide a bigger increase in the 
game value than increases in detection probability at high detection values.  
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4.3  Scenario 3: Non-Monotone 1a  

Suppose that 2 2(1) 1, .3a p  , and Player 1's value function has a single dip, specifically 

1( ) (1, 2, 3, 4, 5, 3, 6,)a    as shown in Figure 4.  In this case, we cannot use Theorem 2 to compute 

the optimal attack time.  However, we may compute the optimal attack time directly, by computing the 
value of holding for each possible holding period, as depicted in Figure 5. 
 
 

 
Figure 4:  The function 1a  for Scenario 3.  Unlike our previous examples, the value of Player 1’s 

attack has a dip at 1 6  .  In this scenario, Theorem 2 no longer applies in finding the optimal attack 

time 
*
1k . 

 

Because 1( )a   is not concave and increasing, we cannot apply to Theorem 2. Here we need to 

actually compute the numeric values of ( )v h . Performing this calculation, we see that 
*

1 5k   and it 

is not advisable to wait through the non-increasing region.  
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Figure 5:  Player 1's value as a function of waiting time, h in Scenario 3.  We see that the payoff for 
waiting to 7h  is less than executing at 5h  .   
 

A decision maker may want to know what value of 1(7)a  would change Player 1's decision? We 

answer this question by performing a line search on 1(7)a  and determine the threshold value is 

6.6 . 
 

5  Extensions and applications 

 
In this section, we explore the operationally relevant implications of our model. 
 
5.1 Delayed action 
 
It may be the case that a player discovers an exploit and cannot take action; specifically, he is unable 

(or not allowed) to attack, patch, or work towards development of a munition for some predetermined 

fixed time after discovery of an exploit.  This may be due to legal, policy, or organizational limitations.    

 
5.1.1 One player delayed action 
 
Suppose Player 1 has a rule where he must wait w  time periods after discovery before any attack, 

patch or development of a munition.  Consistent with our previous definition of perfect information, if 

Player 2 has the exploit, he learns if Player 1 knows the exploit.  Player 2 also knows the existence 

and duration of Player 1’s delay rule.   

 

We wish to understand the value of this delayed version of our game, which we denote as ·wV   .   

 
If both players have the exploit, Player 2 can wait and exercise his munition the turn before Player 1 is 

able to begin work; therefore, 

   2,1,1 1wV T a w  . 
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If Player 2 has the exploit and Player 1 does not, Player 2 may continue developing his munition until 

Player 1 discovers the exploit, and an additional  1w
 
time periods before attacking; therefore, 

     1 1 2
0

,0,1 1 .
iw

i

V T p p a i w




    

Finally, if Player 1 has the exploit and Player 2 does not, there are two possibilities.  First, Player 1 

may retain sole knowledge of the exploit until the end of the waiting period, or, second, Player 2 may 

discover the exploit during Player 1’s forced delay time; therefore, 

       
1

2 2 2 2
1

,1,0 1 ,1,0 1
w

ww

i

V T p V T p p a w i




     . 

We may combine these expressions to write: 
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

   (6) 

The implication of this is that unproductive waiting times are damaging to a player’s prospects in cyber 

conflict. 

 
Consider the specific example of two evenly matched players with bounded, linear development 

functions, thus: 1 2 .1p p  ,    1 2 for 0 10a a      
 
and

 
a1    a2  10 for  10

.  By symmetry, ,0,0 0V T 
 
for this game when neither player is forced to wait. 

 

Now consider the case where Player 1 has a waiting time w .  We plot the player 1’s expected payoff 

as a function of w  below: 

 



 
Figure 6:  Player 1’s utility curve as a function of waiting time w  against an evenly matched 
opponent.  We see that Player 1’s utility drops off rapidly from an expected value of zero, with the 
implication that waiting is costly.   
 

We can also ask ‘How good does Player 1’s detection probability 1p need to be in order to make up 

for a given waiting time w ?’  Figure 2 shows the adjustment required in this example; for waiting 

times longer than 5 periods, even perfect detection does not achieve parity. 

 

 
Figure 7:  Player 1’s required detection probability 1p required to achieve 0,0,0 0wV  as a function 

of waiting time, w .  Player 1’s required capability increases rapidly and, because 1p may never be 

greater than 1, parity is unachievable after 5w  
 
The lesson of Figures 7 and 8 is that waiting times are costly and adversely affect one’s prospects in 
cyber conflict.  
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5.2 Deterrence 
 
In the preceding subsection, we advise belligerents in cyber conflict to develop and execute their 

attacks quickly–a stance that is incompatible with the notion of “crisis stability” (Kent, 1989) of 

classical deterrence theory. Can deterrence in cyber conflict be achieved, and if so, how?  Several 

scholars ask this question, notably (Sterner, 2011). In this paper we consider one aspect of cyber 

deterrence.  

 
5.2.1 A short review of strike stability 
 
The concept of strike stability was developed during the Cold War to understand which sets of 

circumstances would lead to nuclear conflict. The original papers describe the development and 

application of this theory to nuclear arms. Kent (1989) describes a game which has many similarities 

with the one described herein; two players are faced with the decision of ’attacking’ or ’not attacking’; 

they make this decision by weighing the benefits of going ‘first’ or ‘second’ with the assumption that 

the other player will surely retaliate with whatever force he has left. The closer the ratio of costs of 

going second to going first is to one, the more stable the system is because the decision maker is 

indifferent to striking first or striking second and may be deterred. Low values of strike stability indicate 

a large disadvantage to attacking second and therefore lead to instability. Deterrence requires both 

sides to choose non-action (Wait in our model) at each decision epoch. 

 
5.2.2 Strike stability for cyber conflict  
 
The analysis of section 4 shows that if a player has the ability to attack, he eventually does with 

certainty.  This means that cyber conflict with perfect information and a single exploit is deterrence 

unstable.  Intuitively this is because there is no second strike.  Theorem 1 is sufficient to demonstrate 

that the single-attack case is deterrence unstable; the first player to attack receives the reward of his 

development to date, and the non-attacking player is left with and empty arsenal. 

 

Considerations outside the model we consider may provide some degree of deterrence in reality.  For 

example, military, economic or diplomatic consequences or large cyber munition arsenals may 

provide some guarantee of a second strike.  Such guarantees, while important to deterrence are 

outside the bounds of our current work.  Nevertheless, without these external guarantees deterrence 

in cyber conflict does not exist. 

 
6 Conclusion and future work 

We have developed and exercised a limited, stylized model. Real situations, of course, have many 

differences from the idealized mathematics; the utility of this work is to define the cyber conflict 

problem with perfect information.  Additionally, we:  

 Demonstrate a framework for analyzing the problem; 

 Demonstrate that in cyber conflict, idle wait times are damaging, and provide a means 

to calculate their disutility; and 



 Show implications for deterrence in cyber conflict. 

 
This paper considered a single attack in discrete time with perfect information—three idealizations 

that help us begin to tackle the problem of cyber conflict.  Of these three, the perfect information 

assumption appears to be the richest area to explore in the future, and with this exploration come 

considerations of credibility, reputations, and risk taking.  
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