Maude2PVS

Sam Owre
owre@csl.sri.com
URL: http://www.csl.sri.com/~owre/

Computer Science Laboratory
SRI International
Menlo Park, CA
January 29, 2007
Protocols in Maude

- **Maude** provides an expressive language which is convenient for prototyping, search, and model checking.

- This makes it quite good for prototyping protocols, for example, *Strand Spaces*.

- There are extensions to Maude that provide some formal method support, but they are limited:
 - No quantifiers
 - No support for higher-order terms, in particular induction
 - No support for developing complex proofs
There have been many suggestions in the past to integrate Maude and PVS:

- Using Maude as a proof rewrite rule
- Generating Maude executable specifications from the PVS ground evaluator
- Translating Maude specifications to PVS

Translating to PVS allows prototypes to be developed and tested in Maude, then translated to PVS for proof, both for specific protocols and for the meta-theory.
• Introduction to Maude

• Introduction to PVS

• Overall Design

• Some Translations

• Current Status

• Future Work
• Maude is based on rewriting logic

• Because of this, Maude may be used for programming, specification, and verification

• Maude is declarative, with both a mathematical and operational semantics
Maude Specifications

- **Modules** - these are the basic units of Maude specifications. There are two kinds:
 - **Functional modules** - represent equational theories
 - **System modules** - represent concurrent programs

- **Types** - the Maude type system is based on order-sorted algebra
 - **Sorts** - the basic types
 - **Subsorts** - subsets of Sorts
 - **Kinds** - intuitively correspond to “error supertypes”; allow for partial operations
Maude Specifications (cont)

- **Operators** - each operation in Maude is declared with a name, signature, and optional set of attributes

- **Equations** - equational axioms, used for rewriting. May be conditional

- **Memberships** - state that a term has a given sort. May be conditional.

- **Rules** - used in system modules to specify state transformations
fmod ATOM-SET is
 inc SUBST .
 pr NAT .

 sortsAtomSet .
 subsort Atom < AtomSet .

 var sb : Subst .
 var ams : AtomSet .
 var atm : Atom .
 vars tm0 tm1 : Message .
 var ktm : Key .

 op none : -> AtomSet .
 op __ : AtomSet AtomSet -> AtomSet [ctor assoc comm id: none] .
Example Maude Specification (cont)

eq atm atm = atm .
op _[] : AtomSet Subst -> AtomSet .
eq (atm ams)[sb] = (atm[sb]) (ams[sb]) .

op size : AtomSet -> Nat .
eq size(none) = 0 .
eq size(atm ams) = s size(ams) .

op member : Atom AtomSet -> Bool .
eq member(atm, atm ams) = true .
eq member(atm, ams) = false [owise] .

op atoms : Message -> AtomSet .
eq atoms(atm) = atm .
eq atoms((tm0, tm1)) = (atoms(tm0) atoms(tm1)) .
eq atoms(tm0ktm) = (ktm atoms(tm0)) .

def
• **PVS** is a comprehensive verification system with an expressive language, powerful theorem prover, Emacs-based user interface, and many other components

• The language is based on higher-order type theory, with support for functions, tuples, records, cotuples, predicate subtypes, dependent types, and inductive data types

• Typechecking is undecidable, and leads to proof obligations, called *Type correctness conditions* (TCCs)
Specifications consist of a collection of *theories*, each of which primarily consists of types, constants, and formulas.

- Theories may be parametrized with types or constants.
- Theories may import other theories, providing instances for the parameters.
Example PVS Theory

\begin{verbatim}
group[G: TYPE+]: THEORY
BEGIN
 a, b, c: VAR G

 0: G
 +(a, b): G
 -(a): G

 ax1: AXIOM a + 0 = a
 ax2: AXIOM a + (b + c) = (a + b) + c
 ax3: AXIOM a + -a = 0
 inv_plus: LEMMA -a + a = 0
 zero_plus: LEMMA 0 + a = a
END group
\end{verbatim}
Overall Design of Maude2PVS

- Maude has very useful reflective capabilities
- Parsing a Maude specification from outside would be very difficult
- For these reasons, this tool is written in Maude
Translations

- Identifiers
- Sorts
- Modules
- Operators
- Equations
- Conditional Equations
- Operator Attributes
- Equation Attributes
• Maude has a very flexible syntax, allowing the user to declare prefix, infix, mixfix, and even “invisible” operators

• For example, list append is often declared in the form
 _ : List List -> List

• Then \texttt{L1} appended to \texttt{L2} is written \texttt{L1 L2} or \texttt{_}(\texttt{L1, L2})

• Fortunately, the latter form is what is found at the meta (reflective) level
• PVS has more restricted identifiers, as well as keywords - similar to conventional programming languages

• Maude2PVS maps identifiers in stages:
 1. look up the identifier in a user-provided identifier map
 2. otherwise check if it is a valid PVS id:
 ○ if it is, then check if it is a PVS keyword and name it apart by appending '_'
 ○ if not, translate '−' and '‘' to '_' in the identifier

• The result still may not parse in PVS, but it should be easy to determine identifiers that should be added to the map
Types

- Sorts and subsorts are very similar to the PVS notion of type and subtype

- But there are some subtle differences:
 - PVS subtypes have associated predicates - operators applied to terms not known to be of the associated subtype lead to proof obligations
 - Maude does not enforce subsorts on operators
 - Sorts form a lattice, as in PVS - however, unlike PVS, initially disjoint sorts may later be connected
Translating Types

• We translate Maude kinds into uninterpreted (nonempty) PVS types

• Sorts are mapped to (nonempty) uninterpreted subtypes

• Example:

 sorts Name Key Nonce Text Atom Message .
 subsorts Name Key Nonce Text < Atom < Message .

• Maps to:

 Message: TYPE+
 Atom: TYPE+ FROM Message
 Atom?(x: Message): MACRO bool = Atom_pred(x)
 Key: TYPE+ FROM Atom
 Key?(x: Message): MACRO bool = Atom?(x) and Key_pred(x)
 ...
• Maude functional modules are translated to PVS theories

• Because newly loaded Maude modules may connect previously disjoint sorts, the translation should only be done after all Maude modules have been loaded

• Not even the Maude *prelude* may be preprocessed, as the type lattice may change as new modules are loaded
Operators

• Operators are mapped to PVS constants

• The signature is \textit{lifted} to the kind level

• This is what Maude does, as experiments show

• Equations do respect (sub)sorts
Equations

- Equations are mapped to PVS axioms:

 \[
 \text{eq lookup } ((\text{av } \leftarrow \text{atm}) \ sb, \ \text{av}) = (\text{av } \leftarrow \text{atm})
 \]

- Maps to:

 \[
 \text{eq10: AXIOM FORALL (sb: Subst, av: Atom, atm: Atom):}

 \text{lookup(append(assign(av, atm), sb), av) = assign(av, atm)}
 \]

- Conditional equations are simply mapped to a PVS \text{WHEN} expression
There are a number of attributes associated with Maude operator declarations:

- **Current:** assoc, comm, idem, id, left id, right id
- **Future:** ditto, iter, ctor, metadata
- **Ignored:** poly, obj, msg, memo, strat, special, format, frozen, prec, gather, config

The currently supported attributes lead to straightforward PVS axioms:

```
  op __ : Subst Subst -> Subst [ctor assoc comm id: none] .
```

Maps to:

- `append_assoc: AXIOM associative?(append)`
- `append_comm: AXIOM commutative?(append)`
- `append_id: AXIOM identity?(append)(none)}`
• Equation attributes include nonexec, otherwise, metadata, and label

• otherwise (ewise) is translated to a conditional equation in PVS

• Example:

 eq member(atm, atm ams) = true .
 eq member(atm, ams) = false [ewise] .

• translates to:

 eq6: FORALL (atm: Atom, ams: AtomSet):
 member(atm, append(atm, ams)) = true
 eq7: FORALL (atm: Atom, ams: AtomSet):
 (NOT EXISTS (atm1: Atom, ams1: AtomSet):
 member(atm, ams) = member(atm1, append(atm1, ams1)))
 IMPLIES member(atm, ams) = false
Translation and Proof Obligations

- The translation not only allows reasoning about the Maude specification, but should generate various proof obligations

- For example, modules may be imported using `including`, `protecting`, or `extending`

- Each entails constraints that are up to the user to prove

- Details have not been worked out, but the translation should be able to generate these obligations
Difficulties in Using the Translation

- In general, the generated theories will be difficult to use and reason about directly in PVS.

- Axioms generated from *owise* equations will be especially difficult to use as they involve existential conditions that must be checked.

- The translation is fairly direct, but makes little use of some advanced features of PVS: abstract datatypes, (recursive) definitions, dependent types, judgements, etc.
Theory Interpretations

- The solution is to develop a PVS specification separately, making use of all the features of PVS.

- Then show that specification is a *theory interpretation* of the Maude specification.

- Under the interpretation, axioms are mapped to proof obligations.

- Discharging these guarantees that the interpretation is sound.

- Of course, this does not say anything about the Maude2PVS translation, which must be verified by hand.
- **Muade2PVS** is currently able to translate part of the Strand Space specification developed by Carolyn Talcott

- This is driving the development, giving priority to the Maude constructs actually used

- This includes the Identifier translations, operators, sorts, and (conditional) equations

- Currently working on **owise** equations
Future Work

- System modules

- Getting the generated string into a PVS file - probably using the \texttt{LOOP-MODE} module

- Extending the attribute list to include PVS specific annotations:
 - Mapping sorts to existing PVS types and datatypes
 - Mapping to an existing operator rather than creating a new one