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ABSTRACT 

Today’s military pilots are required to perform multiple tasks simultaneously, 

including maintaining control of the aircraft, navigating, communicating, and 

detecting targets.  Mental workload may affect a pilot’s ability to effectively learn 

to manage these tasks.  Studies have shown that there are certain involuntary, 

physiological changes in eye gaze patterns, such as blink rate, frequency of 

fixations, and saccade rate that indicate increased mental workload.  We 

hypothesize that experienced pilots, defined by total flight hours, would show 

more efficient eye scan patterns (higher frequency of fixations, lower dwell 

durations, and higher frequency of saccades per minute) during simulated  tasks 

that required navigation and target detection and identification (tD&I).  This would 

therefore lead to better performance in tD&I tasks. 

Fourteen active duty military pilots completed three different scenarios 

while operating the flight controls in a helicopter flight simulator: overland 

navigation, tD&I while on autopilot, and tD&I while completing overland 

navigation.  Eyetracking data were collected while the pilots completed the 

scenarios.  Flight experience did not correlate to scan pattern or task 

performance.  It did, however, show an interaction with cognitive workload as 

judged by blink rate.  Results indicate that implementing eyetracking information 

into current aviation training programs could improve training effectiveness and 

efficiency. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

Operating in the “information age” makes the ability to perform multiple 

tasks simultaneously a necessary skill.  While selection and training focus on this 

ability, it is keenly critical for military aviators to perform multiple tasks in a time-

pressured environment.  Single seat aviators are responsible for all aspects of a 

mission from before takeoff until after they land.  Crew aircraft have similar 

challenges, although the workload is now shared between multiple members.  

Cognitive workload has been determined to affect how well pilots are able to do 

multi-tasking. 

Cognitive workload defined as the combined interactions of task 

demands/difficulty, operator workload, other stressors, and primary task 

performance (Megaw, 2005).  Cognitive workload itself can be tracked and 

monitored with multiple methods.  First, performance-based measures such as 

adherence to a course or number of correct responses quantify how well an 

individual performs with an increase in task load.  Alternately, subjective 

measures can be acquired simply by asking individuals what they are thinking or 

how they feel about their workload.  While important, this approach is subjective 

and may not accurately represent the cognitive workload of the individual.  Lastly, 

there are physiological markers, which are universal, that can identify when an 

individual faces an increase in mental workload (MWL).  Some of these markers 

are brainwaves, galvanic skin response, heart rate, pupil diameter and 

dilation/contraction rates, and blink data (Jessee, 2010; Megaw, 2005). 

Eye behavior generally has been the subject of many studies of mental 

workload (Jessee, 2010; Fong et al., 2011; Sibley et al., 2011; Marshall, 2007), 

which can be converted to an objective and measurable index.  Using eye 

tracking technology to observe the movements of the eyes, we are able to relate 

how much of an increase there may be on an individual’s cognitive load when 
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given multiple tasks to accomplish.  What used to require various invasive 

methods, the technology now exists to give incredibly accurate (±1mm 

translation, ±1º rotational) results on an individual without being invasive at all.  

The equipment that will be utilized has no effect on the individuals, and other 

than knowing the equipment is there, the participant has no interaction with it.  

This allows for more pure data collection by decreasing the amount of random 

variability introduced by knowledge of equipment and the inherent discomfort or 

distractions of wearing it for any extended period. 

Our a priori expectation is that as an individual’s experience and skills 

increase, the resultant mental workload that they experience should decrease 

(Sibley et al., 2011).  Additionally, expert pilots tend to have a more efficient 

visual scan pattern than novice pilots (Sullivan, 2010).  Previous work has shown 

that experienced pilots, as defined by flight hours, have more refined and efficient 

scan patterns that allow them to be able to accomplish difficult tasks (Kasarskis 

et al., 2001; Starkes & Allard, 1993; Sullivan, 2010).  They have more fixations 

(pauses in eye movement to allow visual intake), shorter durations on each 

fixation, and more saccades (rapid, simultaneous movements of both eyes to 

fixate on a common focus).  A more efficient scan pattern presumably would 

decrease cognitive load.  Additionally, faster scan times mean that pilots spend 

less time obtaining information from their instruments and therefore have more 

attention to devote to the tasks of overland navigation and target detection.  Does 

this refined scan pattern transfer over into a reduced cognitive workload for the 

pilot?   

B. PURPOSE OF THE THESIS 

Currently, it is suspected that expertise has an impact on scan patterns 

and performance across combination tasks, but this impact is not quantified.  

This thesis aimed to fill in these important gaps in knowledge by assessing 

performance and measuring scan patterns and, by implication, workload, while 

navigating an aircraft in a mountainous region, locate and identify targets of 
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interest, and a combination of the two.  While participants completed the tasks, 

their visual scan and basic eye characteristics were captured in real time via 

eyetracking.  They also completed surveys prior to and after each scenario in 

which they indicate the level of perceived task difficulty at each waypoint.  Finally, 

participants completed a demographic survey that asked about relevant flight 

experience information.  Thus, we used performance-based, objective, and 

subjective objective measures of cognitive workload across the three tasks: 

 Performance based measure: adherence to the given route and 

ability to detect (find along the route) and correctly identify (friend or 

foe) various contacts along the flight route 

 Objective cognitive workload data (scan pattern, saccade rate, 

fixation data)  

 Subjective cognitive workload data (from pre- and post-surveys) 

Flight expertise is commonly measured by total flight hours.  However, a 

more useful and nuanced measure of task-specific expertise may be visual scan 

pattern.  Therefore, we used two measures of expertise in analyzing the data: 

total flight hours and eye scan pattern.  Finally, because subjective reports of 

cognitive workload can be inaccurate, we will compare the subjective surveys to 

the objective eye scan data.  If it is possible to determine how an individual 

adapts to the change in tasks, and a corresponding change in performance, task 

saturating situations could be anticipated and, in some cases, mitigated.  By 

identifying when an individual reaches a threshold level of experience, measured 

by physiological factors such as those studied here, the military could potentially 

increase training effectiveness by tailoring syllabi focusing on individual tasks. 

C. RESEARCH QUESTIONS 

 Does self-reported expertise, measured in total flight hours, predict 

eye scan pattern, measured by fixations, saccades, and dwell 
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times, across the three tasks of Navigation, Target Detection & 

Identification, and Navigation and Target Detection & Identification? 

 Is expertise associated with less cognitive workload across the 

three tasks of Navigation, Target Detection & Identification, and 

Navigation and Target Detection & Identification? 

 Can eye scan be used to predict performance? 

D. HYPOTHESES 

1. H0:  There is no significant correlation between total flight hours 

and eye scan patterns in the Navigation, Target Detection, and Navigation & 

Target Detection tasks. 

HA:  More experienced pilots will have more saccades, shorter and more 

fixations, more fixations on salient instruments and stimuli than inexperienced 

pilots. 

2. H0:  There is no significant correlation between eye scan pattern 

and performance in the Navigation, Target Detection, and Navigation & Target 

Detection tasks. 

HA:  Pilots with more efficient eye scan patterns (more saccades, shorter 

and more fixations, fixations on salient instruments and stimuli) will perform 

better on the navigation (by adherence to the given course and waypoints), task 

detection (more Correct Detections versus Incorrect and Missed Detections), and 

combination tasks. 

3. H0: Regardless of expertise, there will be no difference in blink 

rates across scenarios. 

HA: Pilots with more experience will have a higher blink rate than pilots 

with less experience. 
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E. THESIS ORGANIZATION AND TABLE OF CONTENTS 

 Chapter I: Introduction.  This chapter describes the problem, lists 

the research and exploratory questions, presents the hypotheses, 

and describes the scope and benefits of the study. 

 Chapter II: Background.  This chapter will provide a literature 

review of previous work in the field.  The review includes current 

work on cognition, attention, types of workloads, and different 

methods of measuring an individual’s workload while performing 

tasks. 

 Chapter III: Methodology.  This chapter describes how the research 

team designed the experiment, including participant selection, 

experiment setup, procedures, and equipment configuration. 

 Chapter IV: Results and Data Analysis.  This chapter will analyze 

the data collected and present the results and how they apply to the 

given research questions and hypotheses. 

 Chapter V: Discussion, Conclusion, and Recommendations.  This 

chapter will look at the implications of the study and possible future 

work that can come from it. 

 Appendix A: Rating Scales.  This appendix contains the rating 

scales that were referenced for the subjective portions of the 

experiment. 

 Appendix B: Data Figures/Tables.  This appendix contains the 

tables and statistical figures that are not placed in the body of the 

text. 

 Appendix C: Summary Statistics.  This appendix contains a 

summary of the statistical information from the data.  Individual 
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performance is not included, nor are other divisions in the data.  If 

there were divisions, the statistic is for the overall set. 

 Appendix D: Approved IRB Protocol.  This appendix contains the 

submitted and approved Institutional Review Board Protocol for the 

experiment. 

 Appendix E: Recruitment E-mail.  This appendix contains the e-

mail sent to the students, staff, and faculty of the Naval 

Postgraduate School requesting participants for the experiment. 

 Appendix F: Subject Checklist.  This appendix contains a checklist 

used for each participant to ensure consistency between volunteers 

and verify that all necessary steps have been taken prior to, during, 

and after the experiment. 

 Appendix G: Welcome Script.  This appendix contains a short 

explanation for the participant about how the experiment will 

progress. 

 Appendix H: Eye Scan Calibration Script.  This appendix contains 

the script that we used to set up and calibrate the face tracking 

equipment. 

 Appendix I: Equipment Familiarization Script.  This appendix is 

used during the Practice Scenario in order to allow the volunteer to 

understand the equipment and the controls. 

 Appendix J: Demographic Survey.  This appendix allowed the 

researchers to gather demographic information from the 

participants regarding various aspects of their experience. 

 Appendix K: Pre/Post-Flight Survey.  This appendix is the survey 

given to each participant before and after each scenario. 
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II. BACKGROUND 

A. INTRODUCTION 

This thesis focuses on how a pilot performs when presented with different 

tasks simultaneously.  Even in multi-piloted aircraft such as helicopters, the 

workload inside the cockpit consists of many tasks occurring simultaneously.  

Early in training new pilots are trained to “Aviate.  Navigate.  Communicate.”  

This rule helps prioritize when task loading becomes considerable.  Most 

importantly, the job of the pilot is to keep the aircraft in the air.  Second, 

knowledge of where the aircraft is and where it is going is vital to mission 

success.  Lastly, but not to downplay its importance, communication allows the 

pilot to send and receive information and coordinate actions.  Simply put, failing 

to navigate or communicate may possibly lead to disaster whereas failing to 

aviate will. 

The aviate and navigate portion of this rule have large visual workloads as 

the pilot scans the cockpit to monitor aircraft performance and parameters, and 

scans out the window to maintain situational awareness of his location.  The scan 

pattern is also taught early in aviation training and each pilot develops their own 

pattern as they acquire hours in the cockpit.  In the beginning, the scan is 

inefficient as it has long dwell times, less fixations, and a less refined “flow” 

around the cockpit than those with more experience (Kasarskis et al., 2001; 

Sullivan, 2010).  According to Sullivan, experts take less time to take in the 

salient details in a scene, shifting their gaze more frequently and overlapping 

successive scans in order to create a finer mental picture of their environment.  

Additionally, less experienced pilots will fixate on less salient features while 

taking longer to encode and process what their seeing in order to understand 

their respective situations. 

There are various methods of detecting and measuring changes in 

cognitive workload.  We examined previous work on attention, vigilance, 
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cognition, multitasking, and the ways in which these combine to give an 

individual the situational awareness, or sight picture, of what is going on during 

navigation, target detection, or the combination of the two.  Different methods 

exist for measuring workload of an individual, namely performance, subjective, 

and physiological.  By using all three of these in the research, it is possible to 

correlate not only one’s actual performance, but also their perceived 

performance.  Technology today has progressed to the point where it is possible 

to measure an individual’s workload empirically without any imposing equipment 

that may have an effect on the data.  To be able to assess an individual’s 

cognitive workload in real time and detect visual scan patterns associated with 

differing cognitive loads gives the potential for tailored training that can improve 

performance and maximize and throughput. 

B. ASSESSMENT OF WORKLOAD 

Proctor and Van Zandt (2008) define workload as “an estimate of the 

cognitive demands of an operator’s duties.”  In order to explore workload, it is 

necessary to define precisely the tasks and benchmarks.  Empirical methods for 

measuring workload include primary task, subjective measures, secondary task, 

and physiological (Proctor & Van Zandt, 2008; Megaw, 2005).  Analytical 

methods exist as well, defined similarly in the same sources; however, these are 

often used early in the development of a system to predict behavior.  As such, 

only the empirical methods will be reviewed and used in this research. 

1. Performance Measures 

Performance measures of workload, also known as primary-task 

measures, are those that measure how well an individual performs a task.  

Performance and workload are, in general, not linearly related.  Instead, with 

workload on the x-axis, they typically follow an inverted “U” shape, commonly 

described as the Yerkes-Dodson law (Aral et al., 2007; Proctor & Van Zandt, 

2008).  Shown in Figure 1, the Yerkes-Dodson Law states that performance is 
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not highest the simpler a task is nor with less arousal or stimulation.  Previous 

work shows that with simple tasks, an individual’s performance can be just as 

poor as if confronted with a mentally taxing, high cognitive workload task 

(Megaw, 2005; Proctor & Van Zandt, 2008).  In the Navy, one tenet of Crew 

Resource Management is that of Situational Awareness (SA).  In the MH-60S 

helicopter Naval Air Training and Operating Procedures (NATOPS) manual, task 

overload and underload are recognized as factors that can cause a drop in SA, 

which can have dramatic effects on the performance of a flight.  Because of this, 

the level of vigilance and arousal must be kept at a level that capitalizes on the 

increase in performance without overtasking the individual.  

 

 

 Yerkes-Dodson Law (After Yerkes & Dodson, 1908) Figure 1.  

Measuring workload via performance is done using a scoring system.  

This can range anywhere from an exam in school, a time in a race, or simply 

staying inside the lines while coloring a child’s picture.  Megaw (2005) states that 

“while poor human performance can be indicative of task demands being too 
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high, acceptable performance does not necessarily reflect task demands.”  

Because of this, if one is to use performance measures to assess workloads, it is 

best to use multiple measures (Proctor & Van Zandt, 2008).  Different measures 

of performance measure different aspects of workload.  If we were to use just 

one, there would be a hole in the data that could lead to incorrect assumptions 

and conclusions. 

With respect to the scenarios presented to our participants, we expect that 

performance (adherence to assigned route and quality of target detection) will be 

higher in the scenarios in which these two tasks individually are the sole tasks 

being asked of the participant.  When combined into one scenario, the mental 

workload will have to be allocated accordingly in order to complete both tasks.  

Depending on the individual, they may give more attention to the target detection 

and identification at the expense of the navigation. 

2. Subjective Measures 

Subjective measures of performance are based on the opinions and 

feelings of the individuals immediately after the completion of their task.  As such, 

these methods are subject to biases, such as hindsight (Pezzo, 2011), mood 

congruent (Mayer & Bower, 1985), and egocentricity (Epley et al., 2004; Fellner 

et al., 2004) and have certain shortcomings when it comes to using one as a sole 

measure of workload.  Subjective measures include rating scales and 

questionnaires.  Proctor and Van Zandt (2008) point out three issues with using 

subjective measures: 

 They may not be sensitive to aspects of task environment that 

affect primary-task performance, 

 Operators may confuse perceived difficulty with perceived 

expenditure of effort, 
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 Many factors that determine workload are inaccessible to conscious 

evaluation (such as ability to compartmentalize, prior training, or 

fatigue, etc). 

There are a variety of methods to measure subjective workload.  The following 

three measures are those that form the backbone of most current subjective 

measuring scales. 

a. Cooper-Harper 

The Cooper-Harper method (Cooper & Harper, 1969) uses a single 

10-point scale to which subjects would rate their experiences.  Originally 

designed for analyzing aircraft handling, the scale is adaptable to a wide variety 

of fields.  The scale ranges from having “Major Deficiencies” (10 points), to 

“Excellent, Highly Desirable” (1 point).  Other than major deficiencies, the rest are 

grouped in threes that make for easy classification and navigation, essentially 

providing an objective path to the subjective measure. 

b. SWAT 

The Subjective Workload Assessment Technique shown in 

Appendix A was developed as an alternative to the Cooper-Harper method and 

uses a series of cards to assess workload.  These cards are differentiated from 

each other by time load, mental effort load, and stress load (Proctor & Van Zandt, 

2008).  There are three levels for each of the subcategories and all combinations 

are represented on the cards for a total of 27 cards.  Through the ordering of the 

cards and applying a “conjoint measuring technique” (Megaw, 2005) to place 

each of the 27 cards on a 1–100 point scale.  The SWAT technique is time 

consuming and the weighing of each subcategory differs between participants. 

c. NASA-TLX 

One of the most widely used methods of acquiring a subjective 

measure of performance is NASA’s Task Load Index.  Using six scales similar to 



12 
 

the oft-used Likert scale, TLX takes a user’s input as a gradient, matching their 

rating on the particular scale to a score between 0 to 100 (Hart & Steveland, 

1988).  Appendix A shows the scales that TLX utilizes.  In Hart and Steveland’s 

report, there was a weight given to the measurements that would make the data 

analysis take slightly longer.  Further studies with and without the weights have 

suggested that this step is superfluous; however, they have been countered just 

as often with studies showing the weights give a “small but significant 

contribution” (Megaw, 2005). 

3. Psychophysiological Measures 

One of the most effective ways to get a true gauge on the workload an 

individual is experiencing is through psychophysiological measurements.  These 

typically fall into two categories: arousal and brain activity (Proctor & Van Zandt, 

2008).  As the name implies, brain activity focuses on the minute electrical 

impulses that are detectable with various methods.  Arousal is measured via a 

variety of subconscious reactions that occur in the body when exposed to 

different levels of stress and workload.  These indicators, largely in the 

sympathetic nervous system, include pupil diameter, pupil dilation/contraction 

rate, heart rate and variability, galvanic skin response, blood pressure, blink data, 

and respiration rate, among others (Proctor & Van Zandt, 2008; Marshall, 2000; 

Marshall, 2007; Jessee, 2010; Fong et al., 2011; Sibley et al., 2011).  The 

responses can be measured with a variety of accurate and dependable 

instruments. 

a. Brain Activity 

Brain activity is a second measure of mental workload.  Using an 

electroencephalogram (EEG), it is possible to measure brain activity in response 

to given stimuli (Megaw, 2005; Proctor & Van Zandt, 2008).  The EEG uses a 

network of electrodes attached to the scalp that measure tiny variations in 

voltage and translates it into a visual representation of mental activity.  Event-



13 
 

related brain potentials (ERP) are the changes in brain activity that occur  

when the events occur that require a differing amount of processing.  Data 

analysis is required to determine the difference between these ERPs and the 

background, normal brain activity (Megaw, 2005).  Other brain measurements 

include positron emission tomography, functional magnetic resonance imaging, 

magnetoencephalography, transcranial Doppler sonography, and optical brain 

imaging (Proctor & Van Zandt, 2008).  These methods provide much more 

detailed data, but as they are intrusive, we opted not to utilize any of them. 

b. Cardiac and Galvanic Skin Response 

Cardiac activity and galvanic skin response are two factors that a 

mentally loaded individual may be conscious of, but over which they would have 

no control.  These responses come from the sympathetic nervous system and 

are noticeable manifestations of the “fight or flight” response and show an 

increase or decrease in heart rate (Megaw, 2005; Roscoe, 1984), or the increase 

of skin moisture (sweat) thereby increasing skin conductivity.  Megaw proceeds 

to describe how “there is a lack of understanding as to why or how mean heart 

rate should increase with increasing mental demands.”  Like measuring brain 

activity, measuring these two markers of mental workload are intrusive and were 

not used in this study. 

Although advances in technology allow for better measurement of 

arousal, these techniques remain cumbersome and intrusive (Marshall, 2000).  

Measuring brain activity still involves attaching electrodes to the scalp and 

therefore remains to be more intrusive than other methods.  This process affects 

a participant in more ways than one.  First, the equipment itself can be 

cumbersome, causing discomfort or hot-spots if left on for an extended period of 

time (Marshall, 2000).  Second, the knowledge of the equipment itself can cause 

the body to have subconscious reactions that can affect the data.  An aviator 

flying a simulation while being recorded is barely different from them doing it just 

being observed (which occurs all the time); having them fly while hooked up to 
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wires and equipment can put undue stressors and pressures on their mind.  As 

will be discussed next, eye-tracking technology allows the experimenter to 

measure accurately a participant’s reaction to workload without being intrusive.  

Being able to disconnect the detection equipment from the individual allows for a 

more natural environment and therefore a more pure collection of data. 

c. Eye Tracking 

Eye tracking is one field that has progressed greatly in the past few 

decades.  Originally, the equipment needed to track one’s eye movements was 

bulky and was worn on the head.  As mentioned, this can skew the data collected 

if the individual is uncomfortable or just thinking about the equipment.  Now, 

being able to detect and collect data from eye-trackers is completely non-

intrusive to an individual, save the knowledge that there are cameras observing 

them. 

(i)  Eye blink activity.  As every schoolchild knows, one of the 

main purposes of blinking is to lubricate the eye.  There is a variety of other 

purposes, but the eye will also blink for seemingly spontaneous reasons (Stern et 

al., 1984).  Stern et al. call this the endogenous blink.  At the time of their 

publication, there was little work done on cognitive activity and blink rate.  Almost 

thirty years later, there has been much research relating blink rate to cognition.  

Studies have shown that when a blink occurs, the brain temporarily shuts down 

visual input (Stern et al., 1984; Jessee, 2010).  Additionally, blinks tend to occur 

after taking in visual information, possibly as the brain switches from a visual 

workload (VWL) (taking in the information) to a mental workload (processing the 

information) (Megaw, 2005).  In some situations, blink rate decreases with an 

increase in VWL, such as driving and flying.  However, Megaw (2005) and Stern 

et al. (1984) both state that blink rate increases in other cases where visual 

processing is not as demanding.  Although published more than twenty years 

later, Megaw sums it up concisely saying, “The inconsistent results relating to 

blink rate may indicate a diagnostic potential for the measure with the acquisition 
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of visual information being associated with lower blink rates, and visual cognitive 

processes with higher rates.”  While performing demanding tasks, regardless of 

difficulty, the blinks tend to occur at times when there is no need for steady and 

constant visual intake (Stern et al., 1984).  In tracking tasks, such as those used 

in this thesis, if an individual knew a visually demanding portion of the task was 

approaching, blink rate would increase prior to and after the portion, with a drop 

in between (Stern et al., 1984). 

(ii)  Saccadic events.  Saccades are periods of time when 

the eye is actively in motion.  During this movement, uptake of visual information 

is temporarily paused (Carlson-Radvansky, 1999).  Because of this, the time in 

between saccadic events, the fixation, is when the eyes actually take in the 

scene before them.  Fixations and saccades are not related on a one-to-one 

scale.  There can be multiple saccades from one fixation to the next as the eye 

rotates to the next object of interest (Marshall, 2007).  Times in between 

saccades (fixation or dwell times) vary as well; longer fixations imply more time 

required for the visual uptake and the VWL.  A NASA report found that novice 

pilots spend more time per fixation than expert pilots (Tole et al., 1983).  The 

expert pilots in this study were able to acquire the information they needed in a 

much more expedient fashion and proceed with their scan.  This does not 

necessarily indicate a lower cognitive workload, only that they are able to 

process more information in a shorter amount of time than the inexperienced 

pilots. 

With larger shifts in focus, it is necessary to move the eye 

through an increased number of degrees in the field of view.  As mentioned, 

when the eye is moving, there is no uptake of visual information.  This would 

therefore lead to the conclusion that with larger shifts, there is a longer amount of 

time spent without visual input.  Jessee (2010) mentions that although having 

objects close together would lead to less VWL, the ability to discern one from 

another would lead to an increase in MWL. 
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(iii)  Pupillometric Measurements.  With the increase of 

computing power and the ability to collect and analyze data in real time, we can 

observe an individual’s pupils for telltale signs of cognition.  Poker players for 

centuries have known that when presented with an appealing hand, the pupils 

will dilate, giving a tell that is extremely hard to control.  Multiple studies 

corroborate the hypothesis that pupil size increases with an increase in arousal 

and motivation (Fong et al., 2011; Sibley et al., 2011; Jessee, 2010; Megaw, 

2005; Just et al., 2003).  When using pupils as a tool to measure MWL and VWL, 

the experimenter has to be aware of the environment.  Pupils are very sensitive 

to changes in illumination level and if there are fluctuations, this can confound the 

data (Megaw, 2005).  The eyes and pupils also vary between individuals.  

Although it can be said that pupil size will increase with an increase in workload, 

there is no given method to say they will increase or decrease a given amount.  

Even within an individual, pupil size can vary due to what Jessee (2005) calls 

“operator state variables.”  These would be such things as fatigue level, caffeine 

intake, alcohol, drugs, etc. that would affect the individual on the physiological 

level. 

Pupil size is not the only indicator that we can use from this 

type of data.  The dilation and contraction rate is useful in revealing an increase 

in cognitive workload and how much of an increase there is.  In Sibley et al. 

(2011), they describe how pupil size is greatest in the beginning of a task of 

increased difficulty, and would then decrease.  Additionally, as the individuals 

learn the task and become accustomed to it, the amount of dilation would 

decrease and the rate at which they return to normal would increase with the 

same cognitive stimulation.  In Fong et al. (2011), they also showed that the 

dilation rate is inversely related to the change in cognitive workload that an 

individual experiences.  Their method of measuring, Task Evoked Pupillary 

Response (TERP), relies more on the change in size vice the size itself and is 

therefore more resistant to the confounding factors mentioned. 
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4. Secondary Task Measures 

Secondary tasks are those tasks that an individual performs in addition to 

their primary task.  Also referred to as dual or concurrent tasking, the purpose of 

secondary task measures is to measure the amount of remaining cognitive 

processing power while completing the primary task (Megaw, 2005).  As the 

names imply, the primary task should be the focus of the attention during the 

exercise.  Measuring performance using secondary tasks does not necessarily 

mean measuring performance of the secondary task.  The two basic types of 

secondary task techniques are the loading task paradigm and the subsidiary task 

paradigm.  With the former, a researcher instructs the participant to maintain 

performance on the secondary task.  The goal is to measure the degradation in 

the primary task, thus indicating what kind of effect the secondary has.  The 

second type, subsidiary task, is the opposite.  It instructs the participant to 

maintain priority on the primary task while measuring the decrease in 

performance on the secondary task.  Both of these measures rely on the use 

tasks that make use of similar psychological resources (e.g., visual, oral, or 

auditory).  Megaw states that when the two tasks share none of the same 

processes, there is no interference and an individual can reasonably perform 

both tasks with no degradation in performance. 

C. NAVIGATION 

Navigation as a skillset within flying is one that, behind maintaining actual 

flight, has the most potential on outcome of a flight.  Training on navigation 

begins before pilots even sit inside a cockpit with basic understanding of terrain, 

features, flight paths, and obstacles.  By the time the student sits in the aircraft 

with their instructor, the expectation is that they can successfully find their way to 

an outlying field at which they will begin training, even without knowing how to 

control the aircraft quite yet.  As they progress in the training pipeline, the 

navigation becomes an automated task with the student recognizing certain 
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waypoints by features and within a few months, the student can be flying solo, 

capable of handling all tasks required of the solo flight in the training areas. 

1. Confidence of Navigation 

In the operational squadrons, and specific to helicopters, flying is a crew 

effort with one pilot at the controls (PAC), and one pilot not-at-controls (PNAC), 

handling tasks not involved with actual control of the aircraft.  Navigation is 

among the tasks typically designated to the PNAC and it is his responsibility to 

maintain the flight on course and on time (Lennerton, 2004; Hahn, 2005).  A 

given route is not intended to be followed exactly.  The flight has the ability and 

the responsibility to be dynamic.  If a threat is discovered, or weather moves in, it 

is up to the aircraft commander to adjust the course in order to keep the 

helicopter and the crew safe.  Sullivan (2010) describes four areas by which we 

can assess navigation performance, as shown in Table 1.  The table shows how 

confident the individual is at their perceived location versus intended location.  

This matrix depicts that being off-track should not always be penalized, as a pilot 

can be off-track but still know exactly where they are and where they are going. 

 

Assessing 

Navigation 

Performance 

Confidence 

Low High 

Correctness 

Perceived and 

Actual positions 

match 

Low Struggling. 
No accurate fix, aware 
that aircraft is off track. 

Dangerous. 
Lost and doesn’t realize 

it. 
Positively misidentified 

correlating features. 

High On course and lucky. 
Accurate fix, but not 

confident in navigation 
solution. 

Skilled performer. 

On track and certain. 

Table 1.   Matrix for Assessing Navigational Skills (From Sullivan, 2010) 
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2. Navigation Methods 

For a typical low-level flight, the non-flying pilot will have a 1:50,000 chart 

like the ones used in this thesis.  Sullivan (2010) writes that sub-skills involved in 

helicopter navigation are dependent on certain goal-seeking methods that 

develop and change with experience.  As a novice, a pilot is primarily means-

based—following practices and procedures known through rote memorization 

and represent hard and fast guidelines by which to fly.  With a little more 

experience, an intermediate pilot moves on to schema-based navigation.  They 

have a plan and they have the ability to see beyond the “now” and provide 

information to the flying pilot as to what they will see or what to expect.  Lastly, 

an expert’s method of navigation is rule-based meaning they will describe a set 

of rules that lead to the ultimate goal.  Actual execution of the rules is left to the 

discretion of the PAC, however the PNAC will continually asses and update his 

rules as the flight progresses. 

Being able to navigate successfully involves being able to take the 2-

dimensional representation of the terrain represented on the chart and 

associating it with the 3-dimensional out-the-window (OTW) view.  For novices or 

anyone without overland navigation experience, this typically is a difficult task.  

With experience, an individual is able to understand which OTW features will be 

easily noticed on the chart, and conversely, which chart features can be used for 

navigation.  Key terrain features include checking features (“on the right track”), 

channeling features (“follow to the next point of interest”), and limiting features 

(“you have gone too far”) (Lennerton, 2004; Hahn, 2005).  The ability to go from 

chart-to-OTW and OTW-to-chart comes with practice and is enhanced with an 

efficient scan within and without the cockpit.  This creates two distinct phases of 

navigation, depending on how the pilot perceives their current situation: 

maintenance and repair. 
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a. Maintenance 

Maintenance of navigation is the practice of knowing where one is 

and keeping control over their location on the chart.  The search/scan pattern of 

an individual in a maintenance regime is directed and deliberate.  They are 

looking for confirmation on their location rather than trying to determine where 

they are (Sullivan, 2010).  Pilots in maintenance mode are confident in their 

location regardless of how much the flight may deviate from the route.  As shown 

in Table 1, when they are high on “correctness,” this is good and would be the 

performance expected of more experienced pilots.  According to Sullivan’s 

dissertation, less experienced pilots “will have increased dwell time, taking longer 

to capture and encode features in the OTW view.”  Ideally, staying in the 

maintenance phase should be easier than repair as one only has the task of 

matching and not searching. 

b. Repair 

Repair strategy involves perceiving that one has unintentionally 

strayed from the assigned route and finding a solution to recover.  As shown in 

Table 1, repair would not occur if the pilot were purposefully off track for 

something such as terrain, weather, or threat avoidance.  Sullivan (2010) calls 

this a naïve search in that the pilot does not have the confidence of his location 

by which to make a matchmaking maintenance search.  Experts in repair select a 

few key features across a wide swath that will allow them to better triangulate 

their position.  The repair search of a novice is focused on relevant and non-

relevant features in a smaller region leading to further lack of confidence in their 

position.  For this experiment, if an individual recognized they were lost, the 

research team member gave them a heading to fly in order to put them back on 

course. 
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3. Navigation and Workload 

In a crewed aircraft, navigation occurs with cooperation from all members 

being able to pick out and describe salient features from the surrounding terrain 

(Sullivan, 2010; NATOPS, 2008).  In a single-seat aircraft, the pilot must 

accomplish this task concurrently with the aviation and communication portions 

of the flight, thereby increasing their workload.  At 150’ above ground level (AGL) 

in a mountainous region, terrain avoidance has consequences that are even 

more serious should it be ignored.  Thus, the pilot has even greater workload 

when flying in this type of environment.  One could slow down in order to provide 

more time with which to process the scene, but in an operational environment, 

this is not practical, as a slow aircraft is an easier target.  Additionally, if one 

slows too much, they enter a zone where the airspeed-altitude combination is 

dangerous should an emergency occur (NATOPS, 2008).  In our experiment, 

although flying a simulated helicopter, we put the participants in a single-seat 

aircraft to increase their workload beyond just navigating or just target detection. 
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III. METHODOLOGY 

A. INTRODUCTION 

The purpose of this thesis was to identify differences in scan patterns 

among pilots of varying experience in order to gain insight into (1) how these 

differences can relate to workload and (2) to capitalize on these differences to 

create more effective and efficient pilot training.  We built upon previous work 

(Sullivan, 2010) that investigated neurophysiological cues of pilots in a single 

task environment.  In order to address differences in workload, we chose two 

scenarios that, by themselves, are not particularly stressing—navigation, and 

target detection and identification.  We also created a scenario in which pilots 

had to perform both tasks simultaneously (combined task).  In dual-piloted 

aircraft, these tasks are often split between the pilots in order to reduce the 

workload and increase safety.  By having two tasks and examining the pilots in 

each single task as well as the combined task, we could identify changes in their 

behavior as the cognitive task load increases.   

1. Overview of the Tasks 

The research team created three experimental scenarios and one practice 

scenario.  Each scenario was designed to elicit appropriate responses for the 

task(s) at hand; i.e., the navigation task assessed navigation skills.  In all cases, 

the Practice Scenario was the first one to be administered.  Scenario 2 

(navigation only) followed in order to decrease the possibility of an order effect 

when analyzed with an earlier navigation experiment.  The order of Scenarios 3 

(navigation and target detection & identification) and 4 (target detection & 

identification only, auto-navigation) were counterbalanced in order to reduce 

confounds and order effects for this experiment.  All scenarios simulated flight in 

an area near Twenty-Nine Palms, CA, which has an established military training 

area.  The routes flown were typical of low-level routes that could be expected in 

both training and real world missions.  Although all scenarios were in the same 



24 
 

general region of Twenty-Nine Palms, none of them reused waypoints, nor did 

the routes of flight intersect. 

Although we seek realism in training environments, there are limitations on 

what we have and what we can use.  The variation inherent in the past flight 

experiences of the pilots made it so that a simplification of the cockpit was 

necessary. 

For the navigation task, we instructed the pilots to navigate their way 

around a series of waypoints.  We measured their performance on this task as 

adherence to the straight line, waypoint-to-waypoint route.  Utilizing root-mean-

square (RMS) error, we calculated their distance from the given route at each 

data collection instance.  Although there is no way to score a 0 (perfect 

adherence), namely because turns are inherently off the sharp corner of the 

route, this is constant across all pilots and is therefore already controlled.  The 

pilots did not have complete control of the aircraft during the navigation tasks.  In 

order to reduce random variability, they only had control of the heading of the 

aircraft.  Altitude was constant at 150’ above ground level; airspeed was a 

constant 60 knots.  This simplified the controls and minimized variability in “basic 

air work” which involves the overarching task of maintaining control of an aircraft 

so that more attention could be applied to what we wanted to measure—

navigation performance.  

The target detection and identification task, as the name implies, was a 

two-piece task.  The Practice Scenario, Scenario 3, and 4 each had two types of 

targets interspersed along the route.  Because detection of the target could be as 

simple as discerning anomalies in the simulated terrain, we added identification 

as a method to get the pilots to concentrate more on the target.  Along with 

increasing the mental workload, this had the added bonus of allowing the eye 

tracking equipment to detect more accurately when the individual identified the 

target.  Downed aircraft, designated with a “crashed” A-10 Warthog, represented 

friendly targets for the identification portion.  A SAM launcher represented the 
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enemy target.  Figure 2.  shows the two types of targets.  The targets were 

immobile objects inserted into the scenario and did not move or in any way react 

to the helicopter flying past them. 

 

 Friendly Downed Aircraft and Enemy SAM Launcher Figure 2.  

B. PARTICIPANTS 

Research participants were recruited from the student body at the Naval 

Postgraduate School (NPS).  Participants were eligible if they were pilots or have 

had formal training in overland navigation experience.  With approval from the 

Institutional Review Board, an e-mail was distributed requesting volunteers 

(Appendix C).  Additionally, flyers were distributed around school and the team 

provided equipment demonstrations to recruit participants.   

We had 14 volunteers from which we collected data.  Eleven of the 

volunteers were pilots.  Two of the remaining individuals had extensive 

passenger experience as troops in the back of helicopters.  One individual was a 

Surface Warfare Officer who was allowed to participate and only after completion 

of all four scenarios did the research team learn he was neither a pilot nor did he 

have overland navigation experience.  Preliminary analyses of the data indicate 

that these three participants were consistent outliers; therefore, they were 

excluded from analyses for hypothesis testing.  Although the experiment was 

open to all faculty, staff, and students at the school, all participants were male 

between the ages of 25–45.  For the pilots that participated, there was a variety 
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of experience and backgrounds, as detailed in Table 2.  For counts, individuals 

without any flight experience are tallied with the 40+ group for their “Months 

Since Last Flight.”  Adjusted flight hours shows the flight hours data without the 

three outliers previously described. 

 

Category Sub-category Total

25-35 6

36-45 8

Navy 7

Marine Corps 1

Army 2

Air Force 2

International 1

0-5 5

6-10 4

11-15 4

15+ 1

Age Group

Branch of 

Service

Years of 

Experience

 

Category Sub-category Total

0-10 2

11-20 3

21-30 3

30-40 2

40+ 4

Mean 1230.7

Median 1100

STD 945.5

Mean 1561.8

Median 1400

STD 774.1

Months 

Since Last 

Flight

Flight Hours

Adjusted 

Flight Hours
 

Table 2.   Participant Demographics 

C. EQUIPMENT 

1. Hardware 

a. Computers 

The overall setup for the experiment consisted of three systems.  

Laptops, desktops, an Apple iPad, and a CAVE system provided the necessary 

methods to track, collect, and maintain the data.  The computer setup for the 

experiment consisted of interconnected laptops and desktop computers.  Three 

laptops, one for each set of cameras, collected the eye tracking data.  The data 

were kept locally on the laptops until manually moved to another system for 

analysis.  The laptops were identical with the following specifications: 

 Intel T7200 @ 2.0 GHz CPU 

 1 GB RAM 
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 Mobile Intel 945 Express Chipset Family Graphics 

 Windows XP Service Pack 3 Operating System 

Three desktop computers created the scenes, controlled the flights, 

gave supervisory authority, and aggregated the data from the laptops.  Each 

desktop was identical in its specifications: 

 Intel T7200 @ 2. GHz 

 3 GB RAM  

 NVidia GeForce 8800 Ultra graphics card 

 Windows XP Service Pack 3 Operating System 

Although identical in components, the desktops performed very 

different jobs.  The X-Plane system handled the actual flight of the helicopter.  

Participant input from the joystick was handled via the system in the Practice 

Scenario, 2, and 3.  The X-Plane system also provided output to the instructor 

system for administrative capabilities.  Terrain generation and rendering were 

performed by Delta3D and OpenSceneGraph. 

The instructor system gave the research team the ability to 

maintain control over the flow of the scenarios.  From this station, and with input 

from the X-Plane system, the instructor knew where the subject was on the chart 

(as well as in relation to the given route), what they see on all three screens, and 

with input from the FaceLAB computers, a general locus of their gaze. 

The CAVE system consisted of an identically configured desktop, 

screens, and projectors, the latter of which we will discuss below.  The desktop’s 

primary job was to take display outputs from the other computers and route them 

to the appropriate projectors and displays.  This computer generated the 

instrument panel located inside the cockpit for the participant’s use.  This system 

also provided the output files for the researchers. 
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Lastly, on the display aspect, an Apple iPad displayed the chart for 

the participant.  Although physically fixed in position to allow calibration with the 

IR cameras, the pilot could rotate the chart on the screen to maintain his 

orientation if he desired.  The iPad communicated with the rest of the system 

wirelessly to a Macbook Pro, which was physically (wired) connected to the NPS 

intranet and the other computers from there. 

b. Physical Setup  

The most noticeable pieces of the physical setup of the apparatus 

were the cockpit and the screens.  The cockpit (Figure 3.   is a model cockpit 

without any instrumentation of its own.  To reduce variation from the two seats, 

and to maintain one configuration of the cameras, pilots sat in the right seat.  In 

front of them, in the cockpit, a 10.6″ × 17.3″ (20″) screen displayed the virtual 

instrument panel.  The screen had the following instruments:  

 Airspeed 

 Barometric altitude 

 Time 

 Heading 

To the pilot’s left, within arm’s reach, was the iPad.  Both cockpit displays 

(instrument panel and iPad) were in fixed locations to maintain calibration with 

the cameras. 

The CAVE system provided the out-the-window (OTW) display for 

the experiment.  Encompassing over 180º (~103º left, ~118º right), three screens 

provided a wrap-around view for the flight.  Three projectors connected to the 

CAVE computer backlit three 96″ × 72″ (120”) screens in full 1024 × 768 

resolution.  The positions of the screens were fixed to allow calibration with the 

IR cameras.  Figure 3 shows the cockpit setup (with one extra configuring laptop) 

and the large display screens.  This system had on it X-Plane 9.0, the image 

generator, the data logger, and Delta3D and OpenSceneGraph in order to create 

the graphics for the scenarios. 
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 Cockpit Setup Figure 3.  

Due to the fixed position of the seat and screens, there could be 

minor differences between viewing angles per individual.  Figure 4 shows the 

arrangement of the cockpit.  From the center of the seat, the right screen is 30″ 

away, the front (center) screen is 80″, and the left screen is 66″.  The iPad sits on 

the empty seat, arm level, 22″ from pilot’s center.  The seat bottom is 36” from 

the floor.  Each screen is raised 17.5″ from the ground.   With these 

measurements, we can approximate the field-of-view.  The elevation and 

depression angles given in Table 2 are calculated for an American male in the 

50th percentile for sitting eye-height (31.5”) (Phaesant & Haslegrave, 2006).  As 

mentioned above, the transverse angles are 103º to the left and 118º to the right. 
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 Overhead Cockpit Arrangement Figure 4.  

 Left Right 

Elevation 18º 36º 

Depression 37º 59º 

 

Table 3.   Viewing Angles from Pilot’s Seat 

Three sets of IR cameras provided the input to FaceLAB for the eye 

tracking data.  These were arranged around the cockpit in order to collect gaze 

parameters from any normal rotation of the head.  In general, they were 

positioned to be unobtrusive for the participants, sitting well below their line of 

sight if they were to look at the bottom of the large displays (the lowest display in 

the setup).  As such, the cameras provided a “look-up” view of the participants.  

Calibration occurred for each participant prior to the commencement of the 

practice scenario. 

2. Software 

The software package used in this experiment was similar to the package 

used in Sullivan (2010).  FaceLAB 5.0 collected the incoming data from all 

camera pairs and integrated into one file with FaceLAB Link 2.0.  The collection 

process included from which camera the gaze data came, as some eye positions 
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could be tracked by more than one set of cameras (e.g., center OTW display).  

FaceLAB required a one-time calibration per individual.  After this calibration, the 

participant had reasonable range of head rotation in the transverse and frontal 

planes for the duration of the experiment.  The programs used to render and 

collect data were: 

 X-Plane 9.0 

 FaceLAB 5.0 

 Delta3D and OpenSceneGraph 

D. SCENARIOS 

Charts for Scenarios 2, 3, and 4 can be found in Appendix B. 

1. Practice Scenario 

The Practice Scenario is a combination scenario involving both navigation 

and target detection and identification.  It contained both tasks, and although 

data collection occurred, this scenario was done to ensure the equipment was 

properly set up and functioning and to introduce the individuals to the equipment 

and allowed them to acclimate to differences from equipment or platforms on 

which they may have previous experience.  When situated, the research member 

“unfroze” the simulator, thus commencing the flight and giving the participant 

control of the aircraft.  The participant flew through the established waypoints 

detecting targets as they showed in his view. 

2. Scenario 2–Navigation without Targets 

Scenario 2 involved strictly navigation without the burden of target 

detection and identification.  Twelve waypoints provided approximately six to nine 

minutes of flight time depending on the accuracy of the pilot in maintaining 

adherence to the given course.  Although just a single task, navigation is the 

second hardest of the three tasks because the pilot must physically maintain the 

heading of the aircraft, and keep track of the location of the aircraft.  This meant 

looking out the window, taking in visual cues from the terrain, and comparing 
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them to what was presented on the chart in order to mentally place and track the 

movement of the aircraft through the scenario.  

3. Scenario 3–Navigation and Target Detection and Identification 

Scenario 3 was the combination task involving both navigation and 

target detection and identification.  The purpose of this scenario was to 

determine how the individual performed when presented with multiple tasks 

simultaneously.  They were given no instruction as to which task to prioritize.  

Upon commencement of the scenario, the individuals flew around 12 designated 

waypoints while detecting 11 targets.  Targets were placed such that if gaze data 

was available, there would not be confusion as to which target an individual is 

observing (i.e., there was ample lateral separation between targets as viewed 

from the vicinity of the given course). 

4. Scenario 4–Target Detection and Identification on Auto-Pilot 

Scenario 4 involved target detection and identification while the 

software controlled the movement of the helicopter (i.e., while on autopilot).  

Although given a chart study period, this was for consistency as there was no 

need and the pilot could not influence the direction of the helicopter.  As with 

Scenario 3, seven waypoints were provided, among which 10 targets were 

placed.  Total flight time ranged from approximately seven to nine minutes.  This 

scenario explored the pilot’s ability to concentrate strictly on one task, which 

although slightly more complicated than just detection, we deemed as the 

simplest of the three experimental scenarios. 

E. MEASURES 

1. Surveys 

a. Demographic 

We collected demographic data from all participants prior to the 

commencement of the experiment.  Appendix G shows the demographic survey.  
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The purpose of this survey was to collect information regarding the participants’ 

backgrounds and experience, including flight hours and time since their last flight.  

Pertinent information collected for this experiment is detailed in Table 2. 

b. Pre/Post-Experiment 

The pre- and post-flight surveys (Appendix H) served the purpose 

of both determining how confident the individual was that he would be able to 

accomplish the tasks just from the chart study period, and then after the 

scenario, how confident they were that they actually did accomplish the tasks.  

The surveys make use of the Likert scale and ask the participants to rank their 

difficulty on a scale.  Instead of using a 1–5 ordinal scale, we opted for a line 

graphic which allowed the participants to select a continuous value along the line. 

Immediately after the chart study, we gave the pre-flight survey to the participant 

and they filled it out.  Upon completion, the research team member proceeded 

with the scenario.  With the scenario complete, the researcher gave the individual 

the post-flight survey, which asked the same questions, this time acquiring a 

post-facto representation of the flight performance. 

2. Data Collection 

Data collection began before the individual had control of the aircraft.  The 

instructor would start the scenario with the model on motion freeze, meaning the 

scenario was running, data was being collected, but the simulated helicopter 

would not move.  Once the researcher confirmed correct operation, the 

participant was given control of the aircraft and taken off motion freeze.  Data 

from FaceLAB would be aggregated in one file per participant per scenario.  

Table 5 shows the fields captured in the data logs.  Additionally, a Canon VIXIA 

HF R11 camera captured audio and visual during each trial.  The audio/visual 

data was not utilized in the analysis of this data. 
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3. Procedure 

Upon arrival at the lab, we briefed each participant on the structure of the 

experiment and had him sign consent forms illustrating the voluntary nature of 

the experiment.  The volunteer filled out the demographic survey described 

above anonymously.  To decrease confounds coming from vision differences, we 

administered a basic eye test using the Snellen eye chart to ensure that all 

participants had corrected vision of at least 20/30 in one eye.  They would then 

take their place in the right seat of the cockpit and the instructor would proceed to 

calibrate the cameras (Appendix F). 

Prior to commencing each scenario, we gave the participants a 

topographical land map on the scale of 1:50,000.  These charts are familiar to 

pilots as they are often used in low-level flight planning and execution.  Each one 

featured the assigned route, headings, and straight-line times between 

subsequent waypoints.  After a five-minute chart study, we administered the 

surveys as described in the surveys portion of this chapter.  This allowed us to 

collect subjective data from the participants on how difficult they think the flight 

will be.  Once complete with the chart study, the individuals commenced the 

mission.  Actual flight times varied per individual and scenario, but most runs did 

not last any more than about 10 minutes. 

During the flight, the researcher would monitor progress from the 

instructor station.  If the participant at any time admitted to being lost they would 

be given a heading to get them back on track.  If they were more than 2 km off 

track at any point, the researcher would ask them where they thought they were, 

then proceed to give them a heading back to the last waypoint that was 

successfully found.  At the completion of the scenario, we gave the participant a 

post hoc survey to reassess the difficulty of the scenario. 
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IV. RESULTS AND DATA ANALYSIS 

A. DATA PREPARATION / PRELIMINARY ANALYSIS 

This section will look at the collected data and analyze it as it pertains to 

the hypotheses.  We use the software packages Microsoft Office Excel v14 and 

JMP Pro v9.0.0 to perform our analysis.  Unless otherwise stated, each 

hypothesis is analyzed per scenario with comparisons made thereafter. 

1. Data Preparation 

The data was collected from Image Generator, FaceLAB, and X-Plane.  

The output came as one comma-separated-value (.csv) file per participant, per 

scenario for a total of 60 csv files.  Participant 13 had corrupted FaceLAB data 

and was removed.  This left 14 participants with quality data for analysis. 

The data required substantial preprocessing before statistical analysis 

could begin.  The initial portion of the analysis dealt with removing FaceLAB data 

that was acquired before and after the actual commencement of the scenario.  

For continuity and thoroughness of data, collection began before the participant 

was given control of the aircraft (helicopter held in constant position) and ended 

after the scenario was frozen at the end.  These rows of data had to be removed 

in order to have only the data that occurred while the participant was in control of 

the helicopter and engaged in the scenario.  As all scenarios started out with the 

helicopter heading in a roughly northerly direction, latitude would have the 

quickest deviation once the scenario was unfrozen.  This allowed a comparison 

of the latitudes as the benchmark of when the scenario actually began.  A Δº = 

.000005º (corresponding to one-half meter on the ground) was chosen as the 

benchmark for helicopter movement apart from scenario initialization.  This 

corresponds to approximately half a meter of movement at the scenarios’ specific 

latitudes.  After cleaning the header of every scenario run, the data files were 

reversed and run through the algorithm again, effectively eliminating the footers 
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of every file.  Additional prepreocessing was performed in Python v2.7 to 

examine the csvs, we created valid files that had strictly the data from when the 

participants were in active control of the helicopter. 

a. Blink Data 

The next step of data preparation was to extract the necessary 

values to explore the hypotheses.  Blink data was extracted from the raw data by 

comparing subsequent values from the “Blink” column in the csvs.  For the blinks, 

a “1” represents the time when the individual is in the process of blinking while a  

“0” means the eyes are open.  When the value transitioned from 1 to 0 or vice 

versa, the column and appropriate information was collected and written to a new 

file.  We collected tally information for the entire sample group in a separate file.  

As we were only concerned with the blink rate (number of blinks per minute), this 

was the extent of blink data extraction. 

b. Saccade Data 

Saccade data was extracted in a similar manner to the blink data by 

comparing their respective cells in subsequent frames.  As shown in Table 6.   

data collection represents a saccade with the value of “1.”   “Zeros” showed when 

the eyes were fixated for the saccade data.  Saccade extraction included not just 

when a saccade occurred, but data as to on which screen the saccade occurred. 

c. Fixation Data 

Because FaceLAB and Image Generator both take data points 

ranging from 30–60Hz, it was necessary to filter the data to eliminate noise.  

Fixations that did not last 70 msec or more were considered noise and filtered 

out of the data.  All fixations longer than 70 msec were sorted to count the 

number of fixations that the individual had while focused either out-the-window 

(OTW), at the instrument panel (IP), or at the chart (Map) so that they could be 

tallied per area.  Individual assessments of each subject-scenario pairing 
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included the time and location of each fixation.  The overall tally had the 

collective time of each pairing’s total saccades, and the count and time of each of 

the three generalized scan locations detailed below. 

d. Scan Pattern Data 

Scan data was collected by first determining at which screen the 

participant was focused on.  If scan data was unavailable, i.e., there was no gaze 

intersection, the scan data for those particular frames was ignored.  Given this 

issue and the need to aggregate scan data, the possible scan locations were 

grouped into three locations: out-the-window, instrument panel, and map.  These 

corresponded to respective “screenNames” from FaceLAB.  Individual 

assessments of each subject-scenario pairing had merely the elapsed time and 

screenName, which were then run through a third program to gather counts for 

every transition.  Given three scan locations (OTW, IP, Map), this gave six 

possible transitions (OTW-IP, OTW-Map, IP-OTW, IP-Map, Map-OTW, Map-IP), 

which were also calculated.   

The three measures named above comprise the “salient stimuli” 

referenced in the hypotheses.  To minimize differences in actual flying ability, 

controls were in place to keep the helicopter at a constant altitude (150’) with a 

constant airspeed (90 knots).  Although we provided multiple instruments, with 

the above parameters on autopilot, the only instrument on the instrument panel 

under the participants’ was the heading indicator (if used).  With this knowledge, 

“salient stimuli” represents an understanding of where the individual is focused to 

determine where they are gathering their information (OTW, IP, Map). 

e. Eye Scan Efficiency 

We calculated eye scan efficiency using the overall fixation count, 

median dwell times, and saccades per minute (SPM).  Due to the ability of a few 

long dwells to skew the mean times (whether actual or from the inability of the 

equipment to detect a shift in attention), we opted to use the median dwell times 
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as these more truly represent the length of time spent fixated on an area across 

the entire scenario.  SPM shows a normalized representation of how often the 

participants shifted their gaze and equalizes the differences in total saccades due 

to increased scenario run times.  Otherwise, eye scan efficiency is the effects of 

these parameters and required no further calculations or data preparation. 

f. Target Detection Data 

Target detection data was analyzed from the set of 

deheadered/defootered files.  Button press was the initial parameter for target 

detection.  The initial filter program looked at when a button was depressed and 

compared it to the gaze intersection.  A tolerance of .01º (≈1 km) on gaze 

intersection straight line distance as calculated from the difference of lat/long 

positions was considered “in sight” for an accurate detection1.  Although 1 km 

may seem large, this value allowed for eye movement while processing the 

visual image, and the reaction being relayed to the hand to depress the button.  

True positive and false positive determination came from the button the 

participant pressed compared to the target’s nature.  A secondary analysis was 

conducted to determine if a strictly distance-wise collection could be done vice 

the gaze data.  This turned out to result in worse detection data as the 

participants often sighted the targets (adversary missile or crashed plane) from a 

distance greater than within the provided tolerance (Δ = .005º).  As such, this 

avenue was abandoned and we reverted to gaze data with the following deeper 

looks.  Because gaze data was not available for every frame of data collection, 

the individual files were manually analyzed to determine whether the individual 

could reasonably have been looking at a target even though the gaze data was 

not collected. 

There were two levels to analyzing target detection data in the absence of 

gaze data.  The first was if the helicopter was in a position that could be in sight 

                                            
1 Although longitudinal degree distance varies with latitude, due to the small latitudinal range 

of the study, a Euclidean distance suffices for distances from each lat/long pairing. 
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of the target (Δ = .005º).  Secondly, the button presses examined in the context 

of their surroundings.  If an appropriate button was pressed, at a point when it 

could be considered reasonable to press said button, within a reasonable 

distance from the target, the target was designated as a “Probable” detection in 

the matrix.  In 0, the detections are shown by whether they were detected via eye 

gaze information, helicopter distance, or reasonable surrounding data.  For 

calculations, we classified “probable” detections as true detections (true 

positives).  Lastly, if there were button presses that could not be explained with a 

detection on target, they were classified as false negatives.  For obvious 

reasons, there is no “true negative” detection as that would indicate the 

participant did not push a button when there was no button to push.  Target 

detection analysis is summarized in Table 7 in Appendix B. 

Analyzing the individual data sets occurred following the previous data 

filtering.  Each hypothesis had a different requirement of data and therefore the 

code created separate csv files to analyze.  Summary statistics are shown in 

Figure 24.  Appendix C.  The following sections discuss these results. 

2. Preliminary Analysis 

Preliminary analysis of the data began with a comparison of Total Flight 

Hours versus Overland Flight Hours.  As this is a navigation task based on land 

features, we collected both data points from the demographic surveys given to 

each participant.  However, as Figure 12.  illustrates, there is a very strong 

relationship between total flight hours and overland hours (p < .001, F = 101.4), 

meaning that one may reasonably be thought of as a proxy for the other.  

Therefore, we considered experience as based on Total Flight Hours, as this is a 

more typical measure of a flight experience.  The flight hours were categorized 

as ordinal data such that the participant with the least flight hours was denoted 

as “1.”  These ranked hours then were used for hypothesis testing.  
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The second portion of the preliminary analysis involved determining how 

the participants fit in the context of the group.  Using JMP to create various fit 

models and correlation models, we noticed that three individuals were 

consistently outliers from the rest of the group.  Participants 8, 15 and 1 had 

either no flight hours or the lowest amount of flight hours (0, 0, and 50, 

respectively).  It was deemed that these individuals constituted a different 

population of interest, i.e., non-pilots. (One participant is a Naval Flight Officer 

who, in the beginning of his training, received 50 hours of flight time, but whose 

primary job in the Navy is not a pilot, although it does involve spending a lot of 

time on tasks such as navigation.)  Their data is excluded for the remainder of 

this thesis, bringing the participant count to 11. 

The design intention was for the scenarios to have increasing difficulty 

from Target Detection and Identification only (Scenario 4), to Navigation Only 

(Scenario 2), and lastly Navigation and Target Detection and Identification 

(Scenario 3).  However, the scenario designs may have been skewed as will be 

discussed further in Chapter V.  Data for the Practice Scenario was excluded 

from the analysis as the scenario was used to train the participants and the 

collection method was not controlled and structured as the other three scenarios 

were. 

B. HYPOTHESIS TESTING 

This section will describe the testing of each hypothesis using the 

prepared data.  All hypothesis testing use one-tailed significance of α = 0.05. 

1. Hypothesis One 

H01:  There will be no significant correlation between total flight hours and 

eye scan patterns in the Navigation, Target Detection, and Navigation & Target 

Detection tasks. 
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HA1:  More experienced pilots will have more saccades, shorter and more 

fixations, more fixations on salient instruments and stimuli than inexperienced 

pilots. 

 

 

 

 Increasing Trend of Saccades per Minute by Ranked Experience Across Figure 5.  
All Scenarios. 

As shown in Figure 5.  , there is an increasing trend across all scenarios of 

more saccades per minute with increased experience.  There was no significant 

correlation (Spearman’s ρ ranged from .24–35), which could possibly be due to 

the small sample size. 

Figure 6.  is representative of the overall dwell times of the individuals.  

Although this is from one specific scenario for one participant (Participant 114, 

Scenario 4), all other distributions in the data set showed a common trend of 

being heavily weighted to the left side, i.e., shorter fixations.  The small number 

of long fixations skew the mean of the data dramatically.  Overall, the average 

difference between the means and the medians of fixation times is just under ¼ 
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of a second (.2495sec).  As such, we analyzed the data using median values as 

this more truly represents the representative values of the data set. 

 

 

 Distribution of Dwell Times Figure 6.  

Figure 13.  (Appendix B) demonstrates the multivariate relationships 

between fixation numbers, fixation durations, and ranked experience.  As shown, 

there is no significant relationship between the average number of fixations 

across all scenarios and ranked experience (ρ = 0.127, p = 0.482).  As would be 
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expected, a strong, negative correlation between dwell time and fixation number 

was found (ρ = -0.604, p < 0.001), indicating that participants with longer dwell 

times had fewer fixations.  The results indicate that although more experienced 

pilots do trend towards more saccades, surprisingly, they do not have shorter 

dwell times or greater numbers of fixations.  In this study, overall, the more 

experienced pilots do not have more fixations than inexperienced pilots do.  

Although saccades correlate to fixations in two out of three scenarios (Figure 14.  

; see Appendix B), the statistical results do not show that experience correlates 

to fixations. 

The amount of time or number of times that an individual fixates on a 

certain area was not significant for both cases.  Figure 15.  and Figure 16.  (see 

Appendix B) show the multivariate and Spearman correlations for the time spent 

in each designated area (OTW, IP, Map) and how many times the individual’s 

gaze went there.  For the most part, the results are not significant.  However, one 

condition stands out as significant—experience on median map dwell time  

(ρ = -0.376, p = 0.031).  This shows that as the experience of the participant 

increased, they spent less of their scan time looking at the map.  Although not 

significant, a slight trend is also seen in a bivariate regression of the times and 

fixation counts on the map and instrument panel.  These two fixation locations 

show decreases in both areas with increased experience.  Correspondingly, a 

slight increase in out-the-window dwell times and fixation occurs. 

Figure 17.   in the Appendix shows the trends in gaze locations by 

scenario.  When we look at the OTW graph, we see that all experience levels 

look out the window most when the task is strictly target detection & identification 

(Scenario 4).  The IP and map regressions are relatively inconclusive for 

Scenarios 3 and 4, but in Scenario 2, there was a trend of decreasing fixations 

with experience.  These will be discussed more in the following chapter. 
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2. Hypothesis Two 

H02:  There will be no significant correlation between eye scan pattern 

and performance in the Navigation, Target Detection, and Navigation & Target 

Detection tasks. 

HA2:  Pilots with more efficient eye scan patterns (more saccades, shorter 

and more fixations, fixations on salient instruments and stimuli) will perform 

better on the navigation (by adherence to the given course), target detection 

(more Correct Detections versus Incorrect and Missed Detections), and 

combination tasks. 

a. Navigation 

We analyzed navigation performance via the fixation count, median 

dwell time, saccades per minute, and the respective interactions between the 

three.  Only Scenarios 2 and 3 were analyzed as Scenario 4 was on autopilot 

and the minor differences in RMS error were due to randomness in the 

applications rather than pilot ability.  Figure 18.   shows the multivariate 

interactions between these variables.  As shown in Hypothesis 1, there is a 

strong and logical correlation between fixation count, median dwell time, and 

saccades per minute.  However, none of these variables appears to have any 

effect on the root-mean-square (RMS) error in the navigation tasks.  When we 

test the interactions between the effects (Figure 19.  ), we do not get any 

statistically significant results.  However, given the sample size, there are some 

candidates for significance if a larger sample could be attained: overall fixations 

(p = 0.186), fixation × median dwell time (p = 0.086), and median dwell time × 

SPM (p = 0.238).  Additionally, we ran RMS error against total flight hours and 

ranked experience and found that neither of these had any effect on the accuracy 

of navigation (flight hours p = 0.927, ranked experience p = 0.849).  This 

supports the findings by Sullivan (2010) and could be explained by a more 
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experienced pilot’s purposeful deviation from a given path for obstacle 

avoidance, timing, or possible other reasons. 

b. Target Detection 

Using similar methodologies, we analyzed target detection using 

the correct detections from Scenarios 3 and 4.  Although false positive 

(incorrectly identified detection) data was collected, the false alarm rate was too 

low to warrant any sort of dependable analysis on the data.  In Scenario 3 

(Figure 20.  ), Navigation & Target Detection, there is a very strong effect factor 

(p = 0.002, F = 80.64), with significant correlations showing up across all 

parameters and interactions; overall fixations (p = 0.029), SPM (p = 0.005), 

median dwell × overall fixations (p = 0.003), median dwell × SPM (p = 0.039), 

overall fixations × SPM (p < 0.001), overall fixations × median dwell × SPM (p < 

0.001).  Interestingly, in Scenario 4 where the participant’s only task was to 

detect and identify the targets, the effects from Scenario 3 did not carry over.  

The overall model for Scenario 4 was not significant (p = 0.107, F = 4.998) and 

the only significant predictor was median dwell time (p = 0.046) (Figure 21.  ) 

However, overall fixations (p = 0.089), and median dwell × SPM (p = 0.097) both 

show a possible significance given a larger data set.  In both scenarios, total 

flight hours and ranked experience did not show any correlation with correct 

detections.  We did not find any correlation between scan patterns (gaze 

locations) and target detection performance. 

3. Hypothesis 3 

H0: Regardless of expertise, there will be no difference in blink rates 

across scenarios. 

HA: Pilots with more experience will have a higher blink rate than pilots 

with less experience. 

Hypothesis 3 is not supported by the data.  However, there was a trend 

towards a lower blink rate as experience increased.  Figure 7.   shows all three 
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scenarios on one chart for comparison purposes.  Although not significant, one 

can easily see an increasing trend of blink rate across all scenarios.  The 

individual scenario details are shown in Figure 22.  Scenario 3 has a dramatic 

difference in significance compared to the other two scenarios and approaches 

on statistical significance (p = .059 vs. p ≈ .5).  As discussed above, given a 

larger sample size, we believe this value would be significant.  Additionally, 

Figure 23.   shows the ANOVA for blink rate by scenario.  Scenario (presumably 

scenario difficulty) has a very significant effect on blink rate (p < .001).  With 

further discussion on the compounding effects to blink rate, we will see in the 

following chapter that the data does not necessarily contradict previous studies.   

 

 

 Comparison by Scenario of Blinks per Minute vs. Ranked Experience Figure 7.  
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V. DISCUSSION, CONCLUSION, AND RECOMMENDATIONS 

A. DISCUSSION 

The purpose of this study was to analyze the effects of expertise and skills 

that would typically be associated with expertise during navigation, target 

detection, and combination tasks on a flight simulator.  Although the results do 

not support all of the hypotheses, we will discuss what would affect the data.  

One common denominator across the hypotheses is the small sample size on 

which the team conducted the tests.  With the population available at the Naval 

Postgraduate School, the ability to recruit larger samples is not always a readily 

viable option.  However, even with a small sample size, we are able to glean 

some insights into the effects of experience on various tasks. 

1. Hypothesis 1 

HA1: More experienced pilots will have more saccades, shorter and more 

fixations, more fixations on salient instruments and stimuli than inexperienced 

pilots—partially accepted. 

Although the regression for the saccades per minute by ranked 

experience did not show any significance, there is an increasing trend between 

the two that may show significance if we had a larger sample population.  We 

propose that experienced pilots are looking around the scene more, acquiring 

more visual information, and presumably, processing this information faster than 

inexperienced pilots to create a more thorough mental picture of their 

environment. 

Contrary to the above inference, the lack of a significant relationship 

between fixations (dwell time and total fixations) and experience provides an 

intriguing result.  We found a strong correlation between median dwell time and 

the overall fixations (p < .001), which should come from an analysis of cause-

effect—in order to have more fixations in a set time, one must reduce the length 
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of each one.  However, total flight hours did not correlate with either of these.  

With a positive correlation between SPM and expertise, and the lack of 

correlation between fixations and expertise, it could be possible that the filter time 

used to separate a fixation from noise (t = 70msec) was too large.  We conducted 

an exploratory analysis on the data with t = 50msec and t = 40msec but did not 

find any significant correlation with these two times either. 

From a conceptual point of view, we believe that this lack of correlation 

comes as an artifact of the sample population.  As mentioned, all participants 

(save the three whose data were outliers) are military pilots going to NPS.  They 

had completed at least one tour of duty in their respective services and those 

services consider them “experts” capable of commanding and being responsible 

for one or more aircraft.  This means that our participants have all developed a 

scan pattern that works for them.  They are capable of rapidly surveying the 

scene and acquiring the information they need to complete the tasks.  Were we 

able to utilize a less experienced population, perhaps those still in the training 

squadrons or young winged aviators that are still fresh, we may begin to see a 

breakout in the measurements of the scan patterns. 

Interestingly, OTW was the only location where overall fixation count 

trended upwards with experience in each scenario.  Although each pilot has their 

own scan pattern, it would be expected that an experienced pilot spends more 

time, thus have more fixations, in the area which he or she deems most salient at 

for the given flight portion.  As these were primarily visual tasks, OTW would be 

most salient and it is not surprising that experienced pilots spend an increasing 

amount of time there than at the instrument panel or the map.  When we look at 

the results from the IP and Map counts, Scenario 2 has a non-significant 

decrease with experience, but the other two scenarios are almost flat across 

experience.  It may be that the pilots with more experience are able to maintain a 

mental picture of the chart for longer and track where they are mentally, without 

the need to look at the chart as often as the inexperienced pilots are.  
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Additionally, although in a real aircraft the instrument panel provides a large 

amount of salient information, our instrument panel displayed only a few 

instruments that the pilots may or may not have used.  It would make sense that 

an experienced pilot could analyze how often he or she needs to look at the 

instrument panel and the map, and they could allocate more fixations out the 

window, as shown in Figure 17.   

2. Hypothesis 2 

HA2:  Pilots with more efficient eye scan patterns (more saccades, shorter 

and more fixations, fixations on salient instruments and stimuli) will perform 

better on the navigation (by adherence to the given course), target detection 

(more Correct Detections versus Incorrect and Missed Detections), and 

combination tasks—partially accepted. 

Data collected also partially supported Hypothesis 2.  Eye scan pattern did 

not show any correlation to performance in the navigation tasks.  Again, this 

could be an artifact of the sample population that participated in the experiment.  

As discussed in Sullivan (2010), this could also be due to deliberate and 

calculated deviations from course by the pilot.  Without having had collected any 

data that could illustrate whether the individual was purposefully off-track or if 

they were lost, we cannot predict whether their eye scan pattern—although 

possibly more refined and efficient—would have led to any improvement in 

navigation if kept on track. 

Unrelated to experience, more saccades, more fixations, and shorter dwell 

did predict better performance on the target detection and identification tasks in 

both scenario 3 and 4.  Scenario 3 had dramatic significant effects from all 

parameters and their interactions (Figure 20.  ).  From this, we can reiterate that 

those with more efficient scan patterns will be able to detect and identify targets 

(or other anomalies) outside with better accuracy than those with less efficient 

scan patterns.  This does not say anything for the rate of detection and only 
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stands for targets such as those in our experiment that were stationary.  The 

non-moving property of the targets is actually beneficial to the aspect of visual 

workload and cognitive workload as the human eyes are more adept at detecting 

an object in motion than an inert one.  If we did have moving targets, detection 

would presumably occur sooner, but we can say nothing on the accuracy of 

identification. 

3. Hypothesis 3 

HA:3 Pilots with more experience will have a higher blink rate than pilots 

with less experience—ACCEPTED. 

The design of the experiment had the intention of Scenario 3 (navigation 

with target detection & identification) being the most difficult with 2 (navigation 

only) being second and 4 (target detection and identification only) being the 

easiest.  Our results did show a trend toward significance with blink rate and 

expertise (Figure 7.  and Figure 22.  ) as a positive relationship in all three 

scenarios.  

Interestingly, Scenario 2 (Navigation only) recorded the highest levels of 

blink rates in all participants, followed by Scenario 3 then 4.  Our initial thought 

was that Scenario 3 would be the most taxing scenario.  However, if we look 

again at how Megaw (2005) summarized the literature on the subject, 

“acquisition of visual information [is] associated with lower blink rates, and visual 

cognitive processes with higher rates.”  For navigation only, the predominant 

workload would be cognitive, and target detection and identification would be 

visual.  We did not instruct the participants as to which task they should give 

priority in the combination task.  Given that navigation is a much more cognitive 

process (matching a profile view of terrain to a topographical view) than looking 

out a window and finding targets, it follows that navigation should have higher 

rates than target detection & identification. 
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The question from here is why Scenario 3 (Navigation and Target 

Detection and Identification) does not have even higher blink rates than Scenario 

2?  We believe this is an artifact of the route design.  Scenario 2’s design had 

12 navigation waypoints through which the pilots would fly.  This may have 

increased the level of difficulty in Scenario 2 such that it eclipsed the combined 

difficulty of Scenario 3’s combination task.  Assuming this position, if blink rate in 

general increases with higher cognitive workloads, we would find the within 

subject layout as shown in Figure 22.   

From here, there is still a trend of increasing blink rates between subjects 

with experience.  We suggest that the pilots with more experience have an 

increased visual workload.  The results show that they have more saccades, and 

whereas this did not translate into more fixations (given our threshold) or shorter 

dwell times, they are moving their eyes more.  Within the saccades they are still 

gathering visual information.  Through their years of experience, they can spend 

more time looking around (taking in more visual scenes) and less time 

concentrating on what they saw.  The inexperienced pilots would spend more 

time thinking about what they saw and comparing it to a mental map (however 

fleeting the mental image may be from the last time they looked at the chart).  In 

short, our experienced pilots acquired more visually, processed less, and the 

inexperienced pilots were vice versa. 

4. Benefits of the Study 

Although this thesis focused on pilots, results from the thesis will benefit 

the Navy and other military services by providing a metric by which trainers and 

instructors can potentially save time and money, particularly in tasks where the 

operator receives information as a burst (such as in a scan) and processes the 

information while not staring at their interface.  In addition to a cockpit, other 

places where this work may apply would be any sort of dynamic environment 

such as infantry squad movement or on the bridge of a ship.  If we can show that 

task loading can be reliably detectable with comparable results, thresholds and 
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limits can be established primarily in the training commands so that individualized 

training syllabi can be developed.  Additionally, in the operational squadrons, it 

can be utilized to determine which individuals are naturally inclined towards 

certain mission sets and tracks can be defined for further training. 

B. CONCLUSION 

The realm of cognition is broad and in a military environment specifically, 

anything that can maintain the balance between performance and arousal level is 

beneficial.  However, we must be able to detect these changes in individuals in 

real time.  Experience was not found to have significance in many of the 

analyses we conducted.  As mentioned in the discussion for Hypothesis 1, we 

posit that our sample size may have been too small to get significance from the 

experiment.  With a Spearman’s correlation accounting for the flight hour bias in 

the study, we did get significance showing that more experience can be detected 

by an increase in saccades.  Although we were not able to determine how the 

saccades related to scan pattern, the increase in saccades allows for more 

fixations, which should lead to a greater intake of visual information.  It is in the 

processing of this visual information where experience would come into play.  A 

more experienced pilot should be able to process what he or she is seeing with 

better efficiency than an inexperienced pilot. 

Our results from the navigation portion support previous research done by 

Sullivan (2010).  Navigation is a fluid process where unless told otherwise, one is 

able to make adjustments on the fly.  Knowing that waypoints are (most often) 

not optional, the ability for an experienced pilot to make adjustments along his 

route of flight is one aspect, and responsibility, that they have in being a senior 

pilot.  We did not show any decrease in RMS error along the flight route as 

experience increased, but as explained above, this could possibly be the 

experienced pilots merely making up for lost time, earlier deviations, threats, 

terrain, or weather by adjusting their route. 
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Cognitive workload in this experiment, although not statistically significant, 

showed a nice trend to support the given literature.  In a task that requires more 

processing of the visual information, our blink rates supported what Megaw 

(2005) wrote regarding both the increase within tasks (between individuals) and 

between tasks.  To be able to use this metric in future work would be reliable as it 

does not require the fidelity and resolution that pupillometry would require.  

C. RECOMMENDATIONS 

1. Future Work  

This research can benefit from further study in multiple areas.  Presented 

below are a few of the areas, but any one of them could be expanded or 

narrowed in order to refine the process of detecting cognitive workloads. 

a. Pupil Data 

In Chapter II, we explained how pupils are effective indicators of 

cognitive workload.  When collected, the data can provide a much more precise 

indicator of when an individual is experiencing cognitive load.  Although one can 

consciously control blinks if they wanted to, they cannot control the fine workings 

of the pupil.  It will contract and dilate unbeknownst to the individual and in 

response to certain environmental and cognitive cues.  With this experiment, we 

were not able to capture enough pupil data to make this a viable option.  As of 

this writing, another experiment is being designed at NPS to explore pupillometry 

and cognitive workload further, but it could benefit from larger populations, and 

populations that are more diverse. 

b. Use Fleet and Training Squadrons 

One major obstacle at NPS is that of sample populations.  A 

majority of military officers (U.S. and international) that have already completed 

one or more tours of duty in their respective services attends the school.  As 

such, and as mentioned, our pool of pilots was, in the eyes of the military, 



54 
 

experienced.  Those with less hours than our population would be found in the 

fleet squadrons (< ~800 hours), the Fleet Replacement Squadrons (< ~300 

hours), and the training squadrons (< ~200 hours).  To be able to use those 

populations as well would create a much more dynamic mix of experience from 

the truly novice in the training squadrons, to the officers with multiple fleet tours 

of experience.  The Navy’s initial core training occurs in a few cities in Florida, 

Texas, and Mississippi.  If those training squadrons are not available to use, the 

Fleet Replacement Squadrons in Virginia, California, and Florida would provide 

the next layer of experience.  This would consist of officially designated pilots that 

have completed flight training and are learning their operational aircraft.  The 

other services have similar programs that would allow a more assorted selection 

of individuals and training regimes.  Lastly, only one participant could be 

considered “current” with his flight hours, with the rest having not flown in none 

less than five months.  Access to the squadrons would reduce this variability as 

well as pilots in fleet squadrons are required to maintain a minimum monthly 

flight hour quota. 

c. Allow Full Flight Control 

The discussion for Hypothesis 3 mentioned how our navigation 

scenario may have been more difficult than planned.  In actual flight, one is not 

only maintaining heading and possibly looking for targets on the ground.  They 

would be maintaining altitude and airspeed, communicating with other forces, 

checking the status and health of the aircraft, along with a myriad of other tasks.  

In a crewed aircraft this can, and is, divided among the members, but in a single-

seat aircraft, one individual is responsible for the entirety.  To test cognitive 

workload and truly see how experienced pilots manage their scans and tasks, we 

would need an experiment that incorporates more of these tasks, perhaps in 

increments.  It would be interesting to see how experienced pilots cope when 

they finally reach their cognitive workload threshold.  Which tasks do they shed (if 

any) in order to give priority to the more essential jobs?  Is there a method they 
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use to remain at the peak of the arousal-performance curve?  What happens 

when they start falling one way or another on the curve? 

2. Training Applications 

Training applications with the use of cognitive workload detection would 

have to be refined and incorporated into current training syllabi in order to be 

effective.  In a concurrent thesis at NPS, an individual has taken the eye tracking 

equipment to simulators in existing fleet squadrons to study scan patterns in 

relation to controlled flight into terrain.  This shows that the equipment can be set 

up and operated in operational commands.  To be able to use it regularly to 

analyze the pilots’ gazes and scan patterns could provide instant feedback and 

allow them to consciously adjust their scan if need be.  For obvious reasons, the 

equipment use in an actual aircraft is not feasible for safety reasons, but being 

able to set it up temporarily or permanently in a simulator is safe. 

If we could detect and analyze cognitive workloads in real time, the 

training environment could change dramatically.  Trainers and instructors would 

know what tasks an individual has difficulty on and concentrate on those while 

spending less time on a task in which the individual shows proficiency.  It could 

also allow a young pilot to fine tune his or her scan prior to entering the actual 

cockpit.  As time is at a premium in the military, optimization of the time and 

resources available can lead to a better product in the end. 
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APPENDIX A.  RATING SCALES 

Operator Decisions

Even Though errors
may be large or frequent, can

instructed tasks be accomplished
most of the time?

Are errors small
And inconsequential?

Is mental workload
level acceptable?

Mental Workload is high and 
should be reduced

Major deficiencies, system 
redesign is strongly 

recommended

Major deficiencies, system 
redesign is mandatory

Minor but Moderately high operator mental effort is
annoying required to attain adequate system
difficulty performance

4

Very easy, Operator mental effort is minimal and
highly desirable desired performance is easily maintainable

1

Easy, desirable Operator mental effort is low and desired 
performance is attainable

2

Fair, mild Acceptable operator mental effort is required
difficulty to attain adequate system performance

3

Moderately High operator mental effort is required to attain
objectionable adequate system performance
difficulty

5

Very objectionable Maximum operator mental effort is required to
but tolerable attain adequate system performance
difficulty

6

Major difficulty Maximum operator mental effort is required
to bring errors to moderate level

7

Major difficulty Maximum operator mental effort is required
to avoid large or numerous errors

8

Major difficulty Intense operator mental effort is required to
accomplish task, but frequent or numerous
errors persist

9

Impossible Instructed task cannot be accomplished reliably 10

 

 Cooper-Harper Rating Scale (From Cooper & Harper, 1969) Figure 8.  
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Table 4.   SWAT (From Proctor & Van Zandt, 2008; Megaw, 2005) 

Title End Points Description 

Mental demand Low/High How much mental and perceptual activity was required 
(e.g., thinking, deciding, calculating, remembering, 
looking, searching, etc.)?  Was the task easy or 
demanding, simple or complex, exacting or forgiving? 

Physical demand Low/High How much physical activity was required (e.g., pushing, 
pulling, turning, controlling, activating, etc.)?  Was the 
task easy or demanding, slow or brisk, slack or 
strenuous, restful or laborious? 

Temporal demand Low/High How much time pressure did you feel due to the rate or 
pace at which the task or task elements occurred?  Was 
the pace slow and leisurely or rapid and frantic? 

Performance Low/High How successful do you think you were in accomplishing 
the goals of the task set by the experimenter (or 
yourself)?  How satisfied were you with your 
performance in accomplishing these goals? 

Effort Low/High How hard did you have to work (mentally or physically) 
to accomplish your level of performance? 

Frustration level Low/High How insecure, discouraged, irritated, stressed and 
annoyed versus secure, gratified, content, relaxed, and 
complacent did you feel during the task? 

Table 5.   NASA-TLX Rating Scale (From Hart, 1998) 

  

Time Load Mental Effort Load Stress Load 
1. Often have spare time.  
Interruptions or overlap among 
activities occurs infrequently or 
not at all 

1. Very little conscious mental 
effort of concentration required.  
Activity is almost automatic, 
requiring little or no attention 

1. Little confusion, risk, 
frustration, or anxiety 
exists and can be easily 
accomodated 

2. Occasionally have spare time.  
Interruptions or overlap among 
activities occurs frequently. 

2. Moderate conscious mental 
effort or concentration required.  
Complexity of activity is 
moderately high due to 
uncertainty, unpredictability, or 
unfamilitarity.  Considerable 
attention required. 

2. Moderate stress due 
to confusion, frustration, 
or anxiety noticeably 
adds to workload.  
Significant compensation 
is required to maintain 
adequate performance. 

3. Almost never have spare time.  
Interruptions or overlap among 
activities occurs frequently, or 
occur all the time. 

3. Extensive mental effort or 
concentration is necessary.  
Very complex activity requiring 
total attention 

3. High to very intense 
stress due to confusion, 
frustration, or anxiety.  
High to extreme 
determination and self-
control required 
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Field Description 

elapsedTime (sec) 
Continuous measurement of time from the point when 
data collection began 

faceLABFrameNum 
Ordinal count used by FaceLAB to maintain order of 
the data over time 

headTrackingState (int) 
1–4 tracker of the quality of the head model in 
FaceLAB 

leftEyeQuality (int) 
1–3 tracker of the quality of the left eye model in 
FaceLAB 

rightEyeQuality (int) 
1–3 tracker of the quality of the right eye model in 
FaceLAB 

screenName 
Delineates which screen and which camera were used 
for detection of the Frame 

headX (pixels) 
Orthogonal X intersection on the screen of the direction 
the forehead is facing 

headY (pixels) 
Orthogonal Y intersection on the screen of the direction 
the forehead is facing 

gazeX (pixels) Screen X intersection of the point of focus 

gazeY (pixels) Screen Y intersection of the point of focus 

saccade 
1/0 value indicating if the eyes were in movement or 
fixed.  1 = saccade, 0 = fixed 

blink 
1/0 value indicating if the eyes were in the process of 
blinking 

heloLat (deg) xPlane latitude of the helicopter model 

heloLon (deg) xPlane longitude of the helicopter model 

heloAlt (m) xPlane pressure altitude of the helicopter model 

heloAltAGL (m) 
xPlane Above Ground Level altitude of the helicopter 
model 

heloHeading (deg) xPlane heading of the helicopter model 

heloPitch (deg) xPlane angle along lateral axis of helicopter model 

heloRoll (deg) xPlane angle along longitudinal axis of helicopter model 

otwIntersectLat (deg) 
Out-the-Window latitudinal intersection on the xPlane 
chart of the gaze 

otwIntersectLon (deg) 
Out-the-Window longitudinal intersection on the xPlane 
chart of the gaze 

otwIntersectAlt (m) Elevation of the gaze intersection on the xPlane chart 

iPad_rotation (radians) Angle of rotation of the chart on the iPad 

iPad_scale Zoom of the chart on the iPad 

iPadIntersectLat 
Latitudinal intersection of the gaze while fixed on the 
iPad 

iPadIntersectLon 
Longitudinal intersection of the gaze while fixed on the 
iPad 

button1 1/0 indication of if button1 was depressed indicating an 
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identified SAM 

 button2 
1/0 indication of if button1 was depressed indicating an 
identified crashed plane 

 

Table 6.   CSV Table Fields
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APPENDIX B.  SCENARIO CHARTS 

 

 Scenario 2 – Navigation Only Figure 9.  
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 Scenario 3 – Navigation and Target Detection and Identification Figure 10.  
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 Scenario 4 – Target Detection and Identification on Auto-Pilot Figure 11.  
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APPENDIX C.  DATA FIGURES/TABLES 

 

 Total Flight Hours vs. Overland Hours Correlation Figure 12.  
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Route Type Lat Lon 108 115 101 103 111 102 112 109 106 107 105 104 114 110

Practice SAM 34.303032 -115.895676 0.004 0.006 0.008 Detected & Identified

SAM 34.3148167 -115.8903167 0.005 0.005 0.002 Detected & Misidentified

Crashed Plane 34.3185 -115.883533 0.010 Probable Detection

SAM 34.319767 -115.876033 0.012 0.007 Not Detected

Crashed Plane 34.3208 -115.87055 0.016 0.004 From Helo Position

Crashed Plane 34.324863 -115.857674 0.005 0.004 0.005

SAM 34.330303 -115.85276

SAM 34.336517 -115.856308 0.002 0.002 0.010

Crashed Plane 34.362141 -115.869911

Crashed Plane 34.367672 -115.889862 0.003 0.003 0.007

SAM 34.340786 -115.888756 0.003

Crashed Plane 34.335411 -115.892281 0.003 0.004

True Positive Plane 1 4 3 5 2 5 2 5 4 4 3 2 5 5

False Positive Plane 1 0 0 0 1 0 0 0 0 1 1 0 0 0

True Positive SAM 3 4 4 3 2 6 1 3 4 3 3 2 5 6

False Positive SAM 0 1 1 0 0 0 0 0 1 0 0 0 0 0

False Negative 0 0 0 0 0 0 0 2 0 0 0 0 0 0

Missed Detection 7 3 4 4 7 1 9 4 3 4 5 8 2 1

Nav and Identify Crashed Plane 34.386154 -115.95 0.005 0.006 0.005 0.003

SAM 34.387405 -115.943802 0.009 0.007

SAM 34.392745 -115.941994 0.006 0.008 0.005 0.003 0.004

SAM 34.389198 -115.939331 0.004 0.004

Crashed Plane 34.392277 -115.928734 0.005 0.003 0.001 0.002 0.001 0.002

Crashed Plane 34.40279 -115.927483 0.007

SAM 34.3988 -115.914169 0.006 0.007 0.006 0.006

Crashed Plane 34.394493 -115.911667

SAM 34.384644 -115.909927 0.005 0.009

Crashed Plane 34.379684 -115.90448 0.001 0.003

Crashed Plane 34.382454 -115.883095 0.002 0.009 0.011

True Positive Plane 3 3 4 5 4 3 4 1 2 3 3 3 3 2

False Positive Plane 0 1 0 0 1 2 0 1 0 1 0 0 1 0

True Positive SAM 4 4 3 4 4 5 4 5 2 4 2 4 5 5

False Positive SAM 1 0 0 0 0 0 0 0 0 0 0 0 0 0

False Negative 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Missed Detection 3 3 4 2 2 1 3 4 7 3 6 4 2 4

Auto Pilot Crashed Plane 34.361977 -115.769272

SAM 34.356796 -115.767075

Crashed Plane 34.351295 -115.773979 0.003 0.013 0.003 0.002

SAM 34.343479 -115.763817 0.004 0.007 0.002 0.005 0.002 0.007 0.004

SAM 34.343895 -115.756401 0.004 0.012 0.003 0.008 0.005

Crashed Plane 34.329517 -115.764389 0.003 0.006 0.013 0.005

SAM 34.327057 -115.772789 0.005 0.005 0.005

Crashed Plane 34.326965 -115.785065 0.004 0.008 0.004 0.004 0.005 0.007 0.010 0.008

Crashed Plane 34.329311 -115.805344 0.007 0.006 0.002 0.013 0.004 0.008

SAM 34.354527 -115.787178 0.006

True Positive Plane 5 3 4 4 4 4 3 2 3 5 3 3 3 3

False Positive Plane 0 0 0 0 0 0 0 1 0 0 0 0 0 0

True Positive SAM 3 5 4 2 5 4 4 3 4 4 3 3 4 4

False Positive SAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0

False Negative 0 0 0 0 2 0 0 2 0 0 0 1 0 0

Missed Detection 2 2 2 4 1 2 3 4 3 1 4 4 3 3  

Table 7.   Target Detection Matrix 
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 Multivariate Overall Median Dwell Times, Overall Mean Fixations, Ranked Figure 13.  
Experience 

 



68 
 

   

 Saccades per Minute vs. Total FixationsFigure 14.  
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 Multivariable Fixation Counts (by Location), Rank Figure 15.  
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 Multivariate Median Fixation Times (by Location), Rank Figure 16.  
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 Bivariate Trends of Ranked Experience vs. Areas of Fixation per Scenario Figure 17.  
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 Multivariate Navigation RMS Error, Median Dwell, Fixation Count, Figure 18.  
Saccades per Minute 
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 Fit Model of Navigation RMS Error with Fixation Count, Median Dwell Figure 19.  
Time, Saccades per Minute, and Associated Interactions 
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 Scenario 3 True Positive Target Detection with Fixation Count, Median Figure 20.  
Dwell Time, Saccades per Minute, and Associated Interactions 
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 Scenario 4 True Positive Target Detection with Fixation Count, Median Figure 21.  
Dwell Time, Saccades per Minute, and Associated Interactions
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 Bivariate Fit of Blinks per Minute to Ranked Experience by ScenarioFigure 22.  
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 ANOVA of Blinks per Minute by Scenario Figure 23.  
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APPENDIX C.  SUMMARY STATISTICS 

 

 

 Summary Statistics Across All Scenarios Figure 24.  
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Mean (STD) 582.9 (180.9) 573.3 (161.3) 370.7 (60.7) 480.0 (27.6)

Median 590.2 531.7 357.1 471.8

Mean (STD) 14.3 (6.9) 10.3 (4.80) 7.3 (3.7) 10.4 (4.2)

Median 14.7 9.7 7.3 11.2

Mean (STD) 112.8 (17.7) 114.1 (21.9) 107.4 (20.6) 106.4 (20.9)

Median 115.7 113.8 102.4 99.8

Mean (STD) 0.476 (0.092) 0.468 (0.136) 0.478 (0.087) 0.489 (0.104)

Median 0.447 0.43 0.477 0.494

Mean (STD) 0.228 (.050) 0.217 (0.038) 0.227 (0.033) 0.241 (0.033)

Median 0.233 0.204 0.23 0.254

Mean (STD) 0.975 (.815) 0.821 (0.462) 0.735 (0.255) 0.768 (0.240)

Median 0.744) 0.719 0.704 0.784

Mean (STD) 886.8 (288.4) 867.4 (288.6) 531.6 (111.2) 577.1 (118.2)

Median 937 834 530 582.5

Mean (STD) 2.88 (0.52) 2.39 (0.27) 2.76 (0.44) 3.46 (0.76)

Median 0.2.95 2.41 2.74 3.32

Mean (STD) 1.79 (0.43) 1.43 (0.51) 1.64 (0.50) 1.93 (0.27)

Median 2 1 2 2

Mean (STD) 3.64 (1.16) 2.26 (0.41) 3.19 (0.82) 4.30 (1.59)

Median 3.6 2.31 2.95 3.69

Mean (STD) 413.6 (143.4) 367.1 (127.9) 271.5 (54.2) 409.3 (49.3)

Median 410.1 353.7 265.7 412.4

Mean (STD) 3.57 (1.40) N/A 3.07 (1.00) 3.50 (0.85)

Median 4 N/A 3 3

Mean (STD) 3.50 (1.45) N/A 3.93 (1.00) 3.71 (0.83)

Median 3 N/A 4 4

Mean (STD) 0.214 (0.426) N/A 3.64 (1.60) 2.71 (1.07)

Median 0 N/A 3.5 3

Mean (STD) N/A 2.79E-05 (1.16E-05) 1.46E-05 (1.1E-05) 1.39E-05 (2.34E-06)

Median N/A 2.78E-05 1.03E-05 1.34E-05
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APPENDIX D.  APPROVED IRB PROTOCOL 
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APPENDIX E.  RECRUITMENT E-MAIL 

 

 

Volunteer Study Participants Needed! 

 

Looking for Helicopter Pilots and anyone with Land Navigation 

experience. 

Anyone with training or experience in interpreting contour maps is 

eligible! 

We’re running a study involving virtual environment and training 

technology 

for improving land navigation  and target detection skills.  The study 

takes approximately 60–75 minutes and involves map study and a short 

navigation and target detection exercise.  Other than our very sincere 

gratitude, there is no compensation for participation.   

 

Please reply via e-mail to jyan1@nps.edu or mqkenned@nps.edu or stop by 

Watkins Hall room 212B if you are interested.  Also, if you are looking 

for 

a thesis topic there are quite of few opportunities spanning a broad 

range 

of academic disciplines.  Just drop us a line or stop by.  Details 

available 

here:  http://www.movesinstitute.org/TEN/ 

 

 

  



100 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



101 
 

APPENDIX F.  SUBJECT CHECKLIST 

Subject ID:  

 E-mail confirming date and time 

 Notify lab participants of data collection time 

 Validate equipment hardware and software 

o Screen brightness and contrast settings 

o Lab lighting conditions 

 “Experiment in Progress” signs 

 Bottled water in fridge. 

 Introductory Script 

 Informed Consent 

 Visual Acuity equipment 

 Background questionnaire 

 Map set up 

 Route brief 

 Trial period instructions 

 Calibration script 

 Video recording equipment (storage media, files naming and backup scheme) 

 Navigation  and target detection exercise 

 Save and backup data; folder name: subject ID and date 

 Post exercise questionnaires 

 Wrap up and thank you, contact information 
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APPENDIX G.  WELCOME SCRIPT 

Date: 
 

Subject ID: 
 

Scheduled Arrival Time: 
 
Actual Arrival Time:  
 
Hello and welcome.  Thank you for participating.   We hope that your 
participation will ultimately lead to improvements in our understanding of how 
pilots train for overland navigation and target detection.  This study also may help 
us understand how we build and evaluate training simulations. 
Today we’ll be asking you to complete a short navigation exercise using a pc-
based simulation.  Before and after the navigation and target detection exercises, 
we’ll ask you to fill out some short questionnaires related to your background and 
experience.  We’ll have a brief vision test.  During the navigation and target 
detection exercises, we’ll be using a system of cameras and software that record 
your eye movement.  
We hope to take less than an hour.  We ask for uninterrupted participation.  
During the simulation exercise and when near equipment, please observe no 
food/drink restrictions.  If you need to use a restroom they are located across the 
breezeway, through the double doors and to the left.  Bottled water is available in 
the fridge by the door. 
Are you ready to go on? 
The next step is to make sure you understand any risks, the voluntary nature of 
participation and our efforts to protect your privacy.   
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APPENDIX H.  DEMOGRAPHIC SURVEY 

Date:  

 

Subject ID: 

 

We are interested in learning about your navigation, target detection, and flight 

experiences. 

 

1. Please provide the following information: 

Age                                Gender  

 

The following questions ask about your navigation experiences. 

 

2. To what extent have you participated in activities other than overland navigation that 

may contribute to improved navigation skills? (Examples may include sport 

orienteering, land navigation exercises, boy/girl scouts etc.)? 

 

     
No  

Related 

Experience 

Very Limited 

Related 

Experience 

Limited  

Related 

Experience 

Somewhat 

Significant 

Experience 

Significant  

Related 

Experience 

 

3. At your peak of currency, how would you rate your navigation skills in a low-level 

(below 200’ AGL) overland environment? 

     
Poor Fair Average Good Excellent 

 

4. If tasked today, how would you rate your navigation skills in a low-level (below 200’ 

AGL) overland environment? 

     
Poor Fair Average Good Excellent 

 

5.  How much experience do you have with low level navigation in mountainous desert 

terrain? 

 

     
None Very Little Somewhat Considerable Extensive 
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6. How much low level navigation experience do you have in the 29 Palms area? 

 

     
None Very Little Somewhat Considerable Extensive 

 

 

The following questions ask about your target detection experiences. 

 

7. To what extent have you participated in target detection type activities that may 

contribute to improved target detection skills, such as search and rescue missions and 

confined area landings?  

 

     
No  

Related 

Experience 

Very Limited 

Related 

Experience 

Limited  

Related 

Experience 

Somewhat 

Significant 

Experience 

Significant  

Related 

Experience 

 

8. How much target detection experience do you have? 

 

     
None Very Little Somewhat Considerable Extensive 

 

 

9. At your peak of currency, how would you rate your target detection skills in a low-

level (below 200’ AGL) overland environment? 

     
Poor Fair Average Good Excellent 

 

10. If tasked today, how would you rate your target detection skills in a low-level (below 

200’ AGL) overland environment? 

     
Poor Fair Average Good Excellent 

 

11. How much experience do you have with low level target detection in mountainous 

desert terrain? 

 

     
None Very Little Somewhat Considerable Extensive 
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The following questions ask about your flight experiences.  

1.  Please provide  the following information: 

 

Total flight hours: 

  

Overland hours: 

 

Branch of Service: 

 

Community: 

 

Years of aviation experience:  

 

2. How many months has it been since your last flight? 

 

3. How many months has it been since your last overland navigation flight? 

 

4. If applicable, how many months has it been since your last search and rescue 

mission? 

 

5. Describe your operational flying experience:  
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APPENDIX I.  EYE SCAN CALIBRATION SCRIPT 

Date: 
 

Subject ID: 

 Verify equipment on and running.  Set up for ‘Precision’ mode.  

 Check lab lighting and ‘experiment in progress’ signs posted. 

We’ll now calibrate eye tracking equipment.  This should only take a few 
minutes. 

Look straight ahead at the screen in front of you with a neutral expression. 

< Ensure OTW stereo cam IR light 1 is the only one illuminated and create head 
model> 

Next we need to calibrate this stereo camera for your gaze.  During this 
portion, you’ll see a series of dots presented on the screen.  Try to focus 
directly on the spot without blinking.  Please let me know when you are 
ready and we’ll continue… 

<Do OTW screen 1 calibration, save with subject ID number> 

Look at the center of the screen to your left with a neutral expression. 

<Ensure OTW stereo cam IR light 2 is the only one illuminated, create head 
model> 

Next we need to calibrate the next stereo camera for your gaze.  Follow the 
dot as before. 

<Do OTW screen 2 calibration, save with subject ID number> 

Look at the center of the screen to your right with a neutral expression. 

< Ensure OTW stereo cam IR light 3 is the only one illuminated, create head 
model> 

Next we need to calibrate the next stereo camera for your gaze.  Follow the 
dot as before. 

<Do OTW screen 3 calibration, save with subject ID number> 

Look straight at the map display with a neutral expression. 
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<Ensure Map stero cam IR light is the only one illuminated and create head 
model> 

Next we’ll calibrate the screen used for the map display.  As before, please 
focus on the dot without blinking.  Please let me know when you are ready 
to continue… 

<Map Display calibration> 

Next we’ll link all 4 stereo cameras. We’re going to ask to to look in a series 
of locations both on each OTW screen and on the map display so that the 
FaceLink system can learn where your gaze travels as you move your 
head. 

<Ensure ALL stereo cam IR lights are illuminated, start FaceLink, link stereo 
cameras> 
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APPENDIX J.  EQUIPMENT FAMILIARIZATION SCRIPT 

Date: 

Subject ID: 

 

 Verify equipment on and running.  Set up for ‘Trial’ mode.  

o Facelabs systems 

o IG  PC 

o Display contrast and brightness settings 

o Instructor/data collection PC 

o Video recording equipment  

o Eye height calibration  

 Check lab lighting and ‘experiment in progress’ signs posted. 

Please have a seat. (Experimenter’s seat.) 
Before we start the simulation exercise, we’ll let you get familiar with the PC simulator 
you’ll be using.  I’ll briefly explain the set up and let you fly a sample navigation route to 
get familiar with the displays and controls.  This route also will contain a few targets – 
SAMS (foe) and downed planes (friend). 
The system provides a simulated out the window view on the 3 large screens in front of 
you and an instrument cluster and map display on the iPad to your right.    The joystick 
will be used to control the aircraft and the map will be controlled via a touch screen 
interface.  A simulator-specific autopilot is employed to ensure you won’t crash. The 
aircraft is flying at a near-constant 60 knots ground speed, with altitude fixed at a 
constant 150’ AGL.  The joystick is used to control heading.  Pushing left or right 
executes a roll turn (it is not possible to turn the aircraft with the tail rotor in this 
simulator with this autopilot).  Releasing the joystick the aircraft will return to wings 
level.  Push up or down on the joystick can also be used to adjust the vertical view, but 
this will not affect the aircraft’s pitch (this is to ensure the aircraft remains at a fixed 
altitude while allowing you to adjust your view when necessary).  Using the trigger will 
identify SAMs, while using thumb button #1 will identify downed planes. 
The map display will respond to touch commands as follows: 1) Drag a single finger 
across the screen to scroll the map.  The map scrolls in the direction of the drag.  2) 
Move two fingers in a circular motion on the screen to rotate the map. 
The instrument cluster contains a compass with a readout of True Heading, an airspeed 
indicator, MSL altitude (altimeter), AGL altitude (radar altimeter), and a clock.  For 
pilots: because the aircraft’s altitude will remain fixed, typical instruments such as the 
attitude indicator and vertical speed indicator are omitted (attitude control is limited – 
remember you don’t control pitch, the autopilot does).  We also omitted the turn 
coordinator because the horizon should be very apparent in the CAVE view and also 
because the tail rotor (rudder) is completely controlled by the autopilot.   Before we 
give the controls a try do you have any questions? 
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<…>  
Please have a seat in the operator’s station and sit in a position you’ll be comfortable in 
for about an hour.  We’ll adjust cameras as necessary. 
<…> 
The map is operated via touch and should be fairly intuitive.  I’ll give you few minutes to 
try that out, then we’ll move on to the flight controls.  You’ll notice the route is marked 
on the map.  Please scroll the map to position the route starting point near the center of 
the screen.  When you’re comfortable with the map control we’ll move on. 
<…> 
We’ll now bring up the main display and let you get familiar with the flight controls.  On 
the screen you see terrain similar to where you will be flying.  You’ll notice the flight 
path is depicted on the map is also depicted in this view.  You’ll now have a few minutes 
to get familiar with the controls.  When you’re comfortable, please fly to the second 
waypoint.  We’ll pause there and then practice flying the entire practice route while 
exercising map controls.  You are almost certainly going to want to maintain the map 
oriented to your compass (though some pilots may have another preference). 
<…> 
You’ll now have a few minutes to fly along the depicted route, update the map and use 
the clock to verify timing.  This route consists of 3 legs, each about a minute and a half 
long.   When the route is complete you can repeat it if you would like more practice.  Let 
me know when you are ready and we’ll start the practice route along the depicted path.   
Thank you.  Do you have any questions before we move on? 
<…> 

During the next stage we’ll calibrate the eye-tracking equipment.  Following this we’ll 

provide a brief on the route you will be flying, provide some time for map study and then let you 

fly the test route. 
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APPENDIX K.  PRE/POST-FLIGHT SURVEY 

                                                                                                                                     Date:          
                                                                                                                                             Subject ID:        

Please answer the questions below regarding how difficult you found the navigation and target detection tasks.   

 
1. How difficult was it to simultaneously navigate and detect targets? 

     
Not At All 
Difficult 

Somewhat 
Difficult 

Moderately 
Difficult 

Very 
Difficult 

Extremely 
Difficult 

 
 

    

 
2. Describe any strategies that you used to detect targets while trying to stay on course. 

 
 
 
 
 
 
Please use the scale below to answer the questions 3 - 5. 
 
 
 
                            Completely                    Somewhat                       Moderately                            Very                Not at all 
                                 trivial                           difficult                           difficult                            difficult                      possible 
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3. For each navigation leg on the route, please rate how difficult it was to navigate by referencing terrain.  No response is necessary for the 
shaded regions. 

 Navigation only Target detection and navigation 

Leg 1 
 

  

Leg 2 

  

Leg 3 

  

Leg 4 

  

Leg 5 

  

Leg 6 

 

 

Leg 7 
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Leg 8 

 

 

Leg 9 

 

 

Leg 
10 

 

 

Leg 
11 

 

 

Leg 
12 

 

 

 
4.  For each navigation leg on the route, please rate how difficult it was to detect the targets. 

 Target detection and navigation Target detection only 

Leg 1 
 

  

Leg 2 
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Leg 3 

  

Leg 4 

  

Leg 5 

  

 
 
 

5.  For each navigation leg on the route, please rate how difficult it was to identify the target as friend or foe. No response is necessary for 
the shaded regions. 

 Target detection and navigation Target detection only 

Leg 1 
Target 

1   

Leg 1 
Target 

2 
 

 

Leg 2 
Target 

1   
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Leg 2 
Target 

2 
 

 

Leg 3 
Target 

1   

Leg 3 
Target 

2 
 

 

Leg 4 
Target 

1   

Leg 4  
Target 

2 
 

 

Leg 5 
Target 

1   

Leg 5 
Target 

2 
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6.  How confident are you that you detected all targets? 

 Target detection and navigation Target detection only 

 

 very                               moderately                         not at all 
confident                      confident                         confident 

very                               moderately                          not at all 
confident                      confident                         confident 

 

7. How confident are you that you correctly identified all targets? 

 Target detection and navigation Target detection only 

 

 very                               moderately                         not at all 
confident                      confident                         confident 

very                               moderately                          not at all 
confident                      confident                         confident 
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