Separating Search from Algebra in CPSA

Joshua D. Guttman
Jonathan K. Millen
John D. Ramsdell
Ariel Segall

Supported by the National Security Agency

http://www.ccs.neu.edu/home/guttman
CPSA Algorithm

\[\mathcal{F} := \{A_0\}; \quad \text{shapes} := \emptyset; \quad \text{seen} := \mathcal{F}; \]

while \(\mathcal{F} \neq \emptyset \) begin

\[A := \text{select}(\mathcal{F}); \quad \mathcal{F} := \mathcal{F} \setminus \{A\}; \]

if redundant_strand(\(A\)) then continue
else if (n:=unsolved_node(\(A\)))

then begin

let new = targets(get_cohort(n, A)) \ seen in \(\mathcal{F} := \mathcal{F} \cup \text{new}; \)
\(\mathcal{F} := \mathcal{F} \setminus (\text{filter dead } \mathcal{F}); \)
\(\text{seen} := \text{seen} \cup \text{new} \)

end
else /* \(A\) realized */

\(\text{shapes} := \text{shapes} \cup \text{min_real}_{A_0}(A) \)

end;

return \(\text{shapes} \)
Yahalom Protocol, 1

\[
\begin{align*}
\text{Init} & \quad \rightarrow \\
A, \ N_a & \\
\downarrow & \\
\{B, \ K, \ N_a, \ N_b\}_{\text{ltk}(A)} & \\
\downarrow & \\
\bullet & \\
\downarrow & \\
\{N_b\}_K & \\
\end{align*}
\]

\[
\begin{align*}
\text{Resp} & \\
A, \ N_a & \\
\downarrow & \\
\{A, \ N_a, \ N_b\}_{\text{ltk}(B)} & \\
\downarrow & \\
\bullet & \\
\downarrow & \\
\{A, \ K\}_{\text{ltk}(B)} & \\
\downarrow & \\
\bullet & \\
\downarrow & \\
\{N_b\}_K & \\
\end{align*}
\]
Yahalom Protocol, 2

\[\{ B, K, N_a, N_b \}_{\text{ltk}(A)} \]

\[\{ A, N_a, N_b \}_{\text{ltk}(B)} \]

\[\{ A, K \}_{\text{ltk}(B)} \]
Partial Information about Executions

\[a, n_a \rightarrow \text{Resp } b \]

\[b, \{a, n_a, n_b\}_{\text{ltk}(b)} \rightarrow \cdot \]

\[\{a, k\}_{\text{ltk}(b)} \rightarrow \cdot \]

\[\{n_b\}_k \rightarrow \cdot \]
Partial Information about Executions

\[a, n_a \rightarrow \text{Resp } b \]
\[b, \{a, n_a, n_b\}_{ltk(b)} \]
\[\{a, k\}_{ltk(b)} \]
\[\{n_b\}_k \]

- \(ltk(a), ltk(b) \) uncompromised
- \(n_b \) freshly chosen
Partial Information about Executions

- $\operatorname{ltk}(a)$, $\operatorname{ltk}(b)$ uncompromised \hspace{1cm} keys used only
- n_b freshly chosen \hspace{1cm} according to protocol
n_b Transformed \hspace{1cm} \text{ltk}(a), \text{ltk}(b) \in \text{non}, \hspace{0.5cm} n_b \in \text{unique}$

n_b occurs only within $\{|a, \ n_a, \ n_b\}_{\text{ltk}(b)}$ above line

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {$a, \ n_a$}; \node (b) at (1.5,-1) {$b, \ \{|a, \ n_a, \ n_b\}_{\text{ltk}(b)}$}; \node (c) at (3.5,-1) {$\{|a, \ k\}_{\text{ltk}(b)}$}; \node (d) at (6,-1) {$\{|n_b\}_k$}; \node (resp) at (3,0) {Resp b};
\draw (a) -- (b); \draw (b) -- (c); \draw (c) -- (d); \draw (a) -- (resp); \draw (b) -- (resp); \draw (c) -- (resp); \draw (d) -- (resp);
\end{tikzpicture}
\end{center}
Either Regular Transformer... \(\text{ltk}(a), \text{ltk}(b) \in \text{non}, \ k', n_b \in \text{unique} \)

\(n_b \) occurs only within \(\{A, \ N_a, \ N_b\}_{\text{ltk}(B)} \) above line
... Or $\text{ltk}(b)$ is Compromised

- $\text{ltk}(b)$ documents assumed compromise

\[\begin{align*}
\text{ltk}(b) & \leftrightarrow \text{Resp } b \\
\{a, n_a\} & \rightarrow \text{ltk}(b) \\
\{a, n_a, n_b\} & \rightarrow \text{ltk}(b) \\
\{a, k\} & \rightarrow \text{ltk}(b) \\
\{n_b\} & \rightarrow \text{ltk}(b) \\
\end{align*} \]

$ltk(a), ltk(b) \in \text{non}, \quad n_b \in \text{unique}$
... Or $\text{ltk}(b)$ is Compromised

- $\text{ltk}(b)$ documents assumed compromise

Impossible, because $\text{ltk}(b)$ assumed uncompromised
So: Only Regular Transformer

$ltk(a), ltk(b) \in \text{non}, \quad k', n_b \in \text{unique}$

n_b occurs only within $\{a, n_a, n_b\}_{ltk(b)}$ above line
So: Only Regular Transformer

$ltk(a), ltk(b) \in \text{non}, \ k', n_b \in \text{unique}$

n_b occurs only within $\{a, n_a, n_b\}_{ltk(b)}$ above line

How did we find $Serv$ with parameters a, b, n_a, n_b, k'?
So: Only Regular Transformer \(\text{ltk}(a), \text{ltk}(b) \in \text{non}, \ k', n_b \in \text{unique} \)

\(n_b \) occurs only within \(\{a, n_a, n_b\}_{\text{ltk}(b)} \) above line

How did we find \(\text{Serv} \) with parameters \(a, b, n_a, n_b, k' \)?

By unification
Unify Against Roles, 1

Role must receive msg unifying with \{a, n_a, n_b\}_{ltk(b)}
then emit \(n_b\) transformed
Role must receive msg unifying with \{a, n_a, n_b\}_{ltk(b)}
then emit n_b transformed
Unify Against Roles, 2

Role must **receive** msg unifying with $\{a, n_a, n_b\}_{\text{ltk}(b)}$
then **emit** n_b transformed
Succeeds with $[A \mapsto a, B \mapsto b, N_a \mapsto n_a, N_b \mapsto n_b]$
Unify Against Roles, 2

Role must receive msg unifying with \[\{a, n_a, n_b\}\text{ltk}(b)\]
then emit \(n_b\) transformed
Succeeds with \([A \mapsto a, B \mapsto b, N_a \mapsto n_a, N_b \mapsto n_b]\)

Note that \(K\) is unconstrained
k': New Variable \[\text{ltk}(a), \text{ltk}(b) \in \text{non}, \quad k', n_b \in \text{unique}\]

n_b occurs only within \(\{a, n_a, n_b\}\) above line

\[\begin{align*}
\{b, k', n_a, n_b\}_{\text{ltk}(a)} & \quad \text{Serv} \quad \{a, n_a, n_b\}_{\text{ltk}(b)} \\
\{a, k\}_{\text{ltk}(b)} & \quad \{n_b\}_k
\end{align*}\]
\(n_b \) Transformed Again

\[\text{ltk}(a), \text{ltk}(b) \in \text{non}, \quad k', n_b \in \text{unique} \]

\(n_b \) occurs only within \(\{a, n_a, n_b\}_{\text{ltk}(b)}, \{b, k', n_a, n_b\}_{\text{ltk}(a)} \)

above line

Either \(\text{ltk}(a) \) is compromised, or must unify again
Branch: $\text{ltk}(a)$ Compromised

$l\text{tk}(a), l\text{tk}(b) \in \text{non}, \quad k', n_b \in \text{unique}$

n_b occurs only within $\{a, n_a, n_b\}_{l\text{tk}(b)}, \{b, k', n_a, n_b\}_{l\text{tk}(a)}$

above line

This branch is also a dead end, since $l\text{tk}(a)$ assumed uncompromised
Unify Against Roles, 2

Role must receive msg unifying with

\[
\{ a, n_a, n_b \}_{ltk(b)}, \{ b, k', n_a, n_b \}_{ltk(a)}
\]

then emit \(n_b \) outside those messages
Unify Against Roles, 2

Role must receive msg unifying with

\[S = \{ \{a, n_a, n_b\}_{ltk(b)}, \{b, k', n_a, n_b\}_{ltk(a)} : k' \in \text{keys} \} \]

then emit \(n_b \) outside \(S \)
Unify Against Roles, 2

Role must receive msg unifying with

\[S = \{ \{ a, n_a, n_b \}_{\text{ltk}(b)}, \{ b, k', n_a, n_b \}_{\text{ltk}(a)} : k' \in \text{keys} \} \]

then emit \(n_b \) outside \(S \)

So Serv does not qualify
Unify Against Roles, 1

Role must receive msg unifying with

\[S = \{ \{ a, n_a, n_b \}_ltk(b), \{ b, k', n_a, n_b \}_ltk(a) : k' \in \text{keys} \} \]

then emit \(n_b \) outside \(S \)
Role must receive msg unifying with

\[S = \{ \{a, n_a, n_b\}_{\text{ltk}(b)}, \{b, k', n_a, n_b\}_{\text{ltk}(a)} : k' \in \text{keys} \} \]

then emit \(n_b \) outside \(S \)

So Init is only candidate
Only Yahalom Shape for Responder

\[a : s_i \quad \text{\longrightarrow} \quad b : s_r \]

\[s : s_s \quad \text{\longleftarrow} \quad n_0 \]

\[s : s_s \quad \text{\longleftarrow} \quad n_0 \]

\[m_1 \quad \text{\longleftarrow} \quad \bullet \]

\[m_2 \quad \text{\longleftarrow} \quad \bullet \]

\[n_0 \quad \text{\longleftarrow} \quad n_1 \]

\[n_0 \quad \text{\longleftarrow} \quad n_2 \]

\[a, b, n_a, n_b, k \quad \text{\longleftarrow} \quad a, b, n_a, n_b, k \quad \text{\longleftarrow} \quad a, b, n_a, n_b, k \]

Authenticates \(a, s \) to \(b \)
Reading Off Secrecy

\[\text{ltk}(a), \text{ltk}(b) \in \text{non}, \quad k', n_b \in \text{unique} \]

Dead end: validates secrecy of \(k \)
Augmentation Theorem

If a state requires transformation, one of the following applies:

- A transforming instance of some role must be added
 e.g. unifying instances of Serv, Init ;
Augmentation Theorem

If a state requires transformation, one of the following applies:

- A transforming instance of some role must be added
 e.g. unifying instances of Serv, Init;
- A compromised key must be recorded
 e.g. compromised keys ltk(b) ← , ltk(a) ←; or
Augmentation Theorem

If a state requires transformation, one of the following applies:

- A transforming instance of some role must be added
e.g. unifying instances of Serv, Init;

- A compromised key must be recorded
e.g. compromised keys $\text{ltk}(b), \text{ltk}(a)$; or

- Variables must be fused
e.g. session keys k, k'
Augmentation Theorem

If a state requires transformation, one of the following applies:

- A transforming instance of some role must be added
 e.g. unifying instances of Serv, Init;
- A compromised key must be recorded
 e.g. compromised keys \leftrightarrow, \leftrightarrow; or
- Variables must be fused
 e.g. session keys k, k'

Set of possible solutions
for one required transformation: cohort
Augmentation Theorem

If a state requires transformation, one of the following applies:

■ A transforming instance of some role must be added
e.g. unifying instances of Serv, Init ;

■ A compromised key must be recorded
e.g. compromised keys \(\text{ltk}(b) \leftarrow, \text{ltk}(a) \leftarrow \); or

■ Variables must be fused
e.g. session keys \(k, k' \)

Set of possible solutions
for one required transformation: cohort

If state does not require transformation, it’s realized
CPSA Algorithm

\[\mathcal{F} := \{A_0\}; \quad \text{shapes} := \emptyset; \quad \text{seen} := \mathcal{F}; \]
while \(\mathcal{F} \neq \emptyset \) begin
\[A := \text{select}(\mathcal{F}); \quad \mathcal{F} := \mathcal{F} \setminus \{A\}; \]
if redundant_strand(\(A \)) then continue
else if \((n:=\text{unsolved_node}(A))\)
then begin
let new = targets(get_cohort\((n, A)\)) \(\setminus \text{seen} \) in
\[\mathcal{F} := \mathcal{F} \cup \text{new}; \]
\[\mathcal{F} := \mathcal{F} \setminus (\text{filter dead } \mathcal{F}); \]
\text{seen} := \text{seen} \cup \text{new}
end
else /* \(A \) realized */
\[\text{shapes} := \text{shapes} \cup \text{min_real}_{A_0}(A); \]
end;
return \text{shapes}
Unsolved Outgoing Node

Negative node n is an **unsolved outgoing** node for a, S in \mathbb{A} if:

$$a \in \text{unique}_\mathbb{A} \text{ occurs outside } S \text{ in } \text{msg}(n),$$

but for all $m \prec_\mathbb{A} n$, a occurs only within S in $\text{msg}(m)$,

and $\text{used}(S)^{-1} \subseteq \text{non}_\mathbb{A} \cup \text{unique}_\mathbb{A}$

where

$$S \text{ is a set of encryptions } \{|t|\}_K$$

$$\text{used}(S)^{-1} = \{K^{-1} : \{|t|\}_K \in S, \text{ for some } t\}$$
Solving an Outgoing Node

If n unsolved, outgoing for a, S in A, the solutions for n, a, S are:

1. Regular strands that receive a only within S, then transmit a outside S;
2. Listener strands that “hear” some key $K \in \text{used}(S)^{-1} \cap \text{unique}_A$
3. Contractions α such that $t \cdot \alpha$ no longer occurs outside $S \cdot \alpha$ in $\text{msg}(n) \cdot \alpha$
Unsolved Incoming Node

Negative node n is an unsolved incoming node for t, S in A if:

- t occurs outside S in $\text{msg}(n)$,
- but for all $m \prec_A n$, t occurs only within S in $\text{msg}(m)$,
- and $K_0, \text{used}(S)^{-1} \subseteq \text{non}_A \cup \text{unique}_A$

where $t = \{t_0\}_{K_0}$
Solving an Incoming Node

If n unsolved, incoming for t, S in \mathbb{A}, the solutions for n, t, S are:

1. Regular strands that receive t only within S (if at all), then transmit t outside S;

2. Listener strands that “hear” some key $K \in \text{used}(S)^{-1} \cap \text{unique}_\mathbb{A}$ or else hear K_0

3. Contractions α such that $t \cdot \alpha$ no longer occurs outside $S \cdot \alpha$ in $\text{msg}(n) \cdot \alpha$

where $t = \{t_0\}_{K_0}$
Get Cohort

1. Unify with roles, finding all transforming edges receiving t only within S, transmitting t outside S

2. Add listener strands for all $K \in \text{used}(S)^{-1} \cap \text{unique}_{\Delta}, K_0$ if incoming

3. Apply contractions that destroy transformation

These embeddings, contractions form a cohort
Dependency on Algebra

- Algebra provides notion of unification
- Algebra provides set of contractions (parameter-reducing replacements)
Dependency on Algebra

- Algebra provides notion of unification
- Algebra provides set of contractions (parameter-reducing replacements)
- Algebra plus adversary model justifies test theorems
 - Every “penetrator web” based on msgs with t only within S
 that produces msg with t outside S
 consumes some key $K \in \text{used}(S)^{-1} \cap \text{unique}_A$ or K_0
Protocol Analysis

- Cryptographic protocols: (e.g. TLS/SSL, SSH, ...)
 - Authenticated agreement on data values
 - Secrecy for some shared values
 - Freshness (loose synchronization)

short sequences of messages using crypto for the goals:

despite a powerful adversary
Protocol Analysis

- Cryptographic protocols: (e.g. TLS/SSL, SSH, ...) short sequences of messages using crypto for the goals:
 - Authenticated agreement on data values
 - Secrecy for some shared values
 - Freshness (loose synchronization) despite a powerful adversary

- Central mechanism for coordination in distributed systems
Protocol Analysis

- Cryptographic protocols: (e.g. TLS/SSL, SSH, ...)
 short sequences of messages using crypto for the goals:
 - Authenticated agreement on data values
 - Secrecy for some shared values
 - Freshness (loose synchronization)
 despite a powerful adversary

- Central mechanism for coordination in distributed systems

- Protocol analysis tasks:
 - Given a protocol and a goal, check success
 - Given goals, design protocol
 - Match protocol structure with crypto primitives
Current Research State

- Immense body of research using e.g.
 - Logics and rewriting
 - State-based techniques, Hoare logics
 - Process algebras, type systems or model checking
 - Special purpose methods, e.g. **strand spaces**

Secrecy, authentication **undecidable** in general
Current Research State

- Immense body of research using e.g.
 - Logics and rewriting
 - State-based techniques, Hoare logics
 - Process algebras, type systems or model checking
 - Special purpose methods, e.g. strand spaces

Secrecy, authentication undecidable in general

- Tools
 - Given protocol and goal, ensure satisfied
 - Bounded number of sessions or safe approx.
 - Given protocol and goal, find counterexample ("attack")
 - Bounded number of sessions
 - Not much protocol design support
Current Research State

- Immense body of research using e.g.
 - Logics and rewriting
 - State-based techniques, Hoare logics
 - Process algebras, type systems or model checking
 - Special purpose methods, e.g. strand spaces
 Secrecy, authentication undecidable in general

- Tools
 - Given protocol and goal, ensure satisfied
 - Bounded number of sessions or safe approx.
 - Given protocol and goal, find counterexample ("attack")
 - Bounded number of sessions
 - Not much protocol design support

- Intense focus: structure vs. crypto primitives (FCC’07)
Our Contribution

- Cryptographic Protocol Shape Analyzer (CPSA)
 - Given a protocol, tells you what can happen
 - You can read off authentication, secrecy goals
 - Goals achieved
 - Counterexamples/attacks
Our Contribution

- Cryptographic Protocol Shape Analyzer (CPSA)
 - Given a protocol, tells you **what can happen**
 - You can read off **authentication, secrecy** goals
 - Goals achieved
 - Counterexamples/attacks

- But: infinitely many things can happen
Our Contribution

- Cryptographic Protocol Shape Analyzer (CPSA)
 - Given a protocol, tells you what can happen
 - You can read off authentication, secrecy goals
 - Goals achieved
 - Counterexamples/attacks

- But: infinitely many things can happen

- CPSA enumerates the shapes of a protocol: the
 - essentially different
 - minimal
 executions possible for it

- Many protocols have very few shapes
 - E.g. 1 or 2 per initial trust assumption
In Particular

- CPSA search algorithm enumerates all shapes
 - Never represents adversary behavior
 - Manipulates states of partial information about regular behavior

- Each step is information-preserving
 - Maintain or reduce set of executions described
 - Information-preserving maps called homomorphisms
In Particular

- CPSA search algorithm enumerates all shapes
 - Never represents adversary behavior
 - Manipulates states of partial information about regular behavior

- Each step is information-preserving
 - Maintain or reduce set of executions described
 - Information-preserving maps called homomorphisms

- Progress in search means splitting
 - “Every execution described by A_0 is described by either A_1 or A_2 . . . ”
 - Motivated by protocol defn.
 - Progress steps are information-increasing maps, i.e. special homomorphisms $A_0 \mapsto A_1$ and $A_0 \mapsto A_2$, . . .

- Shape notion also defined via homomorphisms
Constructive Penetrator Strands
Destructive Penetrator Strands
Initial Penetrator Strands

Atom

\[a \]
Executions are Bundles

- Causally well founded directed graphs made of
 - Instances of the protocol roles
 - Adversary behaviors

- “Causally well founded” means:
 - Every reception node has in-degree 1
 - Each strand starts at beginning
 - Graph is finite and acyclic
CPSA Algorithm

\[\mathcal{F} := \{ A_0 \}; \quad \text{shapes} := \emptyset; \quad \text{seen} := \mathcal{F}; \]

while \(\mathcal{F} \neq \emptyset \) begin
\[A := \text{select}(\mathcal{F}); \quad \mathcal{F} := \mathcal{F} \setminus \{ A \}; \]

if \(\text{realized}(A) \)
\[\text{then shapes} := \text{shapes} \cup \min_{A_0} \text{real}_A(A); \]
else if \(\text{redundant_strand}(A) \) then continue
else if \(\text{transform_needed}(A) \)
\[\text{then begin} \]
\[\text{let new} = \text{targets} \left(\text{get_cohort}(A) \right) \setminus \text{seen} \in \]
\[\mathcal{F} := \mathcal{F} \cup \text{new}; \]
\[\mathcal{F} := \mathcal{F} \setminus (\text{filter dead } \mathcal{F}); \]
\[\text{seen} := \text{seen} \cup \text{new} \]
\[\text{end} \]
else fail “Impossible.”
\[\text{end}; \]

return shapes
Only Yahalom Shape for Responder

\[b : s_r, \text{ non} = \{\text{ltk}(a), \text{ltk}(b)\}, \text{ unique} = \{n_b\} \]
Protocols and their Shapes

- The shapes of a protocol: the
 - essentially different
 - minimal
eexecutions possible for it
- Shapes contain only regular behavior, not adversary behavior
- Many protocols have very few shapes:
 - Frequently just one
 - Possibly infinitely many
 - From shapes, read off:
 - Authentication and secrecy properties
 - Anomalies (too many/unexpected peers, etc.)
- Implementation: Cryptographic Protocol Shape Analyzer

 http://www.ccs.neu.edu/home/guttman
A Skeleton

\[\{ b, \; k', \; n_a, \; n_b \} \lt k(a) \rightarrow m_0 \]

\[m_0 \rightarrow m_1 \]

\[b, \{ a, \; n_a, \; n_b \} \lt k(b) \rightarrow n_0 \]

\[a, \; n_a \rightarrow \text{Resp} \; b \]

\[\{ a, \; k \} \lt k(b) \rightarrow \bullet \]

\[\{ n_b \} \lt k \rightarrow n_1 \]

\[n_0 \lt m_0, \; m_1 \lt n_1 \]

\[\lt k(a), \; \lt k(b) \in \text{non} \]

\[n_b, \; k' \in \text{unique} \]

(plus strand ordering)

(non-compromised)

(fresh)
Skeleton

1. nodes_A, finite set of regular nodes
2. \preceq_A, reflexive partial order on nodes_A representing causal accessibility
3. non_A, set of keys assumed non-originating (uncompromised, because used but not sent)
4. unique_A, set of atoms assumed uniquely originating (like nonces, session keys)

When $n \Rightarrow^* n'$ and $n' \in \text{nodes}_A$, we require

\[n \in \text{nodes}_A \text{ and } n \preceq_A n' \]
Homomorphism $H : A_0 \leftrightarrow A_1$

$H = \phi, \alpha$ where

$\phi : \text{nodes}_{A_0} \leftrightarrow \text{nodes}_{A_1}$
α maps atoms to atoms

such that

1. ϕ respects strand structure, and

\[\text{msg}(n) \cdot \alpha = \text{msg}(\phi(n)) \]

for all $n \in A_0$

2. $m \preceq_{A_0} n$ implies $\phi(m) \preceq_{A_1} \phi(n)$

3. $(\text{non}_{A_0}) \cdot \alpha \subset \text{non}_{A_1}$

4. $(\text{unique}_{A_0}) \cdot \alpha \subset \text{unique}_{A_1}$

$^a x \cdot \alpha$ means α applied to all atoms throughout x
Homomorphisms Preserve Information

- Homomorphisms are information-preserving maps
- A skeleton A_0 describes all the realized A' such that $H : A_0 \leftrightarrow A'$
- Information preserved by $H_0 : A_0 \leftrightarrow A_1$: A_1 describes a subset

 If $H_1 : A_1 \leftrightarrow A'$ then $H_1 \circ H_0 : A_0 \leftrightarrow A'$

so A_0 describes A' if its image A_1 does
Homomorphisms Preserve Information

- Homomorphisms are information-preserving maps
- A skeleton \mathbb{A}_0 describes all the realized \mathbb{A}' such that $H : \mathbb{A}_0 \rightarrow \mathbb{A}'$
- Information preserved by $H_0 : \mathbb{A}_0 \leftrightarrow \mathbb{A}_1$:
 - \mathbb{A}_1 describes a subset
 - If $H_1 : \mathbb{A}_1 \leftrightarrow \mathbb{A}'$
 then $H_1 \circ H_0 : \mathbb{A}_0 \leftrightarrow \mathbb{A}'$
 - so \mathbb{A}_0 describes \mathbb{A}' if its image \mathbb{A}_1 does
- Non-trivial homomorphisms increase information
 - Embedding H_0 adds info about additional events
 - H_0 identifying B, C excludes cases where they differ
 - H_0 identifying nodes . . .
Shapes are Really Homomorphisms

- $H = (\phi, \alpha)$ is nodewise injective iff ϕ is injective
- $H \leq_n J$ means some nodewise injective H', composed with H, yields J

$$J = H' \circ H$$

\leq_n is a partial order to within isomorphism

Definition: $H : A_0 \rightarrowrightarrow A_1$ is a shape if

1. A_1 is realized
2. H is \leq_n-minimal among homomorphisms to realized skeletons
NS Shape: Responder

At least this much must be present, assuming:

- Responder strand occurred
- \(\text{privk}(A) \) uncompromised
- \(N_b \) freshly chosen
NS Shape: Responder

At least this much must be present, assuming:

- Responder strand occurred
- \(\text{privk}(A) \) uncompromised
- \(N_b \) freshly chosen

Two realizations: \(\text{privk}(C) \) compromised, or \(C \leftrightarrow B \).
$C \leftrightarrow B$ yields NS intended run

\[\begin{array}{c}
A \xrightarrow{\{N_a, A\}_{\text{pubk}(B)}} B \\
\downarrow \{N_a, N_b\}_{\text{pubk}(A)} \leftrightsquigarrow \{N_a, N_b\}_{\text{pubk}(A)} \\
\downarrow \{N_b\}_{\text{pubk}(B)} \leftrightsquigarrow \{N_b\}_{\text{pubk}(B)}
\end{array}\]
$C \leftrightarrow B$ yields NS intended run

Less general than the shape on last slide, which didn’t force $C = B$
$C \mapsto B$ yields NS intended run

Less general than the shape on last slide, which didn’t force $C = B$

Shapes are minimal:

- Minimal set of nodes,
- which identify variables minimally
NS Unique Shape Allows Attack

- Responder strand occurred
- privk(A) uncompromised
- \(N_b \) freshly chosen
NS Unique Shape Allows Attack

- Responder strand occurred
- $\text{privk}(A)$ uncompromised
- N_b freshly chosen

Two realizations: $\text{privk}(C)$ compromised, or $C \rightarrow B$.
$C \leftrightarrow B$ yields NS intended run
\(C \leftrightarrow B \) yields NS intended run

Less general than the shape on last slide, which didn’t force \(C = B \)
$C \leftrightarrow B$ yields NS intended run

Less general than the shape on last slide, which didn’t force $C = B$

Shapes are minimal:

Minimal set of nodes, which identify variables minimally