Collaborative Planning with Privacy

Protocol eXchange

May 7, 2007

Max Kanovich1, Paul Rowe2, Andre Scedrov2

1Queen Mary, University of London
2University of Pennsylvania
Many examples of collaboration

- Between distributor and retailer
- Between hospitals and insurance companies
- Distributed databases
- Social networking sites (MySpace, Facebook)

Temporary alignment of interests

Information sharing is necessary to collaborate, but full disclosure is not desired.
Our Work

- We provide a model of collaboration at an abstract level.

- We can model a large class of collaborations while being able to make conclusions about privacy.

- Focus is on the interplay between protecting and releasing information.
Our Work

- We draw on
 - Planning from AI literature
 - State transition systems and multiset rewriting

- We consider systems with well-balanced actions

- It is PSPACE-complete to decide the existence of a collaborative plan, and if the system preserves the privacy of all agents.
Outline

- Motivations from Classical Planning
- Our formalism: Local state transition systems
- Privacy in collaboration
- Complexity results and foundation in logic
- Related and future work
Classical Planning

- A robot manipulating its environment
- Description of the environment
 - Objects
 - Relations between the objects
- Actions
- Initial configuration
- Goal configuration
Initial State

\{ONTABLE(A), ON(B,A), CLEAR(B), ONTABLE(C), CLEAR(C), HANDEMPTY\}
Actions

- **take(𝑥):** \{HANDEMPLOYEE, CLEAR(𝑥), ONTABLE(𝑥)\}
 \[\rightarrow\] \{HOLDS(𝑥)\}

- **remove(𝑥,𝑦):** \{ON(𝑥,𝑦), HANDEMPLOYEE, CLEAR(𝑥)\}
 \[\rightarrow\] \{HOLDS(𝑥), CLEAR(𝑦)\}

- **stack(𝑥,𝑦):** \{HOLDS(𝑥), CLEAR(𝑦)\}
 \[\rightarrow\] \{HANDEMPLOYEE, CLEAR(𝑥), ON(𝑥,𝑦)\}

- **put(𝑥):** \{HOLDS(𝑥)\}
 \[\rightarrow\] \{ONTABLE(𝑥), CLEAR(𝑥), HANDEMPLOYEE\}
Blocks World: Plan

- remove(B,A)
- put(B)
- take(A)
- stack(A,C)
Outline

- Motivations from Classical Planning
- *Our formalism: Local state transition systems*
- Privacy in collaboration
- Complexity results and foundation in logic
- Related and future work
Collaboration and Planning

- Multiple agents: A_1, \ldots, A_n
- Each has private data $P_A(t)$ and public data $P'(u)$
- Each has a set of actions
- Initial state
- Goal state
- Find a sequence of actions leading from initial state to goal state
A local state transition system is a triplet

\[T = (\Sigma, I, R_T) \]

where

- \(\Sigma \) is a signature of predicate symbols and terms
 (currently only constants and variables)
- \(I \) is a set of agents
- \(R_T \) is a set of (local) actions
Local State Transition Systems

- A **fact** is a closed atomic predicate over multi-sorted terms
- A syntactic convention distinguishes between private and public facts:

 Private Public/Group
 \(P_A(t) \) \(P'(u) \)
Security Labels

Figure 1: Security Levels.
System Configurations

- A *state* or *configuration* of the system is a multiset of private and public facts

\[X_{A_1'}, X_{A_2'}, ..., X_{A_n'}, X' \]

- Each agent can affect only their own private data and the public data.
Actions

- Replace X_A and X' by Y_A and Y'
 \[r : X_A X' \rightarrow A Y_A Y' \]

Transforms $W = VX_A X'$ into $U = VY_A Y'$

- System transformation is written as
 \[W \underset{r}{\rightarrow} U \]

- Reachability from a set R of actions is denoted by
 \[W \underset{R^*}{\rightarrow} U \]
Partial Goals

- The goal need not describe the complete configuration.

- Partial reachability is defined by

\[W \overset{\mathbf{A}}{\underset{\mathbf{R}}{\rightarrow}} Z \quad \text{iff} \quad W \overset{\mathbf{B}}{\underset{\mathbf{R}}{\rightarrow}} ZU \quad \text{for some} \quad U \]

So with \(r : X \Rightarrow A Y \Rightarrow A Y' \) we find that

\[UX \overset{\mathbf{A}}{\underset{\mathbf{R}}{\rightarrow}} r Y \Rightarrow A Y' \]
Collaborative Plans

A **collaborative plan** based on the action set R which leads from W to the partial goal Z is a labeled, non-branching tree satisfying:

1. Edges are labeled with actions from R, and nodes are labeled with states.
2. The label of each node enables the label of the outgoing edge.
3. The label of the root is W.
4. The label of the leaf is ZU for some U.

There exists a collaborative plan based on R, leading from W to the partial goal Z if and only if $W \ast_R^* Z$.
Abstract Example

Alice’s actions include

\[r_1 : P_A(t) \rightarrow A P_A(t)P'(t') \]
\[r_2 : P_A(t) \rightarrow A P_A(t)P''(t'') \]

Bob’s actions include

\[r_3 : Q_B(u)Q'(v)P'(t')P''(t'') \rightarrow B Q_B(t)Q'(v') \]

When \(R = \{r_1, r_2, r_3\} \) then

\[P_A(t)Q_B(u)Q'(v) * R Q_B(t) \]
An Example

Example:

\[r_1 : P_A(15_A_Pwd) S_A(7_B_Share) \rightarrow_A \]
\[P_A(21_A_Pwd) S_A(7_B_Share) P'(8_A_Share) \]

\[r_2 : Q_B(7_B_Share) P'(8_A_Share) \rightarrow_B Q_B(15_A_Pwd) \]
An Example

Example:

- $r_1 : P_A(15_A_Pwd) \rightarrow_A S_A(7_B_Share)$

 $P_A(21_A_Pwd) S_A(7_B_Share) \rightarrow_A P'(8_A_Share)$

- $r_2 : Q_B(7_B_Share) \rightarrow_B Q_B(15_A_Pwd)$

$P_A(15_A_Pwd) S_A(7_B_Share) Q_B(7_B_Share)$
An Example

- Example:
 - $r_1 : P_A(15_A_Pwd) S_A(7_B_Share) \rightarrow_A P_A(21_A_Pwd) S_A(7_B_Share) P'(8_A_Share)$
 - $r_2 : Q_B(7_B_Share) P'(8_A_Share) \rightarrow_B Q_B(15_A_Pwd)$

$P_A(15_A_Pwd) \cdot S_A(7_B_Share) \cdot Q_B(7_B_Share) \cdot r_1$

$P_A(21_A_Pwd) \cdot S_A(7_B_Share) \cdot P'(8_A_Share) \cdot Q_B(7_B_Share)$
An Example

Example:

\[r_1 : P_A(15_A_Pwd) S_A(7_B_Share) \rightarrow_A P_A(21_A_Pwd) S_A(7_B_Share) P'(8_A_Share) \]

\[r_2 : Q_B(7_B_Share) P'(8_A_Share) \rightarrow_B Q_B(15_A_Pwd) \]
An Example

- Example:
 - $r_1 : P_A(15_A_Pwd) S_A(7_B_Share) \rightarrow_A P_A(21_A_Pwd) S_A(7_B_Share) P'(8_A_Share)$
 - $r_2 : Q_B(7_B_Share) P'(8_A_Share) \rightarrow_B Q_B(15_A_Pwd)$

- In this case we see

\[
P_A(15_A_Pwd) S_A(7_B_Share) Q_B(7_B_Share) \cdot r_1
\]
\[
P_A(21_A_Pwd) S_A(7_B_Share) P'(8_A_Share) Q_B(7_B_Share) \cdot r_2
\]
\[
P_A(21_A_Pwd) S_A(7_B_Share) Q_B(15_A_Pwd)
\]

\[
\ast \cdot R^* Q_B(15_A_Pwd)
\]
Outline

- Motivations from Classical Planning
- Our formalism: Local state transition systems
- Privacy in collaboration
- Complexity results and foundation in logic
- Related and future work
Privacy Concerns

- If Alice starts with a secret term t, she wants to make sure it stays secret.

- Protect the secret from all possible behavior of other participants.

- Requires a global condition on reachable configurations.
Privacy Condition

- Local state transition system in initial configuration W, protects the privacy of agent A if every term t which, in the initial configuration W, occurs only in private predicates of A, also occurs only in private predicates of A in any reachable configuration.

- Partial goals of the form $Q'(t)$ or $Q_B(t)$ are not reachable from the initial configuration.
Remarks on Privacy

- Local state transition systems define a space of plans or protocols.

- Privacy condition is global condition on entire space.

- Other participants may be viewed as a type of adversary.

- Provides a guarantee that if others don’t follow plan, or perform extra local computations then secrets are not revealed.
Remarks on Privacy

- Can express notions of knowledge of *current* information.

- Alice’s action may change her password, rendering the old password obsolete.

- Knowledge of old password without knowledge of *current* password may be useless.
The Collaborative Planning Problem with Privacy

Given a local state transition system, and given an initial state W and a partial goal Z, does there exist a plan which leads from W to Z, and does the system protect the privacy of all agents?
Well-Balanced Actions

- Actions are restricted to have the same number of facts in the pre- and post-conditions.

- Intuitively, actions serve to update fields and they do not create new ones.

- Introduce a special constant symbol to indicate an empty field: $P(*)$

- Not as restrictive as it seems.
Example Revisited

Example:

- \(r_1 : P_A(15_A_Pwd) \ S_A(7_B_Share) \ P'(\ast) \rightarrow_A P_A(15_A_Pwd) \ S_A(7_B_Share) \ P'(8_A_Share) \)

- \(r_2 : Q_B(7_B_Share) \ P'(8_A_Share) \rightarrow_B Q_B(15_A_Pwd) \ P'(\ast) \)

\[
P_A(15_A_Pwd) \ S_A(7_B_Share) \ P'(\ast) \ Q_B(7_B_Share) \ \ast \ r_1
\]
\[
P_A(15_A_Pwd) \ S_A(7_B_Share) \ P'(8_A_Share) \ Q_B(7_B_Share) \ \ast \ r_2
\]
\[
P_A(15_A_Pwd) \ S_A(7_B_Share) \ P'(\ast) \ Q_B(15_A_Pwd) \]

We still find that

\[
P_A(15_A_Pwd) \ S_A(7_B_Share) \ P'(\ast) \ Q_B(7_B_Share) \ \ast \ R^* \ Q_B(15_A_Pwd) \]
Outline

- Motivations from Classical Planning
- **Our formalism: Local state transition systems**
- Privacy in collaboration
- **Complexity results and foundation in logic**
- Related and future work
Complexity Results

- The Collaborative Planning Problem with Privacy, with well-balanced actions, is \textit{PSPACE-complete}.
- It is polynomial with respect to the following parameters:
 - The size of a program recognizing the actions
 - The number of facts in the initial configuration
 - The number of closed facts in the (finite) signature
Complexity Results

- For a *fixed* finite signature, the Collaborative Planning Problem with privacy, with well-balanced actions, is solvable in polynomial time.
 - It is polynomial with respect to the parameters:
 - The size of a program recognizing the actions
 - The number of facts in the initial configuration

(The number of closed facts in the signature is now viewed as a constant.)
Linear logic is a resource-sensitive refinement of traditional logic.

Linear implication mimics actions well by “consuming” antecedents.

We translate local state transition systems into a variant of linear logic called affine logic.
Logical Foundation

Theorem: Local state transition systems are sound and complete with respect to (our translation into) affine logic.

Benefits include:
- Possible insights from well established formalism
- Use of already existing tools
Outline

- Motivations from Classical Planning
- Our formalism: Local state transition systems
- Privacy in collaboration
- Complexity results and foundation in logic
- Related and future work
Related Work

- **Security Policies and Security Models** [J. A. Goguen and J. Meseguer ’82]

- **Conditional Rewriting Logic as a Unified Model of Concurrency** [J. Meseguer ’92]
Related Work

- **Enforcing Robust Declassification and Qualified Robustness** [A. C. Myers, A. Sabelfeld, S. Zdancewic 2004]

Future Work

- Extend to a richer language of functional terms.
- Explore the use of existentials in affine logic to model fresh values.
- Investigate behavior in the presence of actions with nondeterministic effects.
- Determine if our formalism provides traceability.
Future Work

- Investigate more completely the ability to distinguish between obsolete and current secrets.

- Explore the use of utility functions weighing the relative importance of protecting or releasing information.

- Explore a more complicated structure for security labels.
Summary

- Introduced local state transition systems
- Discussed notions of privacy in collaboration
- Formalized the collaborative planning problem with privacy
- Determined PSPACE-completeness in the well-balanced case
- Discussed foundation in logic
Thank You!
Collaborative Planning with Privacy

Protocol eXchange
May 7, 2007

Max Kanovich1, Paul Rowe2, Andre Scedrov2

1Quenn Mary, University of London
2University of Pennsylvania