Goal-Preserving Transformations

Joshua D. Guttman

Worcester Polytechnic Institute

Protocol Exchange
7 Oct 2009
Preserving Goals

\[\Pi_2 = F(\Pi_1) : \Pi_2 \text{ results by transformation } F \text{ from } \Pi_1 \]
Preserving Goals

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation

Need: authentication tests preserved; no new solutions to old tests

Consequence:

$H: F(A) \mapsto B$ realized implies

$J: A \mapsto A_1$ splits into $L \circ K$

$K: A \mapsto A_0$ realized

where: A_1 is maximal s.t. $F(A_1) \mapsto B$
Preserving Goals

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up

- Need additional constraints to ensure goals of Π_1 preserved
- Need: authentication tests preserved; no new solutions to old tests
- Consequence:
 - $H: F(A) \mapsto B$ realized implies
 - $J: A \mapsto A_1$ splits into $L \circ K$
 - $K: A \mapsto A_0$ realized
 - Where: A_1 is maximal s.t. $F(A_1) \mapsto B$
Preserving Goals

\[\Pi_2 = F(\Pi_1) : \Pi_2 \text{ results by transformation } F \text{ from } \Pi_1 \]

- Inclusive, low-syntax relation
- Homomorphisms among skeletons match up
- Need additional constraints to ensure goals of \(\Pi_1 \) preserved
Preserving Goals

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π_1 preserved

- Need: authentication tests preserved; no new solutions to old tests
Preserving Goals

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π_1 preserved

- Need: authentication tests preserved; no new solutions to old tests

- Consequence: $H: F(\mathbb{A}) \leftrightarrow \mathbb{B}$ realized implies
 - $J: \mathbb{A} \leftrightarrow \mathbb{A}_1$ splits into $L \circ K$
 - $K: \mathbb{A} \leftrightarrow \mathbb{A}_0$ realized
 - where: \mathbb{A}_1 is maximal s.t. $F(\mathbb{A}_1) \leftrightarrow \mathbb{B}$
Protocol Transformation $F: \Pi_1 \rightarrow \Pi_2$

F determines maps:
- Π_1 skeletons \rightarrow Π_2 skeletons
- $\mathcal{L}(\Pi_1) \rightarrow \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$-goals $\forall \vec{x}. (\phi_0 \supset \exists \vec{y}. \lor 1 \leq i \leq j \phi_i)$?

\[
\begin{array}{c}
\text{cs}(\phi_0) \\
F \\
\text{cs}(F(\phi_0))
\end{array}
\]
Protocol Transformation $F : \Pi_1 \rightarrow \Pi_2$

F determines maps:
- Π_1 skeletons $\rightarrow \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \rightarrow \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$-goals $\forall \vec{x} \cdot (\phi_0 \supset \exists \vec{y} \cdot \bigvee_{1 \leq i \leq j} \phi_i)$?

Diagram:

```
cs(\phi_0)           \mathbb{B}_{\text{real}}
\downarrow F          \downarrow F
cs(F(\phi_0))
```
Protocol Transformation $F : \Pi_1 \rightarrow \Pi_2$

F determines maps:
- Π_1 skeletons $\rightarrow \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \rightarrow \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$-goals $\forall \vec{x}. (\phi_0 \supset \exists \vec{y}. \bigvee_{1 \leq i \leq j} \phi_i)$?

\[\text{cs}(\phi_0) \xrightarrow{F} \text{cs}(F(\phi_0)) \rightarrow F(A_1) \rightarrow \mathbb{B}_{\text{real}}\]
Protocol Transformation $F : \Pi_1 \rightarrow \Pi_2$

F determines maps:
- Π_1 skeletons $\rightarrow \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \rightarrow \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$-goals $\forall \vec{x}. \ (\phi_0 \supset \exists \vec{y}. \ \lor_{1 \leq i \leq j} \phi_i)$?

\[
\begin{array}{c}
\text{cs}(\phi_0) \\
 F \downarrow \\
\text{cs}(F(\phi_0)) \\
 F \downarrow \\
 F(A_1) \\
 \text{B}_{\text{real}}
\end{array}
\]
Protocol Transformation $F : \Pi_1 \rightarrow \Pi_2$

F determines maps:

- Π_1 skeletons $\rightarrow \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \rightarrow \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$-goals $\forall \vec{x} \cdot (\phi_0 \supset \exists \vec{y} \cdot \bigvee_{1 \leq i \leq j} \phi_i)$?

\[
\begin{array}{c}
\text{cs}(\phi_0) \quad \text{cs}(F(\phi_0)) \\
F \quad F
\end{array}
\]
Electronic Purchase
Using a money order: *EPMO*

Bank

Cust

Merch
Electronic Purchase
Using a money order: \textit{EPMO}

\begin{center}
\begin{tikzpicture}

\node (Bank) at (0,0) \textit{Bank};
\node (Cust) at (3,0) \textit{Cust};
\node (Merch) at (6,0) \textit{Merch};

\draw[->] (Bank) -- (Cust) node[midway,above] {query \textit{goods}};
\draw[<-] (Cust) -- (Merch);
\draw[<-] (Bank) -- (Merch);
\draw[<-] (Merch) -- (Bank);
\end{tikzpicture}
\end{center}
Electronic Purchase

Using a money order: *EPMO*

Bank ↔ **Cust** ↔ **Merch**

- *query goods*
- *reply price*

Guttman (WPI) Goal-Preserving Oct 09 4 / 25
Electronic Purchase
Using a money order: \textit{EPMO}

\begin{center}
\begin{tikzpicture}
\node (Bank) at (0,0) {? \textit{Bank}};
\node (Cust) at (3,0) {? \textit{Cust}};
\node (Merch) at (6,0) {? \textit{Merch}};

\draw[->] (Bank) -- (Cust) node [midway, above] {query \textit{goods}};
\draw[<->] (Cust) -- (Merch) node [midway, above] {reply \textit{price}};
\draw[->] (Bank) -- (Cust) node [midway, above] {cutmo acct\# \textit{price}};
\draw[<->] (Cust) -- (Bank);
\end{tikzpicture}
\end{center}
Electronic Purchase
Using a money order: *EPMO*

Diagram:
- **Bank**
 - cutmo *acct# price*
 - *mo*

- **Cust**
 - query *goods*
 - reply *price*

- **Merch**
 - *EPMO*
 - Bank Cust Merch
 - Query goods
 - Reply price
 - Cutmo acct# price
 - Mo
Electronic Purchase
Using a money order: EPMO

Bank

Cust

Merch

query goods

reply price

cutmo acct# price

mo

endorse mo
Electronic Purchase
Using a money order: *EPMO*

```
Bank → Cust -> Merch

query goods

reply price

cutmo acct# price

mo

endorse mo

deposit mo
```
EPMO

\[{\{ - \}}_P \] means encr. with \(P \)'s public key

\[{\mid - \mid}_P \] means digital signature

\[mo = \text{[hash}(C, N_c, N_b, N_m, \text{price})]\text{]}_B \]

\text{Bank} \quad \text{Cust} \quad \text{Merch}

\[\{ C, N_c, \text{goods} \}\text{]}_M \]

\[\{ N_c, N_m, M, \text{price} \}\text{]}_C \]

\[\{ C, N_c, N_m, \text{acct}\#, \text{price} \}\text{]}_B \]

\[mo, \{ N_c, N_b \}\text{]}_C \]

\[\text{[hash}(B, N_b, N_m)\text{]}_M \]

\[mo, N_b \]
Customer / Merchant Agreement

\[\{ - \}_P \] means encr. with \(P \)'s public key

\[[-]_P \] means digital signature

\[mo = \left\{ hash(C, N_c, N_b, N_m, price) \right\}_B \]

Bank

Cust

Merch

\[\{ C, N_c, goods \} _M \]

\[\{ N_c, N_m, M, price \} _C \]

\[\{ C, N_c, N_m, acct\#, price \} _B \]

\[mo, \{ N_c, N_b \} _C \]

\[mo, N_b \]

\[[hash(B, N_b, N_m)] _M \]
Merchant / Customer Agreement

\(\{ - \}_P \) means encr. with \(P \)'s public key

\(\lbrack - \rbrack_P \) means digital signature

\(mo = \lbrack \text{hash}(C, N_c, N_b, N_m, \text{price}) \rbrack_B \)

Bank

\[\begin{array}{c}
\{ C, N_c, \text{goods} \} \rightarrow \\
\{ C, N_c, N_m, \text{acct\#}, \text{price} \} \leftarrow \\
\text{mo, } \lbrack N_c, N_b \rbrack \rightarrow \\
\text{mo, } N_b \rightarrow \\
\lbrack \text{hash}(B, N_b, N_m) \rbrack \leftarrow \\
\end{array} \]

Cust

\[\begin{array}{c}
\{ C, N_c, \text{goods} \} \rightarrow \\
\{ N_c, N_m, M, \text{price} \} \leftarrow \\
\end{array} \]

Merch

\[\begin{array}{c}
\{ C, N_c, N_m, \text{acct\#}, \text{price} \} \leftarrow \\
\end{array} \]
Customer / Bank Agreement

\[\{ - \}_P \] means encr. with \(P \)'s public key

\[[-]_P \] means digital signature

\[mo = \left[\text{hash}(C, N_c, N_b, N_m, \text{price}) \right]_B \]

Bank

\[\{ C, N_c, \text{goods} \} _M \]

\[\{ C, N_c, N_m, acct\#, \text{price} \} _B \]

\[mo, \{ N_c, N_b \} _C \]

\[mo, N_b \]

\[\left[\text{hash}(B, N_b, N_m) \right]_M \]

Cust

\[\{ C, N_c, goods \} _M \]

\[\{ N_c, N_m, M, \text{price} \} _C \]

\[\{ C, N_c, N_m, acct\#, \text{price} \} _B \]

\[mo, \{ N_c, N_b \} _C \]

\[mo, N_b \]

Merch

\[\left[\text{hash}(B, N_b, N_m) \right]_M \]
Nonce sent encrypted
Authentication test pattern

- When a freshly chosen value N is:
 - Sent inside encryptions $S =$
 $$
 \{ \{ \cdots N \cdots \}^{K_1}, \ldots, \{ \cdots N \cdots \}^{K_i} \}\}
 $$
 - Received later outside these forms
- Infer: either
 - Some decryption key K_i^{-1} is compromised, or else
 - A regular participant received some
 $$
 \{ \cdots N \cdots \}^{K_i}
 $$
 and retransmitted N in another form
Merchant / Bank Agreement

\(\{ \cdot - \cdot \}_P \) means encr. with \(P \)'s public key

\(\{ - \}_P \) means digital signature

\(mo = \left\lbrack \text{hash}(C, N_c, N_b, N_m, \text{price}) \right\rbrack_B \)

\(\{ C, N_c, \text{goods} \}_M \)

\(\{ N_c, N_m, M, \text{price} \}_C \)

\(\{ C, N_c, N_m, \text{acct\#}, \text{price} \}_B \)

\(mo, \{ N_c, N_b \}_C \)

\(mo, N_b \)

\(\left\lbrack \text{hash}(B, N_b, N_m) \right\rbrack_M \)
Encrypted message received
The second authentication test pattern

If encrypted value $c = \{t\}_{K_0}$ is received outside forms $S = \{\{\cdots c \cdots \}\}_{K_1}, \ldots, \{\cdots c \cdots \}_{K_i}\}$

- Infer: either
 - Encryption key K_0 is compromised, or else
 - Some decryption key is compromised, or else
 $$K_j^{-1} \text{ for } 1 \leq j \leq i$$
 - Regular participant received c only within S, if at all, transmitted c outside
The Strand Space point of view

Bank

Cust

Merch

Guttman (WPI)
Goal-Preserving

Oct 09 12/25
Simplification: Customer-merchant subprotocol

Bank → Cust ↓ Merch

Guttman (WPI) Goal-Preserving Oct 09 13/25
EPMO customer-merchant subprotocol

Cust

\[\{C, N_c, x \}_{M} \]

\[\{N_c, N_m, M, y \}_{C} \]

\[N_m \]

Merch

\[\{C, N_c, x \}_{M} \]

\[\{N_c, N_m, M, y \}_{C} \]

\[N_m \]
Needham-Schroeder-Lowe

\[\{ C, N_c \} \rightarrow M \]

\[\{ N_c, N_m, M \} \rightarrow C \]

\[\{ C, N_c \} \rightarrow M \]

\[\{ N_c, N_m, M \} \rightarrow C \]

\[N_m \]

\[N_m \]
EPMO: How customer tests merchant

\[
\begin{align*}
\text{Cust} & \rightarrow \{ C, N_c, x \}_M \downarrow \downarrow \{ N_c, N_m, M, y \}_C \\
& \text{N}_m \\
\text{Merch} & \leftarrow \{ C, N_c, x \}_M \\
& \text{N}_m
\end{align*}
\]
EPMO: How merchant tests customer

\[\{ C, N_c, x \} \rightarrow \{ N_c, N_m, M, y \} \]

\[\{ C, N_c, x \} \rightarrow \{ N_c, N_m, M, y \} \]

\[\{ N_c, N_m, M, y \} \rightarrow \{ C, N_c, x \} \]

\[\{ N_c, N_m, M, y \} \rightarrow \{ C, N_c, x \} \]

\[N_m \rightarrow N_m \]

\[N_m \rightarrow N_m \]
Nonce sent encrypted

Authentication test pattern

- When a freshly chosen value N is:
 - Sent inside encryptions $S = \{ \{ \cdots N \cdots \}^S_{K_1}, \ldots, \{ \cdots N \cdots \}^S_{K_i}\}$
 - Received later outside these forms
- Infer: either
 - Some decryption key K_i^{-1} is compromised, or else
 - A regular participant received some
 $$\{ \cdots N \cdots \}^S_{K_i}$$
 and retransmitted N in another form
Translating tests

- **Test consists of:**
 - Critical value \(c \), e.g. \(N_m \)
 - Escape set \(S \), e.g. \(\{ \{ N_c, N_m, M, y \} \}^c \)

- **Solution could be**
 - Compromised decryption key \(C^{-1} \)
 - Regular edge that receives \(N_m \) only within \(S \), retransmits \(N_m \) outside \(S \)
EPMO: How merchant tests customer

\[\{ C, N_c, x \} \xrightarrow{M} \{ N_c, N_m, M, y \} \xrightarrow{C} \{ N_c, N_m, M, y \} \xrightarrow{M} \{ C, N_c, x \} \]
Merchant / Customer Agreement

\(\{ - \}_P \) means encr. with \(P \)'s public key

\(\lceil - \rceil_P \) means digital signature

\[mo = \lceil \text{hash}(C, N_c, N_b, N_m, \text{price}) \rceil_B \]

Diagram

Bank

\(\{ C, N_c, \text{goods} \}_M \)

\(\{ N_c, N_m, M, \text{price} \}_C \)

\(\{ C, N_c, N_m, \text{acct}\#, \text{price} \}_B \)

Cust

\(mo, \{ N_c, N_b \}_C \)

Merch

\(mo, N_b \)

\[\lceil \text{hash}(B, N_b, N_m) \rceil_M \]
Translating a Test

- **Subprotocol test:**
 - Critical value: N_m
 - Escape set: $S_0 = \{ \{ N_c, N_m, M, y \} \}$

- **EPMO test $T(c, S_0)$:**
 - Critical value: N_m
 - Escape set: $S_0 \cup \{ \{ C, N_c, N_m, acct\#, price \} \}_{B} : \text{acct\# is an acct} \} \cup \{ \{ hash(C, N_c, N_b, N_m, price) \} \}_{B} : B \text{ is a bank}\}$
Translating a Test

- **Subprotocol test:**
 - Critical value: N_m
 - Escape set: $S_0 = \{ \{ N_c, N_m, M, y \} \}$

- **EPMO test $T(c, S_0)$:**
 - Critical value: N_m
 - Escape set: $S_0 \cup \{ \{ C, N_c, N_m, \text{acct}\#, \text{price} \} : \text{acct}\# \text{ is an acct} \} \cup \{ \{ \text{hash}(C, N_c, N_b, N_m, \text{price}) \} : B \text{ is a bank} \}$

- Solutions to subprotocol test in A
 vs. Solutions to subprotocol test in A
Protocol Transformation \(F: \Pi_1 \to \Pi_2 \)

\(F \) determines maps:
- \(\Pi_1 \) skeletons \(\to \Pi_2 \) skeletons
- \(\mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2) \)

When does \(F \) preserve \(\mathcal{L}(\Pi_1) \)-goals \(\forall \vec{x}. (\phi_0 \supset \exists \vec{y}. \bigvee_{1 \leq i \leq j} \phi_i) \)?

\[
\begin{align*}
\text{cs}(\phi_0) & \xrightarrow{F} \text{A}_{\text{real}} \\
\text{A}_{\text{real}} & \xrightarrow{?} \text{A}_1 \\
\text{cs}(F(\phi_0)) & \xrightarrow{F} \text{B}_{\text{real}}
\end{align*}
\]
Two Conditions
Sufficing for goal preservation

- If A has unsolved test c, S, then $F(A)$ has unsolved test $T(c, S)$

- If step $F(A) \xrightarrow{T(c,S)} B$ in Π_2, then $B = F(A_1)$ and $A \xrightarrow{c,S} A_1$
Two Conditions
Sufficing for goal preservation

- If A has unsolved test c, S, then $F(A)$ has unsolved test $T(c, S)$
- If step

$$F(A) \xrightarrow{T(c,S)} B$$

in Π_2, then $B = F(A_1)$ and

$$A \xrightarrow{c,S} A_1$$

I.e. test solution LTS in Π_1 simulates Π_2 relative to F for skeletons of the form $F(A)$ and steps of the form $T(c, S)$
Preserving Goals

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π_1 preserved

- Need: authentication tests preserved; no new solutions to old tests

- Consequence: $H: F(\mathbb{A}) \mapsto \mathbb{B}$ realized implies
 - $J: \mathbb{A} \mapsto \mathbb{A}_1$ splits into $L \circ K$
 - $K: \mathbb{A} \mapsto \mathbb{A}_0$ realized
 - where: \mathbb{A}_1 is maximal s.t. $F(\mathbb{A}_1) \mapsto \mathbb{B}$