Stirling's formula

1. **Wallis' formula for \(\pi \).**

\[
C_n = \int_0^{\pi/2} \cos^n \theta \, d\theta,
\]

where \(n = 0, 1, 2, \ldots \).

By integration by parts (\(u = \cos^{n-1} \theta, \, dv = \cos \theta \, d\theta \), and a little "ingenuity")

\[
C_n = \frac{n-1}{n} C_{n-2}, \quad C_0 = \frac{\pi}{2}, \quad C_1 = 1.
\]

By induction:

\[
C_0 = \frac{\pi}{2}, \quad C_1 = 1
\]

\[
C_2 = \frac{1}{2} \frac{\pi}{2}, \quad C_3 = \frac{2}{3}
\]

\[
C_4 = \frac{3}{4} \frac{\pi}{2}, \quad C_5 = \frac{4}{5} \frac{2}{3}
\]

\[
C_6 = \frac{5}{6} \frac{3}{4} \frac{\pi}{2}, \quad C_7 = \frac{6}{7} \frac{4}{5} \frac{2}{3}
\]

\[
\vdots
\]

\[
C_{2n} = \frac{\pi}{2} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}
\]

\[
= \frac{\pi}{2} \frac{(2n)!}{4^n (n!)^2},
\]
\[C_{2n+1} = \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{3 \cdot 5 \cdot 7 \cdots (2n+1)} = \frac{4^n (n!)^2}{(2n+1)!} \]

Since
\[0 < \cos^{n+1} \theta < \cos^n \theta, \quad 0 < \theta < \frac{\pi}{2}, \]
then
\[C_{n+1} < C_n < C_{n-1} \]
and so
\[1 < \frac{C_n}{C_{n+1}} < \frac{C_{n-1}}{C_{n+1}} = 1 + \frac{1}{n} \rightarrow 1. \]

Thus
\[\frac{C_{2n}}{C_{2n+1}} = \frac{\pi}{2} \frac{(2n)!}{4^n (n!)^2} \frac{(2n+1)!}{(2n+1)!} \rightarrow 1 \]

or
\[\frac{\pi}{2} = \lim_{n \to \infty} \frac{16^n (n!)^4}{(2n)! (2n+1)!} \frac{C_{2n}}{C_{2n+1}} \]

\[\frac{\pi}{2} = \lim_{n \to \infty} \frac{16^n (n!)^4}{(2n)! (2n+1)!} \]

\[\pi = \lim_{n \to \infty} \frac{16^n (n!)^4}{[(2n)!]^2 (n + \frac{1}{2})} \]
\[
\lim \frac{(C^n(n!)^4 - 1)}{\eta [2(n!)^2]^{1 + \frac{1}{2n}}}
\rightarrow 1.
\]

\[
\sqrt{\pi} = \lim \frac{4^n(n!)^2}{\sqrt{n(2n)!}}.
\]

2. **Lower and upper bounds for**

\[
A_n := \int_1^n \ln x \, dx = n \ln n - n + 1
\]

are gotten from the trapezoidal and midpoint rules with step \(h = 1 \):

\[
T_n := \frac{1}{2} \left[\ln 1 + \ln 2 + \ldots + \ln (n-1) + \ln n \right]
= \ln n! - \ln \sqrt{n}
< A_n, \ n > 1,
\]

since \(f(x) = \ln x \) is concave, and

\[
M_n := \ln \frac{3}{2} + \ln \frac{5}{2} + \ldots + \ln \left(n - \frac{1}{2} \right)
= \ln \frac{3}{2} \cdot \frac{5}{2} \ldots \frac{2n-1}{2}
\]
\[M_n = \ln \frac{3 \cdot 5 \cdot 7 \ldots (2n-1)}{2 \cdot 2 \cdot 2 \ldots 2} \]
\[= \ln 2 \cdot \frac{(2n)!}{4^n n!} \]
\[> A_n, \ n > 1. \]

We need to show this. More generally let
\[i(x, 2h) = \int_{x-h}^{x+h} f(t) \, dt \]
\[= F(x+h) - F(x-h) \]
with \(F \) "the" antiderivative of \(f \), so that \(F' = f \). Note in passing that \(i(x, 2h) \) is an odd function of \(h \) (\(x \) is fixed!). By Taylor's theorem with derivative form of the remainder (obtained by several applications of the Cauchy mean value theorem)
\[i(x, 2h) = F(x) + F'(x)h + \frac{1}{2} F''(x)h^2 + \frac{1}{6} F'''(c_0)h^3 \]
\[- F(x) + F'(x)h - \frac{1}{2} F''(x)h^2 + \frac{1}{6} F'''(c_1)h^3 \]
\[= 2h \xi(x) + \frac{1}{3} \frac{\xi''(c_0) + \xi''(c_1)}{2} h^3 \]

with \(c_0 \) between \(x \) and \(x+h \), and \(c_1 \) between \(x-h \) and \(x \). By the intermediate value theorem, and replacing \(h \) by \(h/2 \),

\[i(x, h) = \int_{x - \frac{h}{2}}^{x + \frac{h}{2}} \xi(t) \, dt \]
\[= h \xi(x) + \frac{1}{24} \xi''(c) h^3 \]

\[m(x, h) = \text{midpoint approximation to } i(x, h) \]

Adding up all these elemental approximations, and using the intermediate value theorem again, we get the general result that
\[\int_a^b f(x) \, dx = M(h) + \frac{1}{24} f''(c) \, h^2 \]

with another \(c \) strictly between \(a \) and \(b \). For this we need \(f' \) continuous on \([a, b]\), \(f'' \) continuous on \((a, b)\). The corresponding result for the trapezoidal rule is

\[\int_a^b f(x) \, dx = T(h) - \frac{1}{12} f''(c) \, h^2 \]

with yet another elusive \(c \).

Thus if \(f'' \) is of constant sign on \((a, b)\), \(M(h) \) and \(T(h) \) bracket the integral. And if \([a, b]\) is short enough, so the two \(c \)s are close together, the midpoint error is about half that of the trapezoidal rule. In our case \(a = 1, \ b = 2, \ f(x) = \ln x, \ f'(x) = \frac{1}{x}, \) and \(f''(x) = -\frac{1}{x^2} \) is constantly \(< 0 \).

Thus, getting back to Stirling,
\[T_n < A_n < M_n, \quad n > 1, \]
that is
\[\ln \frac{n!}{\sqrt{n}} < \ln n^n - n + 1 < \ln 2 \frac{(2n)!}{4^n n!}. \]

Since \(e^x \) is increasing, exponentiation gives
\[\frac{n!}{\sqrt{n}} < e \left(\frac{n}{e} \right)^n < 2 \frac{(2n)!}{4^n n!}, \]
\[n > 1. \]

This is getting "kinda close" to Stirling's formula
\[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n, \quad n \to +\infty \]

Use of left and right Euler approximations is even more suggestive, but "less accurate". They give
\[\ln n = \ln 1 + \ln 2 + \ldots + \ln (n-1) \]
\[= \ln (n-1)! \]
and
\[R_n = \ln 2 + \ln 3 + \ldots + \ln n \]
\[= \ln n!, \]
so
\[L_n < A_n < R_n, \, n \geq 1, \]
and
\[(n-1)! < e\left(\frac{n}{e}\right)^n < n!, \]
that is
\[e\left(\frac{n}{e}\right)^n < n! < e\left(\frac{n+1}{e}\right)^n. \]
We need to show the \(\sqrt{2\pi n} \) behavior, and that's harder. Do we have
\[e < \sqrt{2\pi n} \leq n e? \]
3. This is where some work, and Wallis, come in. Let
\[a_n := A_n - \ln n, \, n \geq 1. \]
Then \(a_1 = 0 \) and \(\sum a_n \) is strictly increasing. We show that \(\sum a_n \)
is bounded. So it will follow that \(a = \lim a_n \) exists. Finding \(a \) is the crux of the matter. Look at

\[
a_{k+1} - a_k = (A_{k+1} - A_k) - (T_{k+1} - T_k)
\]

\[
= \int_{k}^{k+1} \ln x \, dx - \frac{1}{2} \left[\ln k + \ln (k+1) \right]
\]

\[
< (M_{k+1} - M_k) - (T_{k+1} - T_k) =
\]

\[
= \ln (k+1) - \frac{1}{2} \left[\ln k + \ln (k+1) \right]
\]

\[
= \ln \left(1 + \frac{1}{2k}\right) - \frac{1}{2} \ln \left(1 + \frac{1}{k}\right)
\]

\[
= \frac{1}{2} \ln \left(1 + \frac{1}{2k}\right) - \frac{1}{2} \left[\ln \left(1 + \frac{1}{k}\right) - \ln \left(1 + \frac{1}{2k}\right) \right]
\]

\[
= \frac{1}{2} \ln \left(1 + \frac{1}{2k}\right) - \frac{1}{2} \ln \left(1 + \frac{1}{2(k+1)}\right)
\]

Here we used basic properties of logarithms: \(\ln(ab) = \ln a + \ln b \) and "increasingness" of \(\ln x \).
Now, summing some "collapsing" sums, we get
\[a_n = \sum_{k=1}^{n-1} (a_{k+1} - a_k) \]
\[< \sum_{k=1}^{n-1} (b_k - b_{k+1}) = b_1 - b_n \]
\[= \frac{1}{2} \ln \frac{3}{2} - \frac{1}{2} \ln \left(1 + \frac{1}{2k}\right) \]
\[< \frac{1}{2} \ln \frac{3}{2} , \]
where we put \(b_k = \frac{1}{2} \ln \left(1 + \frac{1}{2k}\right) \).
Thus we get
\[a_n \to a \leq \frac{1}{2} \ln \frac{3}{2} , \]
but we don't know \(a \), yet. We'll save that for last. Let's see what we could do if we knew \(a \).

4. Since
\[a_n = A_n - T_n \]
\[= n \ln n - n + 1 - \ln \frac{n!}{\sqrt{n}} \]
then
It follows that

\[\Delta_n = e^{1-a_n} = \frac{n!}{\sqrt{n}} \left(\frac{e}{n} \right)^n \]

so

\[n! = \Delta_n \sqrt{n} \left(\frac{n}{e} \right)^n \]

and we really want to show that

\[\Delta = e^{1-a} = \sqrt{2\pi} \]

Well we have

\[a - a_n = \sum_{k=1}^{\infty} (a_{k+1} - a_k) - \sum_{k=1}^{n-1} (a_{k+1} - a_k) \]

\[= \sum_{k=n}^{\infty} (a_{k+1} - a_k) \]

\[< \frac{1}{2} \ln \left(1 + \frac{1}{2n} \right) = \ln \left(1 + \frac{1}{2n} \right)^{1/2} \]
so
\[e^{a-a_n} < \left(1 + \frac{1}{2n}\right)^{\frac{1}{2}} < 1 + \frac{1}{4n}. \]

The last inequality is just
\[\sqrt{1+2x} < 1+x, \] that is \[1+2x < (1+x)^2 = 1+2x+x^2, \] for \(x > 0. \)
Since \(a_n \to a \) then \(e^{a-a_n} \to e^0 = 1, \) so
\[1 < e^{a-a_n} < 1 + \frac{1}{4n} \]
is a darned good bound, for large \(n. \)

Now
\[a_n = e^{1-a_n} \]
\[= e^{1-a} e^{a-a_n} \]
\[= \alpha e^{a-a_n}, \]
so
\[\alpha < a_n < \alpha \left(1 + \frac{1}{4n}\right) \]
and, multiplying by \(\sqrt{n} \left(\frac{n}{e}\right)^n, \)
\[\alpha \sqrt{n} \left(\frac{n}{e}\right)^n < n! < \alpha \sqrt{n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{4n}\right) \]
\[\to 1 \]
5. That's beautiful, if we only knew \(\alpha \). In any case
\[
\frac{n!}{\alpha \sqrt{n} \left(\frac{n}{e} \right)^n}
\]
(Assuming \(\frac{a_n}{b_n} \to 1, n \to \infty \)).

Now Wallis' says
\[
\sqrt{\pi} = \lim_{n \to \infty} \frac{4^n (n!)^2}{\sqrt{n} (2n)!}.
\]

By the (unfinished) Stirling formula,
\[
\frac{4^n (n!)^2}{\sqrt{n} (2n)!} \sim \frac{4^n \frac{1}{2} \pi x^n}{\sqrt{n} \sqrt{2n} \sqrt[4]{2 \pi} (2n)^{2n}}.
\]

Thus
\[
\alpha = \sqrt{2 \pi},
\]

and Stirling is now finished.
(Wallace (Wally) Stirling was a president of Stamford University!)
Oh yes, $a = e^{1-a}$ so
\[\ln x = 1-a, \quad a = 1-\ln x = 1-\ln \sqrt{2\pi}. \]
And $a > 0$ so $\ln \sqrt{2\pi} < 1$, that is $\sqrt{2\pi} < e$. Another relation between the two main numbers of Calculus. I computed
\[\sqrt{2\pi} = 2.5066 \]
\[e = 2.71828 \]
\[a = 0.08106 \]
\[\frac{1}{2} \ln \frac{3}{2} = 0.2027. \]
The trapezoidal bound is
\[n! < e \sqrt{n} \left(\frac{n}{e} \right)^n, \]
not bad. The midpoint bound is, asymptotically,
\[e \left(\frac{n}{e} \right)^n \leq 2\sqrt{2} \left(\frac{n}{e} \right)^n \]
so I guess
\[e < 2\sqrt{2}, \]
and
\[2\sqrt{2} \approx 2.824. \]
6. More fiddling, for ultimate elegance.

\[e^{T_n} = \frac{n!}{\sqrt{n}} < \frac{e^n}{e^{n/e}} < e^{H_n} = \frac{(2n)!}{4^n n!} \]

Use Wallis's,

\[\frac{(2n)!}{4^n n!} = \frac{n!}{\sqrt{n!}} \]

to write \(e^{H_n} \) in terms of \(n! \):

\[e^{H_n} = \frac{2}{\sqrt{\pi n}} n! \]

So

\[\frac{n!}{\sqrt{n}} < e^{n/e^n} < \frac{2}{\sqrt{\pi n}} n! \]

that is

\[\frac{e^{n/e^n}}{2/\sqrt{\pi n}} \leq n! < e^{n/e^n} \]

So \(H_n \) and Wallis's show that the \(\sqrt{n} \) behavior is "sharp" and only the constant is in question.

\[\frac{e}{2/\sqrt{\pi}} \approx 2.4090 < 2.7183 \approx e, \]

\[\sqrt{2\pi} \approx 2.5066. \]
7. Can we perhaps combine T_n and S_m to do better? We take a clue from

$$T(h) = \int_a^b f(x) \, dx + \frac{1}{12} f''(c_t) h^2,$$

$$M(h) = \int_a^b f(x) \, dx - \frac{1}{24} f''(c_m) h^2.$$

If we had $c_t = c_m$ (which we don't!) then the error term can be eliminated to get

$$S(h) := \frac{1}{3} T(h) + \frac{2}{3} M(h) = \int_a^b f(x) \, dx.$$

This is Simpson's rule, mentioned in most Calculus texts. It's error is $O(h^4)$, assuming f has four continuous derivatives.

(But Richardson-Romberg is much more powerful; $S(h)$ is only its first step!) So what can we do with

$$S_{n+1} := \frac{1}{3} T_n + \frac{2}{3} M_{n+1}?$$
Note that S_n is a weighted average of T_n and M_n, so it lies strictly between T_n and M_n and hopefully much closer to A_n. No doubt we could even find out on which side of A_n it lies, and even find another good approximation ($O(4^k)$) which lies on the opposite side. Idea: apply Richardson-Romberg acceleration to both T_n and M_n. So let's just play a little.

$$e^{S_n} = e^{\frac{1}{3} T_n + \frac{2}{3} M_n}$$

$$= \left(e^{T_n} (e^{M_n})^2 \right)^{\frac{1}{3}}$$

$$= \left(\frac{n!}{\sqrt{n}} \frac{4}{\pi n} (n!)^2 \right)^{\frac{1}{3}}$$

$$= \left(\frac{4}{\pi} \right)^{\frac{1}{3}} \frac{n!}{\sqrt{n}}$$

$$= \left(\frac{4}{\pi} \right)^{\frac{1}{3}} \sqrt{2 \pi} \left(\frac{e}{n} \right)^n$$

$$= (128 \pi)^{\frac{1}{3}} \left(\frac{e}{n} \right)^n$$
This is to be considered as an approximation to the exact value
\[e^{A_n} = e^{\left(\frac{n}{\varepsilon} \right)^n}, \]
along with
\[e^{T_n} = \frac{n!}{\sqrt{2\pi n}} \left(\frac{n}{e} \right)^n, \]
\[e^{M_n} = \frac{2}{\sqrt{\pi}} \frac{n!}{\sqrt{n}} + 2\sqrt{2} \left(\frac{n}{e} \right)^n. \]
The corresponding constants are
\[T_n : \sqrt{2\pi} \approx 2.50663 \]
\[M_n : 2\sqrt{2} \approx 2.82843 \]
\[S_n : (128\pi)^{1/6} \approx 2.71881 \]
\[A_n : e = 2.71828 \]
As approximations to \(e \) the first two have about two digits of accuracy with that for \(M_n \) being a tad closer. But that for \(S_n \) has about four accurate digits, roughly twice as many!
8. Lower and upper bounds for Wallis:

\[
\frac{\pi}{2} = \frac{16^n (2n)!^4}{(2n)!^2 (2n+1)!} \cdot \frac{C_{2n}}{C_{2n+1}} > 1
\]

Simple to show:

\[
\frac{C_{2n}}{C_{2n+1}} = \frac{C_{2n-2}}{C_{2n-1}} \left(1 - \frac{1}{4n^2}\right)
\]

\[
\frac{C_0}{C_1} = \frac{\pi}{2} \cdot \frac{C_2}{C_3} = \frac{C_0}{C_1} \left(1 - \frac{1}{4}\right) = \frac{3\cdot C_0}{4\cdot C_1},
\]

So

\[
\frac{16^n (2n)!^4}{(2n)!^2 (2n+1)!} > \frac{\pi}{2},
\]

\[
\frac{4^n (2n)!^2}{\sqrt{n} (2n)! \sqrt{1 + \frac{1}{2n}}} > \sqrt{\pi},
\]

\[
S_{n+1} = \frac{4^n (2n)!^2}{\sqrt{n} (2n)!} < \sqrt{\pi}
\]

Since

\[
\frac{S_n}{S_{n-1}} = \frac{4n^2}{(2n)(2n-1)} \cdot \frac{\sqrt{n-1}}{\sqrt{n}} = \frac{\sqrt{1 - \frac{1}{2n}}}{1 - \frac{1}{2n}} < 1
\]

Since

\[
1 - \frac{1}{2n} < \left(1 - \frac{1}{2n}\right)^2 = 1 - \frac{1}{n} + \frac{1}{4n^2}.
\]
\[
\frac{C_0}{C_1} = \frac{\pi}{2}, \quad \frac{C_2}{C_3} = \frac{3}{4} \frac{\pi}{2}
\]

\[
\frac{C_4}{C_5} = \left(1 - \frac{1}{4 \cdot 2^2}\right) \frac{3}{4} \frac{\pi}{2} = \left(1 - \frac{1}{16}\right) \frac{3}{4} \frac{\pi}{2}
\]

\[
= \frac{15}{16} \frac{3}{4} \frac{\pi}{2}
\]

\[
\frac{C_6}{C_7} = \left(1 - \frac{1}{4 \cdot 3^2}\right) \frac{C_4}{C_5} = \left(1 - \frac{1}{36}\right) \frac{C_4}{C_5}
\]

\[
= \frac{35}{36} \frac{15}{16} \frac{3}{4} \frac{\pi}{2}
\]

\[
\frac{\pi}{2} = \frac{4}{3} \frac{16}{15} \frac{36}{35} \frac{64}{63} \frac{100}{99} \frac{144}{143} \ldots
\]

\[
= \prod_{u=1}^{\infty} \frac{(2u)^2}{(2u)^2 - 1} = \prod_{u=1}^{\infty} \frac{1}{1 - \frac{1}{4u^2}}
\]

\[
\text{product}
\]

\[
P_n = \prod_{k=1}^{n} \frac{(2k)^2}{(2k)^2 - 1} = P_{n-1} \frac{(2n)^2}{(2n)^2 - 1}
\]

\[
= P_{n-1} \frac{1}{1 - \frac{1}{4n^2}} > P_{n-1}
\]

\[
P_n \to \frac{\pi}{2}.
\]

\[
\ln p_n = \ln p_{n-1} + \ln \frac{1}{1 - \frac{1}{4n^2}}
\]

\[
= \ln p_{n-1} - \ln \left(1 - \frac{1}{4n^2}\right)
\]

\[0 < \cdot < 1\]
In a sum of positive terms
\[\ln p_n = \sum_{1}^{n} - \ln (1 - \frac{1}{4k^2}) \]

By Taylor
\[\ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots, \quad -1 < x \leq 1 \]
\[- \ln (1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots, \quad -1 \leq x < 1 \]
\[- \ln \left(1 - \frac{1}{4k^2}\right) = \frac{1}{4k^2} + \frac{1}{2 \cdot 4^2 k^4} + \frac{1}{2 \cdot 4^3 k^6} + \cdots \]
\[\ln p_n = \frac{1}{4} \sum_{1}^{n} \frac{1}{k^2} + \frac{1}{2 \cdot 4^2} \sum_{1}^{n} \frac{1}{k^4} + \cdots \]
\[p_{\infty} = \frac{\pi}{2} \]
\[\ln \frac{\pi}{2} = \frac{1}{4} \sum_{1}^{\infty} \frac{1}{k^2} + \frac{1}{2 \cdot 4^2} \sum_{1}^{\infty} \frac{1}{k^4} + \cdots \]
\[= \sum_{1}^{\infty} \frac{\zeta(2n)}{n \cdot 4^n} \]

\underline{Riemann \ zeta \ function}
\[\zeta(z) := \sum_{1}^{\infty} \frac{1}{k^z}, \quad \text{Re} z > 1 \]

\underline{Bernoulli \ numbers}
\[B_{2n} = 2(-1)^{n-1} \frac{\zeta(2n)}{(2\pi)^{2n}} \]

\underline{Generating \ function}
\[\frac{1}{\tanh(z/2)} = \sum_{0}^{\infty} \frac{B_{2n}}{(2n)!} z^{2n} \]
Special values

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{2n}</td>
<td>1</td>
<td>1/6</td>
<td>-1/30</td>
<td>1/42</td>
<td>-1/30</td>
<td>5/6</td>
</tr>
</tbody>
</table>

Also $B_1 = -\frac{1}{2}$ and $B_{2n+1} = 0$, $n \geq 1$.

Solution to many induction problems. For $p = 0, 1, 2, \ldots$,

$$\sum_{k=1}^{n} k^p = p! \sum_{k=0}^{p} \frac{(-1)^k B_k}{k! (p+1-k)!}$$

In particular

$$\sum_{k=1}^{n} k^p = \frac{n^{p+1}}{p+1}, \ n \to +\infty.$$

Asymptotic behavior

$$B_{2n} \sim 4(-1)^{n-1} \sqrt{\pi n} \left(\frac{n}{\pi e}\right)^{2n}, \ n \to +\infty,$$

that is, with Stirling,

$$\frac{B_{2n}}{(2n)!} \sim \frac{2(-1)^{n-1}}{(2\pi)^{2n}}, \ n \to +\infty.$$

Thus the radius of convergence of the series for $\frac{x}{2 \coth \frac{x}{2}}$ is 2π, as it should be. (Why?)
Euler-Maclaurin Formula

\[T(h) = \text{trapezoidal rule, step } h \]

\[= \int_a^b f(x)dx + \sum_{m=1}^{\infty} \frac{B_{2m}}{(2m)!} \int_a^b f^{(2m)}(x)dx \cdot h^{2m} \]

\[h \to 0. \]

The series is only an asymptotic one. It need not converge!

(There is a remainder term, as with Taylor series.) But that doesn't matter for the

Richardson-Romberg application

All we need is \(\sqrt{\text{error}} \sim O(h^2) \)

\[T(h) = \int_a^b f(x)dx + C_2 h^2 + C_4 h^4 + \ldots \]

Then

\[4 T\left(\frac{h}{2}\right) = 4 \int_a^b f(x)dx + C_2 h^2 + C_4 \frac{h^4}{4} + \ldots \]

\[S(h) = \frac{4}{3} T\left(\frac{h}{2}\right) - \frac{1}{3} T(h) = \int_a^b f(x)dx + C_4 h^4 + \ldots \]

\[\frac{1}{2}\left(T(h) + M(h)\right) \]

\[S(h) = \frac{1}{3} T(h) + \frac{2}{3} M(h) = \int_a^b f(x)dx + C_4 h^4 + \ldots \]

\[= \text{Simpson's rule.} \]

And so on, ad nauseum!