Goal-Preserving Transformations

Joshua D. Guttman

Worcester Polytechnic Institute

Protocol Exchange 7 Oct 2009

1 / 25

• $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1

2/25

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation

2/25

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up

Oct 09

2/25

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π₁ preserved

2/25

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π₁ preserved
- Need: authentication tests preserved; no new solutions to old tests

2/25

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π₁ preserved
- Need: authentication tests preserved; no new solutions to old tests
- Consequence: $H : F(\mathbb{A}) \mapsto \mathbb{B}$ realized implies
 - ▶ $J: \mathbb{A} \mapsto \mathbb{A}_1$ splits into $L \circ K$
 - ▶ $K: \mathbb{A} \mapsto \mathbb{A}_0$ realized
 - ▶ where: \mathbb{A}_1 is maximal s.t. $F(\mathbb{A}_1) \mapsto \mathbb{B}$

F determines maps:

- Π_1 skeletons $\to \Pi_2$ skeletons
- $\bullet \ \mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$ -goals $\forall \vec{x} : (\phi_0 \supset \exists \vec{y} : \bigvee_{1 \leq i \leq j} \phi_i)$?

$$cs(\phi_0)$$
 $f \downarrow$
 $cs(F(\phi_0))$

Oct 09

3/25

F determines maps:

- Π_1 skeletons $\to \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$ -goals $\forall \vec{x} : (\phi_0 \supset \exists \vec{y} : \bigvee_{1 \leq i \leq j} \phi_i)$?

3/25

F determines maps:

- Π_1 skeletons $\to \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$ -goals $\forall \vec{x} : (\phi_0 \supset \exists \vec{y} : \bigvee_{1 < i < j} \phi_i)$?

3/25

F determines maps:

- Π_1 skeletons $\to \Pi_2$ skeletons
- $\bullet \ \mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$ -goals $\forall \vec{x} : (\phi_0 \supset \exists \vec{y} : \bigvee_{1 \le i \le j} \phi_i)$?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

3/25

F determines maps:

- Π_1 skeletons $\to \Pi_2$ skeletons
- $\bullet \ \mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$ -goals $\forall \vec{x} : (\phi_0 \supset \exists \vec{y} : \bigvee_{1 \leq i \leq j} \phi_i)$?

←□▶ ←□▶ ← □▶ ← □ ●
 ←□▶ ← □▶ ← □ ●

3/25

EPMO

$$\{|-|\}_P$$
 means encr. with P 's public key $[\![-]\!]_P$ means digital signature

$$\textit{mo} = \llbracket \textit{hash}(\textit{C}, \textit{N}_{\textit{c}}, \textit{N}_{\textit{b}}, \textit{N}_{\textit{m}}, \textit{price}) \rrbracket_{\textit{B}}$$

5/25

Customer / Merchant Agreement

```
\{ | - | \}_P means encr. with P's public key \| - \|_P means digital signature
```

$$mo = [\![hash(C, N_c, N_b, N_m, price)]\!]_B$$

Guttman (WPI)

Merchant / Customer Agreement

```
\{ |-|\}_P \text{ means encr. with } P's public key [\![-]\!]_P \text{ means digital signature}
```

$$mo = [\![hash(C, N_c, N_b, N_m, price)]\!]_B$$

7/25

Customer / Bank Agreement

```
\{ |-|\}_P  means encr. with P's public key [\![-]\!]_P means digital signature
```

$$mo = [\![hash(C, N_c, N_b, N_m, price)]\!]_B$$

Nonce sent encrypted

Authentication test pattern

- When a freshly chosen value N is:
 - Sent inside encryptions S =

$$\{\{\{\cdots N\cdots\}_{K_1},\ldots,\{\{\cdots N\cdots\}_{K_i}\}\}$$

- Received later outside these forms
- Infer: either
 - ▶ Some decryption key K_i^{-1} is compromised, or else
 - A regular participant received some

$$\{\mid \cdots N \cdots \mid\}_{K_i}$$

and retransmitted N in another form

Guttman (WPI)

Merchant / Bank Agreement

$$\{ |-|\}_P$$
 means encr. with P 's public key $[\![-]\!]_P$ means digital signature

$$mo = [\![hash(C, N_c, N_b, N_m, price)]\!]_B$$

Encrypted message received

The second authentication test pattern

ullet If encrypted value $c=\{\mid t\mid\}_{\mathcal{K}_0}$ is received outside forms $\mathcal{S}=$

$$\{\{\{\cdots c\cdots\}_{K_1},\ldots,\{\{\cdots c\cdots\}_{K_i}\}\}\}$$

- Infer: either
 - ▶ Encryption key *K*₀ is compromised, or else
 - Some decryption key is compromised, or else

$$K_j^{-1}$$
 for $1 \le j \le i$

Regular participant received c only within S, if at all, transmitted c outside

Guttman (WPI)

The Strand Space point of view

Simplification: Customer-merchant subprotocol

EPMO customer-merchant subprotocol

Needham-Schroeder-Lowe

EPMO: How customer tests merchant

EPMO: How merchant tests customer

Nonce sent encrypted

Authentication test pattern

- When a freshly chosen value N is:
 - Sent inside encryptions S =

$$\{\{\{\cdots N\cdots\}_{K_1},\ldots,\{\{\cdots N\cdots\}_{K_i}\}\}$$

- Received later outside these forms
- Infer: either
 - ▶ Some decryption key K_i^{-1} is compromised, or else
 - A regular participant received some

$$\{\mid \cdots N \cdots \mid\}_{K_i}$$

and retransmitted N in another form

Translating tests

- Test consists of:
 - ► Critical value *c*, e.g. *N*_m
 - ► Escape set S, e.g. $\{\{\{N_c, N_m, M, y\}\}_C\}$
- Solution could be
 - ▶ Compromised decryption key C⁻¹
 - Regular edge that receives N_m only within S, retransmits N_m outside S

EPMO: How merchant tests customer

Merchant / Customer Agreement

```
\{ |-|\}_P \text{ means encr. with } P's public key [\![-]\!]_P \text{ means digital signature}
```

$$mo = [\![hash(C, N_c, N_b, N_m, price)]\!]_B$$

Translating a Test

- Subprotocol test:
 Critical value: N_m
 - Escape set: $S_0 = \{\{\{N_c, N_m, M, y\}\}_C\}$
- EPMO test $T(c, S_0)$:
 - Critical value: N_m
 - ► Escape set: S₀ ∪
 - $\{\{ C, N_c, N_m, acct\#, price \}_B : acct\# \text{ is an acct } \} \cup \{ [hash(C, N_c, N_b, N_m, price)]_B : B \text{ is a bank } \}$

Translating a Test

- Subprotocol test:
 - Critical value: N_m
 - Escape set: $S_0 = \{ \{ | N_c, N_m, M, y \} \}_C \}$
- EPMO test $T(c, S_0)$:
 - Critical value: N_m
 - ► Escape set: S₀ ∪

```
\{\{C, N_c, N_m, acct\#, price\}_B: acct\# \text{ is an acct }\} \cup \{[nash(C, N_c, N_b, N_m, price)]_B: B \text{ is a bank }\}
```

 Solutions to subprotocol test in A vs. Solutions to subprotocol test in A

F determines maps:

- Π_1 skeletons $\to \Pi_2$ skeletons
- $\mathcal{L}(\Pi_1) \to \mathcal{L}(\Pi_2)$

When does F preserve $\mathcal{L}(\Pi_1)$ -goals $\forall \vec{x} : (\phi_0 \supset \exists \vec{y} : \bigvee_{1 \le i \le j} \phi_i)$?

23 / 25

Two Conditions

Sufficing for goal preservation

- If A has unsolved test c, S, then F(A) has unsolved test T(c, S)
- If step

$$F(\mathbb{A})\stackrel{T(c,S)}{\rightarrow}\mathbb{B}$$

in Π_2 , then $\mathbb{B} = F(\mathbb{A}_1)$ and

$$\mathbb{A}\stackrel{c,S}{
ightarrow}\mathbb{A}_1$$

Two Conditions

Sufficing for goal preservation

- If A has unsolved test c, S, then F(A) has unsolved test T(c, S)
- If step

$$F(\mathbb{A}) \stackrel{T(c,S)}{\rightarrow} \mathbb{B}$$

in Π_2 , then $\mathbb{B} = F(\mathbb{A}_1)$ and

$$\mathbb{A} \stackrel{c,S}{\rightarrow} \mathbb{A}_1$$

I.e. test solution LTS in Π_1 simulates Π_2 relative to F for skeletons of the form $F(\mathbb{A})$ and steps of the form T(c, S)

- $\Pi_2 = F(\Pi_1)$: Π_2 results by transformation F from Π_1
 - Inclusive, low-syntax relation
 - Homomorphisms among skeletons match up
 - Need additional constraints to ensure goals of Π₁ preserved
- Need: authentication tests preserved; no new solutions to old tests
- Consequence: $H : F(\mathbb{A}) \mapsto \mathbb{B}$ realized implies
 - ▶ $J: \mathbb{A} \mapsto \mathbb{A}_1$ splits into $L \circ K$
 - $K: \mathbb{A} \mapsto \mathbb{A}_0$ realized
 - ▶ where: \mathbb{A}_1 is maximal s.t. $F(\mathbb{A}_1) \mapsto \mathbb{B}$