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ABSTRACT 

This thesis seeks to improve aircraft refueling at Naval Air Station (NAS) Oceana, VA, 

using aircraft waiting time for fuel as a measure of performance.  We develop a 

computer-assisted discrete-event simulation to model refueling at NAS Oceana using 

airfield data from October 2011.  Our study focuses on six factors:  the total number of 

mobile refueling trucks, the rate of fuel flow from each truck, the quality of information 

sharing, the percentage of aircraft that refuel using hot pits (high-speed, in-ground 

refueling stations), and the normal operating band (both the upper limit and the lower 

limit) of jet fuel level that each truck driver maintains.  We use experimental design and 

determine the efficiency of various decisions for reducing fuel wait time.  We conclude 

with specific recommendations for NAS Oceana leadership. 
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EXECUTIVE SUMMARY 

Naval Air Station (NAS) Oceana, VA, is the U.S. Navy's East Coast master jet 

base.  It is comparable both in size and activity to many large civil airfields in that it 

operates and services a large number of jet aircraft daily.  Unlike civil airfields, it 

experiences large fluctuations in volume and type of air traffic throughout any given day.  

One key support activity for aircraft is fueling. 

Jets cannot fly without fuel.  If the capacity of a refueling system is adequate and 

customer demands are regular, as is the case at most civil airfields, waiting times are 

minimized.  But as demands become increasingly irregular, periodic surges may 

overwhelm the capacity of the system and lead to longer wait times for refueling.  This is 

currently the case at Oceana. 

Fuel operations at Oceana are a complex interaction between multiple customer 

aircraft with varying fuel requirements and limited numbers of mobile refueling trucks, 

eighteen high-speed in-ground refueling stations (also known as ‘hot pits’), and three 

truck refilling stations. 

To gain understanding of causes and potential mitigations of fuel delays, we 

develop a computer simulation model to analyze refueling at NAS Oceana using airfield 

data from October, 2011.  Based on our modeling, we recommend the following actions 

to minimize waiting times: 

1) Ensure each mobile refueling truck and each driver is equipped to consistently 

and safely deliver jet fuel near the practicable limit of 150 gallons per minute 

(gpm).  This action should require minimal additional cost. 

2) Require that an aircrew member or maintenance personnel provide a reliable 

estimate for the amount of fuel required to the truck dispatcher with adequate 

lead time, so that each fuel truck driver can anticipate requirements.  This 

action also should not require additional cost. 



 xvi 

3) Re-evaluate the current hot pit policy, which limits total hot pit refueling to 

20% or less of all refuelings.  Previous analyses considered the costs of fuel 

burned in the hot pits, but did not consider the potential time savings.  We 

demonstrate that increasing hot pit usage by 7% will be operationally 

equivalent to adding another truck. 
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I. INTRODUCTION 

Naval aviation is a warfighting force that is an integral part of the ability 
of the Navy, Marine Corps, and joint forces to deter or win regional 
conflicts and major power wars. (Naval Aviation Enterprise, 2012)  

Naval aviation is critical to an evolving military shaped by war and fiscal 
pressures. (Naval Aviation Enterprise, 2012) 

A. NAVAL AVIATION 

Naval aviation includes air elements of both the U.S. Navy and the U.S. Marine 

Corps.  As described in the most recent long-term guidance from Commander, Naval Air 

Forces (Naval Aviation Enterprise, 2012) a primary function is to meet international 

responsibilities and national imperatives, in part using manned, tactical fighter and/or 

attack aircraft.  Naval aviation platforms may broadly be described as rotary-wing, 

maritime patrol, strike, and unmanned.  Together, these platforms form a massive 

enterprise funded with more than $40B annually  (Department of the Navy, 2012) and 

encompassing over 190,000 Marines Corps, Navy, civilian, and contractor personnel. 

(Naval Aviation Enterprise, 2011) 

We consider improving the operation of a small piece of this enterprise; fueling 

operations for aircraft at Naval Air Station (NAS) Oceana.  Specifically, we consider 

fourth-generation F/A-18E/F Super Hornets and legacy F/A-18A/B/C/D Hornets, along 

with their operators, maintainers, and support personnel.  Efficient daily operations, in 

terms of both money and time, are required to maintain combat readiness. 

B. NAVAL AIR STATION, OCEANA  

Naval Air Station (NAS) Oceana, located in Virginia Beach, Virginia, is the 

Navy’s “East Coast master jet base” and is one of the world’s busiest airfields, with 

varying levels of flight activity that peak at more than 200 sorties per day and more than 

40 aircraft takeoffs and landings per hour, based on NAS Oceana Air Operations 

Department data for October 2011 (Decker, 2011). 
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Oceana is home to 16 deployable fleet squadrons and three shore squadrons, 

including Strike Fighter Squadron 106 (VFA-106), the largest Fleet Replacement 

Squadron (FRS) in the Navy.  The mission of VFA-106 is to provide combat ready F/A-

18A-F aircrew for the fleet, the Marine Corps operating forces and F/A-18A-F support 

squadrons. (Strike Fighter Squadron One Zero Six, 2012) 

The FRS provides both initial and refresher training for Hornet and Super Hornet 

pilots before they join deployable fleet squadrons.  The FRS also evaluates the 

operational and training effectiveness of the fleet squadrons in some contexts.  All told, 

the FRS and the fleet squadrons maintain, service, and fly a total of 130 Hornets and 170 

Super Hornets.  The total complement of tactical fighter and/or attack aircraft at NAS 

Oceana represents 25% of the tactical aircraft required by the Navy and Marine Corps. 

(Government Accountability Office, 2010) 

Additionally the base services approximately 3,500 transient aircraft (that do not 

consider this home) each year.  These arrivals vary greatly in type and number, ranging 

from small local helicopters to large Air Force cargo aircraft. 

C. NAS OCEANA SUPPORT OPERATIONS 

Not only are Oceana’s runways busy, the support operation is also busy.  The rate 

of consumption of jet fuel averages 115,000 gallons per day (NAVSUP Fleet Logistics 

Center, Norfolk, 2012) and sometimes exceeds 300,000 gallons per day, based on NAS 

Oceana Fuels Division monthly fuel reporting from October 2011 (Knight, 2011).  

Military aircraft operations are driven by training and readiness requirements, to include 

factors such as range availability, lunar cycle, weather, and, in the case of naval aviation, 

ships’ schedules.  This is fundamentally different than commercial operations, where 

flight schedules are optimized to maximize profit given some reasonably predictable 

demand. 

NAS Oceana Fuels Division supports on average 120 aircraft refueling events per 

day.  These tend to compress into several peak periods with slower intermediate periods 

and less activity overnight. 
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D. NAS OCEANA FUEL DEMAND PROFILE 

While all squadrons are required to publish a daily flight schedule (Office of the 

Chief of Naval Operations, 2009), factors such as weather, shifting operational 

requirements and aircraft availability may lead to sudden deviations from this plan.  As 

aircraft come and go, the fuel required by aircraft leads to second-order effects on the fuel 

delivery system.  The net result is a refueling system wherein the aircraft arrival times 

(and, subsequently, fuel demands) are sometimes known, but frequently change.  When 

arrival times are known, the amount of fuel required by each aircraft is typically not 

known by the support personnel prior to refueling the aircraft.  Due to these complicating 

factors, refueling tends to require variable waiting times that depend on the number of 

and size of fuel demands, discovered in real-time with minimal advanced warning. 

E. PROBLEM STATEMENT 

The goal of this thesis is to identify, analyze and propose a portfolio of solutions 

to refueling delays at NAS Oceana.  Broadly, we explore the following actions: 

1. Policy changes – zero-cost (or near zero-cost) measures that increase 

efficiency by changing the rules under which the system operates.  Examples of policy 

changes may be shifting takeoff times for jets (i.e. staggering scheduled times instead of 

having ‘waves’ of aircraft departing and arriving), as well as reexamining policies on ‘hot 

pit’ utilization. 

2. Materiel recommendations – increase efficiency by adding or changing 

resources, such as fueling trucks or manpower.  One example of a materiel 

recommendation might be to forego acquiring additional trucks beyond a point of 

diminishing returns.  If system performance levels off due to diminishing returns on the 

number of operating trucks, greater focus on the ideal employment of limited personnel 

to maximize actual fuel flow rate could produce results on par with making additional 

fuel-ferrying trips. 
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F. BENEFITS OF THE STUDY 

Using computer simulation, this research provides a tool to explore acquisition 

and policy changes for the Regional Supply Officer at NAS Oceana with the goal of 

reducing wait times for refueling and thereby increase operational availability of all 

customer aircraft.  This information can be used to present objective data to other 

decision-makers within the naval aviation community in order to efficiently use all 

refueling assets to maximum effect. 
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II. SIMULATION 

We use discrete-event simulation to identify tensions and explore tradeoffs 

between various options open to the airfield managers on fueling performance as 

measured by minimizing mean customer aircraft wait times.  These options may include 

physical changes, such as acquiring more fuel trucks, or policy changes, such as 

coordinated scheduling and sharing of information. 

Computer simulation allows us to explore the behavior of a system under various 

scenarios for problems that are intractable for a closed-form solution.  We use the 

uncertainty of a pseudo-random number generator as a proxy for real-world randomness.  

Understanding variability is a key to understanding the dynamics of a system’s behavior. 

A. LITERATURE REVIEW 

1. Neighboring Studies of Airlines 

Stroup and Wollmer (1992) propose a network model to control fuel use by the 

commercial airline industry, by minimizing the total cost of fuel for individual flights 

with multiple stops. Abdelghanya et al. (2004 and 2005) propose a shortest-path 

algorithm to project flight delays and/or a mathematical programming formulation to 

optimize tradeoffs of different aviation fuel positioning and loading strategies in terms of 

fuel costs and maintenance costs.  None of these approaches applies to our problem, 

because commercial interests focus exclusively on finding the optimal solution to 

minimize dollar costs for a network of static aircraft routes; whereas the military seeks to 

minimize the average time that aircraft wait for fuel, with less predictable system 

behavior. 

2. Related Studies 

Airport modelers (Pitfield, Brooke, & Jerrard, 1998, and Pitfield & Jerrard, 1999) 

propose Monte Carlo simulation of ground operations to analyze the interaction between 

facility layout and aircraft arrivals and departures with the objective of streamlining 

runway operations.  While these studies do not involve aircraft refueling, they do 
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combine probabilities with traffic patterns to run simulations that give insight to airport 

operations.  Queueing has been used in other studies involving naval aviation.  Dummar 

(2011) proposes a computer simulation model for studying the training cycle of Marine 

Corps pilots.  A key feature of this model is that it attempts to simulate the congestion of 

student pilots within a constrained training pipeline.  Similarly, we intend to model 

aircraft and refueling truck queueing behavior through computer simulation. 

The Aviation Systems Division at NASA Ames Research Center conducts 

research on air traffic management, including surface traffic management (NASA, 2011).  

Quinn and Zelenka (1998, p. 7) conclude that “resources could be managed more 

effectively if ramp management personnel had more detailed, up-to-date schedule 

information”.  Greater collaboration on airline ramp operations includes greater 

situational awareness for refueling truck drivers.  This applies to both military and 

civilian airfields.  Behavior of ground delays in high traffic scenarios at Dallas/Fort 

Worth International Airport is analyzed by Jung et al. (2011), with the objective of 

creating a decision support tool to coordinate ground controllers and tower controllers, 

thereby relieving airfield congestion with the added goal of reducing fuel consumption.  

Refueling never enters this analysis, making it fundamentally different than Oceana’s 

problem. 

Surprisingly, the health care industry contains ample cases relevant to our 

analysis, where computer simulation is used to model customer wait times.  Several 

authors (Jun, Jacobson, & Swisher (1999), Jacobson, Hall, & Swisher (2006), and 

Mustafee, Katsaliaki, & Taylor (2010)) periodically outline a comprehensive taxonomy 

of papers that demonstrate the growing trend in the use of computer simulation to model 

complex queueing behavior.  A notable example among the references cited is work by 

Kumar and Kapur (1989) that describes the application of a simulation model to inform 

the scheduling of Emergency Room staff at Georgetown University Hospital.  We assert 

that NAS Oceana functions like a hospital for landing aircraft that need to be serviced, 

and refueling trucks function as the hospital staff faced with managing multiple tasks.  

Unique differences in our problem that we address later in this chapter include the 

customer arrival pattern, service time variability, and the existence of a secondary queue. 
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3. Computer Simulation Software Options 

Swain (2011) identifies 15 simulation platforms suitable for our analysis. 

Currently two computer simulation options are discrete-event simulation (DES) 

and discrete-time simulation.  Of particular interest to us is that DES, especially when 

studying the complex interactions within a system of many components, tends to have 

fewer errors because it avoids ‘tie breaking’, whereas multiple events may occur within 

the same time-interval in a discrete-time simulation. (Buss and Halwachs, 1999)  DES 

avoids the problem by handling events sequentially, by their scheduled time.  This also 

allows transitions to be dictated by the underlying (possibly random) process, instead of 

coercing events into fixed time steps. 

For the remainder of this thesis, when we refer to ‘simulation’, we specifically 

mean DES.  A DES model may be described with four basic elements (Schruben, 1987):  

parameters, state variables, events that are connected via an event graph, and a set of 

scheduling relationships or rules between events.  Parameters are characteristics of a 

system that are specified by the modeler and that do not change during a simulation 

instance.  State variables are measurable components of a system that may change over 

time.  An event graph is a schematic representation of simulation scheduling 

relationships, using nodes and directed edges. (Sargent, 1988) 

B. FUELING 

The delivery of jet fuel from the central depot to customer aircraft at NAS Oceana 

consists of three interrelated processes:  cold fueling, hot fueling, and refilling of fuel 

trucks. 

1. 'Cold' Aircraft Refueling Using Fuel Trucks 

Fuel is primarily delivered to aircraft that are parked in refueling areas using 

mobile refueling trucks that transport fuel to the location of each stationary aircraft 

(henceforth referred to as ‘cold refueling’).  Tenant aircraft squadrons have separate 

designated refueling areas from transient aircraft that are not affiliated with NAS Oceana.  
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During cold refueling a truck with finite capacity delivers a knowable (but not necessarily 

known) quantity of fuel to an aircraft with engines shut down. 

The presumed advantage of cold refueling is that no fuel is expended by aircraft 

engine idle operation during the refueling operation.  We say ‘presumed advantage’ 

because the analysis leading to that conclusion accounts for the monetary costs of fuel 

burned at ground idle, or approximately five gallons per minute (gpm), but does not 

account for the opportunity costs associated with aircraft waiting.   

The disadvantages of cold fueling are two-fold.  First, the truck spends transit 

time as it ferries fuel from refilling station to awaiting aircraft.  When the truck runs out 

of fuel it must return to a refilling station to replenish.  Secondly, the aircraft goes 

through full engine shutdown and engine start checks before it may be flown again.  We 

introduce these difficulties to illustrate that neither hot nor cold fueling is a clearly 

dominating strategy for airfield operations. 

2. 'Hot' Aircraft Refueling Using Flight Line Refueling (or ‘Hot Pits’) 

Fuel may also be transferred to aircraft using fixed high-speed fueling hydrants 

known as ‘hot pits’ (henceforth referred to as ‘hot refueling’) that directly connect to the 

in-ground fuel system.  Because the in-ground fuel system feeds directly from the airfield 

storage tanks, the hot pit capacity is the airfield capacity which exceeds any individual 

day’s demands by a wide margin and will henceforth be assumed infinite in our analysis.  

In contrast to cold refueling, an aircraft is ground taxied to the stationary delivery sites 

and fuel is transferred while the aircraft is operating at ground-idle power. 

A few potential advantages of this refueling method are that aircraft do not need 

to be restarted, fuel is handled only once (saving labor and time), and fuel can be 

delivered at a faster rate than a fuel truck can provide due to system pressure.  

Disadvantages of this method are that fuel is consumed at an estimated rate of five 

gallons per minute while the aircraft idles, a pilot must be present inside the aircraft, and 

the physical configuration of some aircraft preclude them from using a hot pit. 
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NAS Oceana has had a policy emphasizing the use of cold refueling over hot 

refueling since approximately April 2006.  Airfield regulations, in the form of standard 

operating procedure at NAS Oceana, restrict hot refueling to 20% or less of the total 

number of refueling events.  We explore the relative merits of cold and hot fueling with 

customer time as our single metric.  While there is no service-approved metric for the 

cost associated with waiting for fuel, stakeholders at NAS Oceana (i.e. Regional Supply 

Officer, airport manager, and squadron personnel) agree that avoidable delays in fueling 

are detrimental to flight operations.  Their concern is simple—aircraft that are waiting for 

fuel are unavailable to fly. 

We sidestep the issue of estimating costs by presenting our results in terms of the 

marginal increase in aircraft events per day.  Ultimately, the decision as to what is ‘cost 

effective’ for training will lie with the leadership at Strike Fighter Wing Atlantic.  With 

this in mind, we explore no-cost, low-cost and moderate cost alternatives to the current 

system.  We note that understanding the cost of aircraft downtime is an open area for 

research. 

Ultimately, tradeoffs between fuel dollar costs and other costs are beyond the 

scope of our analysis and will have to be evaluated by decision makers using multiple 

criteria. 

For the remainder of this thesis, the act of providing an aircraft with jet fuel 

without regard to method (i.e. hot or cold) will be referred to as ‘fueling’. 

3. Fuel Truck Replenishment 

Mobile refueling trucks have fixed capacity and therefore also must replenish (a 

term henceforth referred to as ‘refilling’).  Truck refilling always occurs at a single 

location with three service stands and the decision to refill is currently at the discretion of 

the individual fuel truck driver.  Current practice is that a driver does not partially refuel 

an aircraft, because squadrons prefer to get an aircraft refueled in a single visit by one 

fuel truck rather than multiple visits.  Drivers typically decide when to refill in order to 

maintain sufficient fuel onboard, based on fuel state and existing operating tempo at the 

field. 



 10 

This situation is a complex, multi-stage queueing problem and does not, to our 

knowledge, have a tractable closed-form solution.  Among the complexities are that 

Markovian aircraft arrivals and service times would be very poor assumptions.  Pilots 

generally know when they are going to land before they take off, and the amount of time 

an aircraft has been flying offers a lot of information about how much longer it will fly.  

Known departure times are strongly correlated with return times.  Return times are, in 

turn, strongly correlated with fueling requirements. 

Both refueling trucks and hot pits behave as servers for aircraft (the primary 

customers) in the first stage; an analytic challenge of this problem is that some of the 

servers (specifically all of the mobile refueling trucks) themselves act as customers in the 

second stage.  Following the taxonomy of Ross (2010) the second stage of the model is a 

‘closed system’, where refueling trucks behave as customers when coming out of service 

to take on more jet fuel for delivery to aircraft. 

C. DATA 

Our aircraft demand data comes from the Fuels Division Officer (for overall fuel 

data), the airport manager (for transient aircraft data), and their respective staffs.  We use 

the data from the Fuels Division Officer’s Monthly Fuel Issues Report for October 2011 

(J. Knight, personal communication, November 14, 2011; see Appendix A for a sample) 

and recreate aircraft arrivals and refueling requirements for our simulation.  This forms 

the core of our model, around which we build using additional information such as fuel 

flow rates, truck transit times based on geography, and anticipated transition periods. 

A key difficulty for operators is the interaction between customer aircraft, hot 

pits, mobile refueling trucks, and truck refill stations.  We present a representative sample 

of three consecutive days of observed behavior (Figures 1, 2, and 3).  In the first case 

there is a large spike in aircraft arrivals between 2:00 PM and 4:00 PM.   
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Figure 1.   Refueling queue length as a function of time of day for 03 October 2011. 

Note that the queue is empty in the overnight hours with peaks in mid-
afternoon to early evening.  These peaks coincide with returning morning 
flights and preparation for evening flights. 

 
Figure 2.   Refueling queue length as a function of time of day for 04 October 2011. 

Note that there is far less peaking in the mid-afternoon to early evening 
hours compared to the previous day. 
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Figure 3.   Refueling queue length as a function of time of day for 05 October 2011. 

Note that there is significantly less refueling activity compared to the 
previous two days.  The peak near 1:00 PM corresponds to morning flights 
returning to launch again as afternoon missions; the peak near 6:00 PM 
corresponds to sunset (6:43 PM), when aircraft are launching for night 
training missions (Time and Date AS, 2012). 

D. MATHEMATICAL MODELING 

Our simulation model is a two-stage, multiple-server queue.  Following Ross, the 

first stage is an 'open system' in which aircraft are modeled as customers in a G/G/s 

queue with two server types (trucks and “hot pits”).  Aircraft (customers) join the system 

when they enter to refuel, either upon landing or by request from squadron maintenance 

control, and leave the system when they are fueled, either by a mobile refueling truck or 

at a hot pit. 

1. Modeling Assumptions 

In this section, we make our modeling assumptions explicit.  First, based on data 

for October 2011, we observe an empty queue at 4:00 AM daily.  We therefore are able 

to treat each day as a separate process, with 4:00 AM acting as the starting time and 

ending time each day for our simulation runs.  This is important to our study because we 

are interested in the system’s daily behavior, commencing an epoch at a moment when 

the aircraft refueling queue is completely empty.  We do not need to have a “run-in 

period” for the simulation (Pidd, 1994, p. 12), and our explicit assumption is that the 
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queue will be empty at the same time each day, allowing us to treat each day separately.  

We do not assume that this time is static, as it may have time-of-year effects (i.e. earlier 

in the winter, later in the summer).  Secondly, we have removed degrees of freedom by 

using fixed, deterministic times to represent some delays, specifically: 

- the transit time it takes for each dispatched refueling truck to reach a customer 

aircraft, 

- the transit time it takes for each truck to reach the refilling stations, 

- the time it takes to couple a refueling truck with a customer aircraft, and 

- the time it takes for a jet to reach a hot pit.   

Given NAS Oceana configuration and weighing speed restrictions for vehicles 

near aircraft operations, we assume that each dispatched refueling truck takes ten minutes 

to reposition to a new customer, five minutes to reach the refilling stations, and three 

minutes to commence refueling after arriving to service an aircraft.  Additionally, we 

assume that it takes the same amount of time for a jet to reach a hot pit as it does for a 

truck to reach a jet. 

When verifying our model against theoretical results, we assume an infinite 

population of customer aircraft.  We defend this assumption by noting the large number 

of aircraft (in excess of 250) that are available for use at NAS Oceana compared to the 

maximum number of aircraft (typically fewer than 20) that wait for fuel at any given 

time.  In other words, the operating pool of aircraft that may be flown is sufficiently large 

for us to be unconcerned about how the current state of any particular aircraft affects the 

distribution of service arrivals and fuel requirements. 

In contrast to the first stage, an infinite population assumption is not warranted for 

trucks being refilled, as the number of trucks waiting affects the distribution of arriving 

trucks. 

2. The Model 

For our simulation, we treat the following items as adjustable parameters:  the 

percentage of aircraft that use hot pits, the total number of mobile refueling trucks 
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available within the system, the operating band of jet fuel level that each truck driver 

maintains, the actual fuel delivery rate from each truck, and whether or not the amount of 

fuel required by each aircraft is known in advance. 

E. SPECIFICS OF OUR MODEL 

1. Parameters 

Table 1 presents our model’s six adjustable parameters.  These features map to 

actions that the airfield manager could take, and thereby inform his decisions. 

Adjustable Parameter Description Variable Type Units 

Total number of mobile refueling trucks available integer trucks 

Effective flow rate during cold refueling from refueling trucks continuous gpm 

Minimum fuel level at which refueling truck drivers decide to refill continuous gallons 

Maximum fuel level that trucks carry continuous gallons 

Percentage of aircraft that conduct refueling at hot pits percentage numeric 

Whether or not truck drivers are aware of actual fuel required before  
attempting to refuel jets, which we call “value of information” binary numeric 

Table 1.   Summary of parameters we use for our DES model.  For example, ‘Total 
number of mobile refueling trucks available’ consists of integer values that 
specify how many trucks exist within the model during each unique run.  
Together these adjustable parameters form the design points for our analysis 
and represent deliberate actions that the airfield manager could take. 

2. Fixed Parameters 

Table 2 presents our model’s fixed parameters, or those features we consider as 

stationary for the entire duration of our study (i.e. unchanged across all cases).  These 

could be adjusted, but do not inform our current effort. 
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Fixed Parameter Description Value Unit 

Total number of truck refilling stations 3 refill stations 

Rate of jet fuel flow from truck refilling stations +170 gpm 

Total number of hot pits 18 hot pits 

Rate of jet fuel flow from hot pits +170 gpm 

Rate of fuel burn (single engine idle) while hot refueling at hot pits -5 gpm 

Assumed refuel transit time for fuel trucks 10 minutes 

Assumed refill transit time for fuel trucks 5 minutes 

Assumed coupling time between fuel trucks and aircraft 3 minutes 

Table 2.   Fixed parameters.  For example, the ‘Assumed coupling time between fuel 
trucks and aircraft’ is three minutes for all cases.  We hold these parameters 
steady throughout all of our simulation runs. 

3. State Variables 

State variables represent the system at a snapshot in time, are dynamic, and 

typically change frequently during a simulation.  For example, the fuel level in each 

mobile refueling truck depends on its individual activity throughout the day.  The status 

of the truck may also change from available to not available if it runs low on jet fuel and 

needs refilling. 

Table 3 presents our model’s state variables.  These describe refueling at NAS 

Oceana using the behavior of aircraft arrivals and the quantity of jet fuel (measured in 

gallons) required by each aircraft.  In the primary stage, fuel is transferred either from 

refueling trucks to aircraft or from hot pits to aircraft.  In the secondary stage, fuel is 

transferred from refilling stations to refueling trucks (hot pits are considered to have 

infinite supply).  This interaction is mathematically translated to the changing states of 

aircraft, trucks, hot pits, and refilling stations.  The end result is a measure of the system’s 

effectiveness in terms of the time that each aircraft must wait until it is refueled and 

ultimately departs the system. 
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State Variable Description Units 

Total number of jet arrivals to the system jets 

Number of refueling trucks available for jet refueling use trucks 

Number of hot pits available for jet refueling use hot pits 

Number of refilling stations available for truck refilling use refill stations 

Number of jets in cold refueling queue jets 

Number of jets in hot refueling queue jets 

Number of refueling trucks delayed in refilling station queue trucks 

Present jet fuel onboard each truck gallons 

Total jet fuel dispensed by each truck gallons 

Total number of jets served by each truck jets 

Total jet fuel dispensed by each hot pit gallons 

Total number of jets served by each hot pit jets 

Total delay in queue for each aircraft minutes 

Total time in system for each aircraft minutes 

Table 3.   State variables.  Together these represent the minimum traits of the 
refueling system that broadly capture the behavior of the interactions 
between jets, trucks, hot pits, and jet fuel. 

4. Scheduling Relationships 

Scheduling relationships are rules that trigger future events.  For example, when a 

jet finishes refueling, the aircraft queue is checked to see if another jet needs fuel.  Future 

events are processed in the order that they appear on the future event list.  Figure 4 

describes the logic used to execute the simulation. 
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Figure 4.   Summary flowchart of interactions between aircraft, refueling trucks, hot 
pits, and refilling stations.  The logic depicted here is the same that entities 
follow during the course of simulation, with each decision point in the 
flowchart mapping to a logical test in the computer model. 

5. Events 

Events are unique, significant activities that take place within a system.  Events 

may cause state variables to change and may trigger other events.  In our simulation, 

aircraft arrivals are events that start the queueing and fueling system in motion. 
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6. Event Graph 

The event graph we use for our model is illustrated in Figure 5.  This ties together 

the basic components of our discrete-event simulation model into a coherent whole. 

 

Figure 5.   Initial event graph of major elements.  Each circular node indicates an event 
(or a state transition) and each directed edge causes other events to be 
scheduled.  Some directed edges also include time delays and conditional 
requirements to trigger appropriate responses within the system.  Note that 
this event graph shows only the refueling truck portion of the system; the 
hot pit portion of the system has a similar structure, except ‘hot pit’ is 
substituted for ‘truck’ and no ‘refill’ event exists. 

F. SIMKIT 

We implement our simulation model with Simkit, an open source collection of 

Java classes (Oracle Corporation, 2012) specifically designed to run DES models.   
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We use Simkit version 1.3.8 requiring Java development kit (JDK) 1.6 or higher; for 

details see Buss (2010).  We use random numbers created by the Tausworthe class; for 

details see Law and Kelton (2000). 

G. MODEL VERIFICATION 

We use the analytic results of the M/M/k queue and M/M/1 queue to verify that 

our model is coded correctly.  The aircraft arrivals in our computer simulation qualify as 

a counting process.  Thus, we are able to compare output from our model with known 

standard analytic results described by Ross to verify that our computer simulation 

performs as expected.  Specifically, we test Markovian arrivals, together with Markovian 

service for 100,000 units of simulated time.  Figure 6 presents our results.  For details on 

computing the wait times for the M/M/1 queueing model see Heathcote and Winer 

(1969). 

 

Figure 6.   Comparison of our computer simulation model output (left) to known 
standard analytic results (right).  Our computer code appears to function 
properly and the fundamental queueing model behaves as expected. 

Validation requires comparison of simulation results with a large set of airfield 

data and is beyond the scope of our current effort, but would be promising for follow-on 

study. 
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III. MODELING FUEL DEMAND 

A. DATA 

Our goal is to understand fuel demands; we use fuel data by calendar day for 

October 2011 (Figure 7) for analysis.  The purpose of this analysis is to get distributional 

information and use it to represent fuel demands randomly in our simulation model. 

 

Figure 7.   Graph of the total ‘cold refueling’ events per calendar day (defined as 
starting and ending at 4:00 AM) during October 2011.  This shows a 
significant day-of-the-week effect, with weekends having substantially less 
activity than weekdays.  Specifically, Tuesday, Wednesday and Thursday 
are similar, with less activity on Monday and Friday.  Note that Monday, 
October 10 was the Columbus Day holiday and thus saw low activity. 
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Our dataset (31 days) contains 25 days when at least one aircraft required fuel and 

six days (four Saturdays, one Sunday, and one Monday) when no fuel activity took place; 

these days were excluded from our analysis.  Of the 25 days when at least one aircraft 

required fuel, five days experienced ‘low activity’, which operators at NAS Oceana 

define as fewer than 10 refueling events per 24-hour period.  Therefore, we have 20 days 

of useful data for analysis. 

After plotting each day’s data, we note that the system is empty each night at 4:00 

AM.  The operational experience of the fuel operators confirms this finding.  We 

therefore treat 4:00 AM as a fixed starting and stopping point for each day’s refueling 

activity.  This streamlines our analysis because we need not be concerned with ‘spillover’ 

work in the form of aircraft remaining in the queue from the previous day; each day is 

independent.  Therefore, we treat our dataset as 20 independent days, vice one sample 

containing 20 days of data. 

We also look at the characteristics of the individual fuel requirements (i.e. the 

unique amount of fuel required by each aircraft) for the entire month of October. 

We observe a total of 1,493 fuel events.  Two fuel events exceed the 5,000-gallon 

maximum capacity of the existing fleet of mobile refueling trucks.  We do not discard 

these points because there are transient aircraft serviced by NAS Oceana that require that 

much fuel, such as the E-6B Mercury, the C-17 Globemaster, and the C-5 Galaxy.  As a 

modeling consideration, we partition each of these large demands into two smaller 

demands that arrive near-simultaneously; this maps fuel requirements from the aircraft’s 

point of view into fuel requirements from the fueling systems’ point of view.  This results 

in 1,495 individual fuel demands on which we base our model. 

B. DISTRIBUTION FITTING 

The empirical distribution of these individual fuel demands suggests that no 

single, commonly used parametric distribution adequately describes our data.  The 

primary difficulty lies in the spike near zero (Figure 8).  We fit a compound random 

variable to capture the behavior of the relative sizes of the fuel demands, measured in 
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gallons of jet fuel.  The experience of refueling operators reinforces our observation that 

500 gallons and 3,000 gallons are appropriate ‘breakpoints’ to differentiate between 

small, medium, and large fuel demands.  Fitting data with breakpoints introduces 

additional degrees of freedom; both the parameter estimation (for the individual 

distributions) as well as finding the breakpoint between neighboring distributions. 

Based on our selection of breakpoints, we pass each subgrouping of observed fuel 

demands into the distribution-fitting platform of JMP statistical software, base version 

9.0.1. (SAS Institute Inc., 2012)  This software uses second-order information criterion 

known as Akaike information criterion corrected (AICc) to fit a model with the fewest 

parameters for a finite sample-size.  See Burnham and Anderson (2002) for more 

information. 

To represent the subgroup consisting of 211 small demands, we choose from four 

viable candidate distributions with comparable measures of relative goodness of fit and 

number of parameters as follows:  eight (Normal 3 Mixture), five (Normal 2 Mixture), 

and two (Gamma or Weibull).  To represent the subgroup consisting of 1,273 medium 

demands, we choose from five viable candidate distributions with comparable measures 

of relative goodness of fit and number of parameters as follows:  eight (Normal 3 

Mixture), five (Normal 2 Mixture), three (Johnson Sl), four (Johnson Su), and two 

(Weibull).  Due to their applicability and simplicity, we select both two-parameter 

Weibull distributions and confirm with checks on 95% confidence intervals and 

goodness-of-fit tests that reject the null hypothesis.  These results enable us to fit a 

composite distribution that approximates the observed data behavior. 

We approximate the smaller fuel demands (those less than 500 gallons) using a 

two-parameter Weibull distribution.  We approximate mid-sized fuel demands (those 

between 500 and 3,000 gallons) by a second distinct two-parameter Weibull distribution.  

The shape fitting properties of the two-parameter Weibull distribution enable us to 

adequately describe a variety of unique distribution shapes, using a simple form that 

consists of a shape parameter and a scale parameter (NIST 2012, Devore 2009).  Finally, 

we use a Uniform distribution for large fuel demands (i.e. between 3,000 and 4,500 

gallons). 
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Figure 8.   Graph of fuel demands.  Empirical distribution is shown at top.  The vertical 
oval highlights ‘small’ demand signals between 0 and 500 gallons, which 
we model using a Weibull distribution (shown bottom left in more ideal 
form).  The middle of the distribution between 500 and 3,000 gallons 
contains the ‘medium’ demand signals, which we also model using a 
Weibull distribution (shown bottom center).  The horizontal oval from 
3,000 to 4,500 gallons contains rare but influential ‘large’ demand signals, 
which we model using a Uniform distribution. 
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The procedure for finding the compound distribution follows:  from a truck 

operator’s point of view, when dispatched to refuel an aircraft, he draws a card marked 

either ‘A’, ‘B’, or ‘C’ from a (biased) deck.  Conditional on the card drawn, he then 

draws from the appropriate distribution described above.  We then implement a Bernoulli 

trial or (three-outcome) coin-flip in our simulation.  For example, 1,273 medium fuel 

demands out of 1,495 total fuel demands is equivalent to an occurrence rate of 0.85.  

Therefore, we assume in our model that 85% of fuel demands will be between 500 

gallons and 3,000 gallons using our second Weibull distribution parameters.  We apply 

the same logic to small fuel demands (211 out of 1,495 total, or 14%) using our first 

Weibull distribution parameters and to large fuel demands (11 out of 1,495 total, or 1%) 

using a Uniform distribution. 

We choose the Weibull for our simulation model because it empirically resembles 

our data.  As Weibull (1951) himself points out, the distribution has wide applications 

and “the only practicable way of progressing is to choose a simple function, test it 

empirically, and stick to it as long as none better has been found.” 

Devore (2009) describes the probability density function (pdf) of a two-parameter 

Weibull distribution for random variable X, with shape α and scale β, given by: 
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Table 4 summarizes the parameters that we use to construct our composite 

distribution of fuel demands. 

 

Demand First Parameter Second Parameter Probability Notation 

Small (S) 

WEIBULL 

 

Shape α = 1.4 

 

Scale β  = 205 

 

pS = 0.14 

 

FS 

Medium (M) 

WEIBULL 

 

Shape α = 4 

 

Scale β  = 1750 

 

pM = 0.85 

 

FM 

Large (L) 

UNIFORM 

 

Minimum = 3000 

 

Maximum = 4500 

 

pL = 0.01 

 

FL 

Table 4.   Input parameters that approximate our compound distribution of fuel 
demands.  Together with the formula below, these enable us to produce 
randomized results. 

The cumulative distribution function (cdf) of our compound random variable is 

given by conditioning.  If pS, pM, and pL are the probabilities associated with each type of 

fuel demand (small, medium, and large), then the overall cdf is given by: 

Pr{ } ( )( ) S MS LLMF x FX p Fx F p FX p= ≤ + += =  
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IV. RESULTS 

We are interested in how our computer simulation performs with five factors and 

multiple levels.  Given the speed of our model, running a large number of cases is not a 

concern, but we wish to interpolate between design points.  Specifically, we wish to 

analyze multiple levels for each of the following factors: 

- the percentage of time when hot pits are used; 

- the number of refueling trucks in operation; 

- the fuel flow rate from each refueling truck; 

- the lower limit on the fuel level that is reached before a truck driver refills; 

and 

- the upper limit on the fuel level that each truck carries. 

Using a full factorial experiment, we would need at least 162 runs to evaluate the 

boundary points. 

Our goal in the initial experiments is to efficiently assess this sample space and 

find the relative merits of the five factors mentioned above. 

A. EXPERIMENTAL DESIGN 

Leveraging the previous work of Cioppa (2002) and Sanchez (2011), we use a 

nearly orthogonal Latin hypercube (NOLH) design that allows us to perform a fractional 

factorial experiment with much less computational expense than a full factorial design.  

We choose the following design points for our selected parameters: 

(a) Hot pit policy (between 0% and 30%);  

(b) Total number of trucks (between 4 and 20);  

(c) Truck fuel flow rate to aircraft (between 70 and 150 gpm);  

(d) Minimum fuel level or threshold when each fuel truck driver decides to refill  
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(0 to 2,000 gallons of jet fuel remaining); 

(e) Maximum fuel level that each truck safely carries (4,500 to 5,000 gallons). 

We apply our computer simulation using 17 design points to analyze a total of 85 

distinct levels across five parameters. 

To analyze the behavior of the system with a very large number of mobile 

refueling trucks, we add one additional design point (‘Case 18’) that consists of 28 total 

trucks, zero hot pit use, and all other parameters set to the midpoint values of their range.  

With the 18 design points shown in Table 5, we produce 90,000 data points by using 250 

replications across 20 simulation days. 
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 (a) (b) (c) (d) (e) 

Factor 
Name 

Hot pit 
Policy 

Total 
Number of 

Trucks 

Truck 
Fuel Flow Rate 

(gpm) 

Minimum 
Truck Fuel Level 

(gallons) 

Maximum 
Truck Fuel Level 

(gallons) 
Low level 0.00 4 70 gpm 0 gallons 4,500 gallons 
High level 0.30 20 150 gpm 2,000 gallons 5,000 gallons 

CASE 1 0.21 4 85 1,250 4,880 
CASE 2 0.08 5 115 1,750 4,840 
CASE 3 0.13 6 90 125 4,590 
CASE 4 0.19 7 150 625 4,940 
CASE 5 0.20 8 140 1,125 4,500 
CASE 6 0.30 9 100 1,625 4,530 
CASE 7 0.24 10 125 0 4,720 
CASE 8 0.04 11 75 500 4,810 

CASE 9 * 0.15 * 12 * 110 * 1,000 * 4,750 * 
CASE 10 0.26 13 145 1,500 4,690 
CASE 11 0.06 14 95 2,000 4,780 
CASE 12 0.00 15 120 375 4,970 
CASE 13 0.28 16 80 875 5,000 
CASE 14 0.11 17 70 1,375 4,560 
CASE 15 0.17 18 130 1,875 4,910 
CASE 16 0.23 19 105 250 4,660 
CASE 17 0.09 20 135 750 4,630 

CASE 18 0.00 28 110 1,000 4,750 

Table 5.   Nearly orthogonal Latin hypercube (NOLH) design.  These 18 cases  
(18 design points) efficiently explore the sample space.  Asterisks indicate 
‘Case 9’ is the center-point of our five-parameter sample space. 

Of particular interest to the operators at NAS Oceana are the potential gains of 

information-sharing, which we define as knowledge of the fuel requirement before a 

truck is dispatched to service it.  To achieve this, we let the model produce two output 

streams of results.  The first output tells us the mean delay in the aircraft queue when 

truck drivers know the amount of fuel required by each aircraft prior to an attempted 

refueling event.  The second output tells us the adjusted mean delay in the aircraft queue, 

or time wasted when a truck driver arrives to refuel an aircraft with insufficient fuel.  To 

do this we add an additional binary parameter for the “value of information”, represented 
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by a one or a zero.  By adding this column to our initial design, we do not change the 

NOLH design, but our total number of data observations doubles from 90,000 to 180,000. 

Using this nearly-orthogonal experimental design as our guide, our computer 

simulation produces the results shown in Table 6. 

 

 

Mean Delay in Aircraft 
Refueling Queue (mins) 
No information-sharing 

 
Standard 
Deviation 

Mean Delay in Aircraft 
Refueling Queue (mins) 

With information-sharing 

 
Standard 
Deviation 

CASE 1 21.21 6.64 20.47 6.55 
CASE 2 16.14 3.62 15.86 3.61 
CASE 3 17.79 3.22 15.14 3.03 
CASE 4 12.92 1.57 11.38 1.35 
CASE 5 12.40 1.42 11.30 1.23 
CASE 6 10.39 0.49 10.11 0.31 
CASE 7 12.71 1.18 10.64 0.86 
CASE 8 12.87 1.53 10.96 1.24 

CASE 9 * 11.20 * 0.76 * 10.16 * 0.42 * 
CASE 10 10.37 0.39 10.01 0.11 
CASE 11 10.19 0.40 10.02 0.16 
CASE 12 12.17 1.05 10.22 0.59 
CASE 13 10.74 0.61 10.02 0.14 
CASE 14 10.58 0.55 10.02 0.14 
CASE 15 10.16 0.31 10.00 0.04 
CASE 16 11.32 0.97 10.05 0.26 
CASE 17 11.22 0.80 10.02 0.17 
CASE 18 10.80 0.74 10.00 0.06 

Table 6.   Simulation results from the NOLH design (see Table 5).  Note these values 
represent the mean delay of aircraft prior to fuel truck arrival, rather than 
the total time in the system.  For our analysis, once a fuel truck arrives to 
fuel an aircraft we stop the timer that measures the system response with 
respect to each refueling event.  Asterisks indicate ‘Case 9’ is the center-
point of our sample space.  Cases are shown in order from smallest to 
largest, based on the number of refueling trucks. Notice as number of trucks 
goes up, mean aircraft delay and standard deviation tend to go down, but 
not strictly.  Exclusively adding more trucks does not always yield a better 
result, due to the combined effects of all parameters.  We also find, in every 
case, information-sharing lowers mean aircraft delay and standard 
deviation (see columns shaded in gray). 
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B. LINEAR REGRESSION MODEL 

Combining results from Table 5 and Table 6, we produce a linear regression and 

determine the marginal contribution of each factor (Figure 9).  All factors turn out to be 

statistically significant predictors of the mean delay in aircraft refueling queue.  The 

factors in our fitted linear model account for 37% of the variation in the mean delay in 

queue response variable that results from our NOLH-designed simulation model. 

 

Figure 9.   Linear regression analysis results, fit for the total time that aircraft wait as a 
function of seven main effects.  All of the factors that we explored are 
statistically significant, with the number of trucks exhibiting the greatest 
marginal improvement. 
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Using these results we now compare factors on a similar scale in order to show 

the relative tradeoffs between actions that the airfield manager may take, as demonstrated 

below.  Our linear regression model suggests the following: 

a) For each additional fuel truck, the mean delay in the aircraft queue is reduced by 

nearly 20 seconds.  We note that this depends on the number of trucks already 

present in the system. 

b) For each additional 10 gpm of fuel flow rate from all trucks, the mean delay in the 

aircraft queue is reduced by nearly 16 seconds. 

c) When information is shared with truck drivers, the mean delay in the aircraft 

queue is reduced by one full minute. 

d) A 10% increase in the use of hot pits reduces the mean delay in the aircraft queue 

by nearly 30 seconds.  By the same logic, a 10% reduction in the use of hot pits 

increases the mean delay in the aircraft queue by 30 seconds. 

e) For each 100-gallon reduction in the maximum amount of fuel that trucks carry 

(between 5,000 and 4,500 gallons) the mean delay in the aircraft queue is reduced 

by 16 seconds.  One can understand this finding to mean that, above some upper 

fuel level, each truck driver has adequate fuel to support aircraft refueling, so 

additional time spent refilling a truck with extra fuel detracts from aircraft 

refueling in general. 

f) For each 500-gallon increase in the minimum fuel level that trucks maintain 

(between zero and 2,000 gallons) the mean delay in the aircraft queue is reduced 

by 12 seconds.  One can understand this finding to mean that, below some lower 

fuel level, each idle fuel truck driver could instead be refilling his truck in 

preparation for the next wave of aircraft. 

We conclude from our linear regression model that the ‘best’ actions from a 

statistical point of view (without regard to costs) are, in order from most significant to 

least significant: 

- Maximize the number of fuel trucks; 

- Maximize the fuel flow rate from the trucks; 

- Increase the information given to the truck drivers; 
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- Implement a more liberal hot pit policy; 

- Lower the maximum amount of fuel that trucks carry toward 4,500 gallons; 

- Increase the minimum amount of fuel that trucks carry toward 1,000 gallons. 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

The objective of this thesis was to identify, analyze and propose a portfolio of 

solutions to reduce refueling delays at NAS Oceana, by changing policy, and/or materiel 

resources.  The results of this study identify several existing alternatives that should 

reduce the time that customer aircraft wait for fuel. 

We conclude from our analysis that the ‘best’ actions from a statistical point of 

view (without regard to costs) are, in order: 

1) Increase the number of fuel trucks; 

2) Ensure trucks deliver fuel at the maximum allowable rate (i.e. 150 gpm); 

3) Ensure that truck drivers have demand information as early as practicable; 

4) Consider increased use of hot-pits. 

We understand some actions, such as increasing the number of fuel trucks and 

drivers comes at a monetary cost, while other actions are essentially no-cost and we can 

broadly compare anticipated effects.  Of particular interest is the “Value of Information”.  

Figure 10 describes the effect that this has on system performance.  In all cases, the value 

of information shortens the expected waiting time; in some cases, dramatically. 
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Figure 10.   The difference between information-sharing and no information-sharing, 
regardless of system configuration.  Results for all cases are shown here.  
We see that providing fuel truck drivers in advance with the amount of fuel 
that each aircraft needs has a limited but noticeable impact on system 
performance, or delay in the aircraft queue (shown as the vertical axis).  
This is attributable to reducing the amount of time that fuel trucks expend 
driving to an aircraft’s location instead of refilling.  Note that the plot area 
is slightly truncated at the upper boundary and highly truncated at the right 
boundary to make the graph viewable. 

Incorporating costs, we recommend the leadership at NAS Oceana consider the 

following actions: 

1. Ensure that each mobile refueling truck and each driver is equipped to 

consistently and safely deliver jet fuel near the practicable limit of 150 gpm.  

This action should require minimal additional cost. 
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2. Create a standard operating procedure requiring that a member of either the 

aircrew or maintenance personnel (as appropriate) provide a quality estimate 

for the amount of fuel required to the truck dispatcher with adequate lead 

time, so that each fuel truck driver can anticipate requirements.  This action 

also should not require additional cost. 

3. Re-evaluate the current hot pit policy, which limits total hot pit events at 20% 

or less of all events.  Previous analyses considered the costs of fuel burned in 

the hot pits, but did not consider the potential time savings.  Our analysis 

estimates that increasing hot pit usage by 7% will be operationally equivalent 

to adding another truck.  Ultimately, naval aviation leaders will evaluate the 

tradeoffs between waiting and fuel burned by idling hot pit customers. 

B. FUTURE WORK 

Our analysis considered only one month’s worth of observations.  Additional 

observations of the aircraft arrival and fuel demand patterns at NAS Oceana would 

provide a more comprehensive dataset to account for monthly and seasonal trends, if any.  

This effort would also be needed for model validation. 

In order to simplify and run our model, we treat refueling truck transit times as a 

fixed estimate and constant throughout every case.  In reality truck transit times vary 

depending on the distance that each fuel truck travels.  Studying the behavior of the 

refueling queue with varying truck transit times should provide additional insight into 

best practices for aircraft refueling. 

Evaluating the merits of acquiring some small number of trucks with greater fuel 

capacity to handle extremely large fuel demands is another area that deserves further 

exploration. 

Finally, understanding the cost of aircraft waiting is an open area for research. 
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APPENDIX A. SAMPLE OF FUELS DIVISION OFFICER’S 
MONTHLY FUELS REPORT FOR OCTOBER 2011 

DATE 

TIME 
CALLED 

IN TYPE SQDN ARRIVAL START FINISH GALLONS REMARKS 
WAIT 
TIME 

2 07:47 C9 56 07:53 07:54 08:13 1669   0:06 
3 05:43 S 103 05:53 05:57 06:17 1378   0:10 
3 05:43 S 103 06:18 06:20 06:39 1407   0:35 
3 05:44 S 103 05:56 05:57 06:17 1584   0:12 
3 05:44 S 103 06:18 06:20 06:37 1486   0:34 
3 05:44 S 103 05:57 06:05 06:21 1744   0:13 
3 05:45 S 11 06:22 06:23 06:41 1759   0:37 
3 07:22 T34 SFWSL 07:33 07:33 07:35 57   0:11 
3 07:30 R 37 07:39 07:40 07:48 243   0:09 
3 07:30 R 37 07:48 07:48 07:53 26   0:18 
3 07:30 R 37 07:53 07:53 07:57 31   0:23 
3 08:02 S 211 08:10 08:10 08:59 1794   0:08 
3 09:10 R 37 09:14 09:14 09:27 1245   0:04 
3 09:27 R 131 09:38 09:38 09:41 115   0:11 
3 10:32 S 32 10:37 10:37 10:42 239   0:05 
3 10:33 S 143 10:43 10:43 10:56 499   0:10 
3 10:49 S 105 11:07 11:07 11:30 2203   0:18 
3 10:50 S 105 11:06 11:07 11:25 2196   0:16 
3 10:50 S 105 11:26 11:26 11:42 1671   0:36 
3 11:04 S 32 12:21 12:21 12:38 1963   1:17 
3 14:10 S 143 14:17 14:17 14:41 2242   0:07 
3 14:11 S 143 14:41 14:41 15:01 2048   0:30 
3 14:11 S 143 14:19 14:19 14:42 2022   0:08 
3 14:11 S 143 14:42 14:42 15:00 1709   0:31 
3 14:12 S 143 14:29 14:29 14:47 1703   0:17 
3 14:12 R 37 14:55 14:55 15:12 1502   0:43 
3 14:13 R 37 14:23 14:23 14:51 1424   0:10 
3 14:22 S 105 15:29 15:29 15:33 2053   1:07 
3 14:23 S 105 15:29 15:30 15:49 2518   1:06 
3 14:23 S 105 14:58 14:58 15:37 2140   0:35 
3 14:23 S 105 15:29 15:30 15:48 2265   1:06 
3 14:24 S 32 16:40 16:40 16:53 2116   2:16 
3 14:24 S 32 16:04 16:06 16:10 1915   1:40 
3 14:25 S 32 15:32 15:51 15:53 1787   1:07 
3 14:26 S 136 16:13 16:33 16:34 449   1:47 
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