
'

&

$

%

Maude2PVS

Sam Owre

owre@csl.sri.com

URL: http://www.csl.sri.com/~owre/

Computer Science Laboratory

SRI International

Menlo Park, CA

January 29, 2007

Sam Owre Maude2PVS: 1



'

&

$

%

Protocols in Maude

• Maude provides an expressive language which is

convenient for prototyping, search, and model checking

• This makes it quite good for prototyping protocols, for

example, Strand Spaces

• There are extensions to Maude that provide some

formal method support, but they are limited:

◦ No quantifiers

◦ No support for higher-order terms, in particular

induction

◦ No support for developing complex proofs

Sam Owre Maude2PVS: 2



'

&

$

%

Maude and PVS

• There have been many suggestions in the past to

integrate Maude and PVS:

◦ Using Maude as a proof rewrite rule

◦ Generating Maude executable specifications from

the PVS ground evaluator

◦ Translating Maude specifications to PVS

• Translating to PVS allows prototypes to be developed

and tested in Maude, then translated to PVS for proof,

both for specific protocols and for the meta-theory

Sam Owre Maude2PVS: 3



'

&

$

%

Contents

• Introduction to Maude

• Introduction to PVS

• Overall Design

• Some Translations

• Current Status

• Future Work

Sam Owre Maude2PVS: 4



'

&

$

%

Introduction to Maude

• Maude is based on rewriting logic

• Because of this, Maude may be used for programming,

specification, and verification

• Maude is declarative, with both a mathematical and

operational semantics

Sam Owre Maude2PVS: 5



'

&

$

%

Maude Specifications

• Modules - these are the basic units of Maude
specifications. There are two kinds:

Functional modules - represent equational theories

System modules - represent concurrent programs

• Types - the Maude type system is based on
order-sorted algebra

Sorts - the basic types

Subsorts - subsets of Sorts

Kinds - intuitively correspond to “error supertypes”; allow for

partial operations

Sam Owre Maude2PVS: 6



'

&

$

%

Maude Specifications (cont)

• Operators - each operation in Maude is declared with a

name, signature, and optional set of attributes

• Equations - equational axioms, used for rewriting. May

be conditional

• Memberships - state that a term has a given sort. May

be conditional.

• Rules - used in system modules to specify state

transformations

Sam Owre Maude2PVS: 7



'

&

$

%

Example Maude Specification

fmod ATOM-SET is

inc SUBST .

pr NAT .

sorts AtomSet .

subsort Atom < AtomSet .

var sb : Subst .

var ams : AtomSet .

var atm : Atom .

vars tm0 tm1 : Message .

var ktm : Key .

op none : -> AtomSet .

op __ : AtomSet AtomSet -> AtomSet [ctor assoc comm id: none] .

Sam Owre Maude2PVS: 8



'

&

$

%

Example Maude Specification (cont)

eq atm atm = atm .

op _[_] : AtomSet Subst -> AtomSet .

eq (none).AtomSet [sb] = (none).AtomSet .

eq (atm ams)[sb] = (atm[sb]) (ams[sb]) .

op size : AtomSet -> Nat .

eq size(none) = 0 .

eq size(atm ams) = s size(ams) .

op member : Atom AtomSet -> Bool .

eq member(atm, atm ams) = true .

eq member(atm, ams) = false [owise] .

op atoms : Message -> AtomSet .

eq atoms(atm) = atm .

eq atoms((tm0, tm1)) = (atoms(tm0) atoms(tm1)) .

eq atoms(tm0ktm) = (ktm atoms(tm0)) .

endfm

Sam Owre Maude2PVS: 9



'

&

$

%

Introduction to PVS

• PVS is a comprehensive verification system with an

expressive language, powerful theorem prover,

Emacs-based user interface, and many other

components

• The language is based on higher-order type theory, with

support for functions, tuples, records, cotuples,

predicate subtypes, dependent types, and inductive

data types

• Typechecking is undecidable, and leads to proof

obligations, called Type correctness conditions (TCCs)

Sam Owre Maude2PVS: 10



'

&

$

%

PVS Specifications

• Specifications consist of a collection of theories, each

of which primarily consists of types, constants, and

formulas

• Theories my be parametrized with types or constants

• Theories may import other theories, providing instances

for the parameters

Sam Owre Maude2PVS: 11



'

&

$

%

Example PVS Theory

group[G: TYPE+]: THEORY

BEGIN

a, b, c: VAR G

0: G

+(a, b): G

-(a): G

ax1: AXIOM a + 0 = a

ax2: AXIOM a + (b + c) = (a + b) + c

ax3: AXIOM a + -a = 0

inv_plus: LEMMA -a + a = 0

zero_plus: LEMMA 0 + a = a

END group

Sam Owre Maude2PVS: 12



'

&

$

%

Overall Design of Maude2PVS

• Maude has very useful reflective capabilities

• Parsing a Maude specification from outside would be

very difficult

• For these reasons, this tool is written in Maude

Sam Owre Maude2PVS: 13



'

&

$

%

Translations

• Identifiers

• Sorts

• Modules

• Operators

• Equations

• Conditional Equations

• Operator Attributes

• Equation Attributes

Sam Owre Maude2PVS: 14



'

&

$

%

Identifiers

• Maude has a very flexible syntax, allowing the user to

declare prefix, infix, mixfix, and even “invisible”

operators

• For example, list append is often declared in the form

: List List -> List

• Then L1 appended to L2 is written L1 L2 or (L1, L2)

• Fortunately, the latter form is what is found at the

meta (reflective) level

Sam Owre Maude2PVS: 15



'

&

$

%

Mapping Identifiers

• PVS has more restricted identifiers, as well as keywords

- similar to conventional programming languages

• Maude2PVS maps identifiers in stages:

1. look up the identifier in a user-provided identifier

map

2. otherwise check if it is a valid PVS id:

◦ if it is, then check if it is a PVS keyword and

name it apart by appending ’ ’

◦ if not, translate ’-’ and ’’’ to ’ ’ in the identifier

• The result still may not parse in PVS, but it should be

easy to determine identifiers that should be added to

the map

Sam Owre Maude2PVS: 16



'

&

$

%

Types

• Sorts and subsorts are very similar to the PVS notion

of type and subtype

• But there are some subtle differences:

◦ PVS subtypes have associated predicates -

operators applied to terms not known to be of the

associated subtype lead to proof obligations

◦ Maude does not enforce subsorts on operators

◦ Sorts form a lattice, as in PVS - however, unlike

PVS, initially disjoint sorts may later be connected

Sam Owre Maude2PVS: 17



'

&

$

%

Translating Types

• We translate Maude kinds into uninterpreted

(nonempty) PVS types

• Sorts are mapped to (nonempty) uninterpreted

subtypes

• Example:

sorts Name Key Nonce Text Atom Message .

subsorts Name Key Nonce Text < Atom < Message .

• Maps to:

Message: TYPE+

Atom: TYPE+ FROM Message

Atom?(x: Message): MACRO bool = Atom_pred(x)

Key: TYPE+ FROM Atom

Key?(x: Message): MACRO bool = Atom?(x) and Key_pred(x)

...

Sam Owre Maude2PVS: 18



'

&

$

%

Modules

• Maude functional modules are translated to PVS

theories

• Because newly loaded Maude modules may connect

previously disjoint sorts, the translation should only be

done after all Maude modules have been loaded

• Not even the Maude prelude may be preprocessed, as

the type lattice may change as new modules are loaded

Sam Owre Maude2PVS: 19



'

&

$

%

Operators

• Operators are mapped to PVS constants

• The signature is lifted to the kind level

• This is what Maude does, as experiments show

• Equations do respect (sub)sorts

Sam Owre Maude2PVS: 20



'

&

$

%

Equations

• Equations are mapped to PVS axioms:

eq lookup ((av <- atm) sb, av) = (av <- atm) .

• Maps to:

eq10: AXIOM FORALL (sb: Subst, av: Atom, atm: Atom):

lookup(append(assign(av, atm), sb), av)

= assign(av, atm)

• Conditional equations are simply mapped to a PVS

WHEN expression

Sam Owre Maude2PVS: 21



'

&

$

%

Operator Attributes

• There are a number of attributes associated with
Maude operator declarations:

Current: assoc, comm, idem, id, left id, right id

Future: ditto, iter, ctor, metadata

Ignored: poly, obj, msg, memo, strat, special, format, frozen,

prec, gather, config

• The currently supported attributes lead to
straightforward PVS axioms:

op __ : Subst Subst -> Subst [ctor assoc comm id: none] .

• Maps to:

append_assoc: AXIOM associative?(append)

append_comm: AXIOM commutative?(append)

append_id: AXIOM identity?(append)(none)

Sam Owre Maude2PVS: 22



'

&

$

%

Equation Attributes

• Equation attributes include nonexec, otherwise,

metadata, and label

• otherwise (owise) is translated to a conditional

equation in PVS

• Example:

eq member(atm, atm ams) = true .

eq member(atm, ams) = false [owise] .

• translates to:

eq6: FORALL (atm: Atom, ams: AtomSet):

member(atm, append(atm, ams)) = true

eq7: FORALL (atm: Atom, ams: AtomSet):

(NOT EXISTS (atm1: Atom, ams1: AtomSet):

member(atm, ams) = member(atm1, append(atm1, ams1)))

IMPLIES member(atm, ams) = false

Sam Owre Maude2PVS: 23



'

&

$

%

Translation and Proof Obligations

• The translation not only allows reasoning about the

Maude specification, but should generate various proof

obligations

• For example, modules may be imported using

including, protecting, or extending

• Each entails constraints that are up to the user to prove

• Details have not been worked out, but the translation

should be able to generate these obligations

Sam Owre Maude2PVS: 24



'

&

$

%

Difficulties in Using the Translation

• In general, the generated theories will be difficult to use

and reason about directly in PVS

• Axioms generated from owise equations will be

especially difficult to use as they involve existential

conditions that must be checked

• The translation is fairly direct, but makes little use of

some advanced features of PVS: abstract datatypes,

(recursive) definitions, dependent types, judgements,

etc.

Sam Owre Maude2PVS: 25



'

&

$

%

Theory Interpretations

• The solution is to develop a PVS specification

separately, making use of all the features of PVS

• Then show that specification is a theory interpretation

of the Maude specification

• Under the interpretation, axioms are mapped to proof

obligations

• Discharging these guarantees that the interpretation is

sound

• Of course, this does not say anything about the

Maude2PVS translation, which must be verified by hand

Sam Owre Maude2PVS: 26



'

&

$

%

Current Status

• Muade2PVS is currently able to translate part of the

Strand Space specification developed by Carolyn

Talcott

• This is driving the development, giving priority to the

Maude constructs actually used

• This includes the Identifier translations, operators,

sorts, and (conditional) equations

• Currently working on owise equations

Sam Owre Maude2PVS: 27



'

&

$

%

Future Work

• System modules

• Getting the generated string into a PVS file - probably

using the LOOP-MODE module

• Extending the attribute list to include PVS specific

annotations:

◦ Mapping sorts to existing PVS types and datatypes

◦ Mapping to an existing operator rather than

creating a new one

Sam Owre Maude2PVS: 28


