Completeness of the Authentication Tests

Joshua D. Guttman
F. Javier Thayer
Shaddin F. Doghmi

September 2006

Supported by the National Security Agency
An Example: Yahalom’s Protocol

Slightly modified: $\{A, K\}_{KB}$ not forwarded via A
Yahalom Responder’s Guarantee: Idea

Assume K_A^{-1}, K_b^{-1} non-originating

Does $K' = K$? Otherwise, must be another transforming edge, but no regular strand can transform $\{N_b\}_{K'}$ into $\{N_b\}_K$
Yahalom Responder’s Guarantee

\[S_1 = \{ [B, K', N_a, N_b]_{K_A} : K' \text{ is a key} \} \cup \{ [A, N_a, N_b]_{K_B} \} \]

\[S_2 = \{ [A, N_a, N_b]_{K_B} \} \]

Either \(K = K' \) or \(K \neq K' \)
Yahalom Initiator Guarantee

An incoming test on N_a returning in safely encrypted form
The Incoming Test

Let $H : A_0 \leftrightarrow A_1$, where A_1 is realized. Let $n_1 \in A_0$ be a negative node and $\{ t_0 \}_K \sqsubseteq \text{term}(n_1)$. If $\{ t_0 \}_K$ originates nowhere in A_0, then either:

1. $H = H'' \circ H'$, where H' is an incoming augmentation originating $\{ t_0 \}_K$; or
2. K is compromised in A_1

There is a listener augmentation $H' : A_0 \leftrightarrow A_0'$ for K, and a homomorphism $H'' : A_0' \rightarrow A_1'$ such that:

(a) A_1' is realized,
(b) $A_1' \sim_L A_1$, and
(c) $H'' \circ H' = I \circ H$, where I is an inclusion homomorphism.
Some Definitions

- “Listener strand:” $\text{Lsn}[a]$
 - Regular strand
 - Single negative node $\neg a$

Certifies that a is compromised

- “Listener Augmentation:”
 homomorphism that embeds \mathbb{A}_0
 in a skeleton also containing a listener strand
Defns: Skeleton

A four-tuple $A = (\text{nodes}, \preceq, \text{non}, \text{unique})$ is a *preskeleton* if:

1. nodes is a finite set of regular nodes; $n_1 \in \text{nodes}$ and $n_0 \Rightarrow^+ n_1$ implies $n_0 \in \text{nodes}$;
2. \preceq is a partial ordering on nodes such that $n_0 \Rightarrow^+ n_1$ implies $n_0 \preceq n_1$;
3. non is a set of keys, and for all $K \in \text{non}$, either K or K^{-1} is used in nodes;
4. $3'$ for all $K \in \text{non}$, K does not occur in nodes;
3. unique is a set of atoms, and for all $a \in \text{unique}$, a occurs in nodes.

A preskeleton A is a *skeleton* if in addition:

4. $a \in \text{unique}$ implies a originates at no more than one node in nodes.
Defns: Homomorphism

Let A_0, A_1 be preskeletons, α a replacement, $\phi : \text{nodes}_{A_0} \rightarrow \text{nodes}_{A_1}$.
$H = [\phi, \alpha]$ is a homomorphism if

1a. For all $n \in A_0$, $\text{term}(\phi(n)) = \text{term}(n) \cdot \alpha$;
1b. For all s, i, if $s \downarrow i \in A$ then there is an s' s.t. for all $j \leq i$, $\phi(s \downarrow j) = (s', j)$;
2. $n \preceq_{A_0} m$ implies $\phi(n) \preceq_{A_1} \phi(m)$;
3. $\text{non}_{A_0} \cdot \alpha \subset \text{non}_{A_1}$;
4. $\text{unique}_{A_0} \cdot \alpha \subset \text{unique}_{A_1}$
Outgoing Augmentation

Let $H : \mathbb{A}_0 \mapsto \mathbb{A}_1$, with \mathbb{A}_1 realized.
Let X be a set of keys, and
let $n_0, n_1 \in \mathbb{A}_0$ be an outgoing test pair for $a, S, X,$
for which \mathbb{A}_0 contains no transforming edge.
At least one of the following holds:

1. $H = H'' \circ H'$, where H' is some outgoing augmentation for $a, S, X;$
2. $H = H'' \circ \text{hull}_\alpha(\mathbb{A}_0)$ for some contraction $\alpha;$
3. Some $K \in X$ is compromised in \mathbb{A}_1
 There is a listener augmentation $H' : \mathbb{A}_0 \mapsto \mathbb{A}'_0$ for some $K \in X,$ and
 a homomorphism $H'' : \mathbb{A}'_0 \mapsto \mathbb{A}'_1$ such that:
 (a) \mathbb{A}'_1 is realized,
 (b) $\mathbb{A}'_1 \sim_L \mathbb{A}_1$, and
 (c) $H'' \circ H' = I \circ H$, where I is an inclusion homomorphism.
Defn: Shape (Minimal Realized Skeleton)

\(H : A_0 \mapsto A_1 \) is a shape for \(A_0 \) if \(A_1 \) is “nodewise minimal” among realized skeletons \(A' \) such that \(H = H_1 \circ H_0 \) where

1. \(H_0 : A_0 \mapsto A' \)
2. \(H_0 : A' \mapsto A_1 \)

\(A_0 \) is nodewise less than or equal to \(A_1 \) if for some \([\phi, \alpha] : A_0 \mapsto A_1\), \(\phi \) is injective.
Authentication Tests Completeness

Let $H : A_0 \mapsto A_1$ be a shape. $H = H_k \circ H_{k-1} \circ \ldots \circ H_1 \circ H_0$ for some sequence of homomorphisms $\{H_i\}_{0 \leq i \leq k}$, where:

1. H_0 is a node-surjective homomorphism from A_0 onto a substructure (possibly the identity); and
2. For each i with $1 \leq i \leq k$, H_i is a contraction or an augmentation as in Incoming and Outgoing Tests.
Main Lemma

Suppose there exists some $H : A \leftrightarrow A'$ where A' is realized. If term(n) is not penetrator-derivable before n in A, then either:

1. n is an incoming transformed node for some $K \in \text{non}_A \cup \text{unique}_A$; or else
2. (m, n) is an outgoing transformed pair with respect to a, S, X for
 (i) some $a \in \text{unique}_A$ originating at a node $m \in A$;
 (ii) some set S of encrypted terms such that
 a occurs only within S in the nodes of A below n; and
 (iii) some set of keys $X \subset \text{non}_A \cup \text{unique}_A$
 such that for each $K \in X$, K^{-1} is used for encryption in support(n).