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The U.S. Department of Homeland Security (DHS) is investing billions of dollars to protect us from 

terrorist attacks and their expected damage (i.e., risk). We present prescriptive optimization models to 

guide these investments.  Our primary goal is to recommend investments in a set of available defense 

options; each of these options can reduce our vulnerability to terrorist attack, or enable future mitigation 

actions for particular types of attack.  Our models prescribe investments that minimize the maximum risk 

(i.e., expected damage) to which we are exposed. Our “Defend-Attack-Mitigate risk-minimization model” 

assumes that terrorist attackers will observe, and react to, any strategic defense investment on the scale 

required to protect our entire country.  We also develop a more general tri-level “Defender-Attacker-

Defender risk-minimization model” in which (a) the defender invests strategically in interdiction and/or 

mitigation options (for example, by inoculating health-care workers, or stockpiling a mix of emergency 

vaccines) (b) the attacker observes those investments and attacks as effectively as possible, and (c) the 

defender then optimally deploys the mitigation options that his investments have enabled.  We show with 

simple numerical examples some of the important insights offered by such analysis.  As a byproduct of 

our analysis we elicit the optimal attacker behavior that would follow our chosen defensive investment, 

and therefore we can focus intelligence collection on telltales of the most-likely and most-lethal attacks. 

 

                                                 
1 Appears as Appendix E of: National Research Council, 2008, “Department of Homeland Security Bioterrorist Risk 

Assessment: A Call for Change,” National Academies Press, Washington, DC. 
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INTRODUCTION 

Since 9/11, the U.S. Department of Homeland Security (DHS) has marshaled significant resources 

to assess the risk to our populace from terrorist attacks of all kinds.  The work we report here is directly 

motivated by just one such risk assessment: pursuant to Homeland Security Presidential Directive 10 

(HSPD 10) [The White House, 2004], DHS has conducted an extensive bio-terrorism risk-assessment 

exercise, referred to here as the Bio-Terror Risk Assessment (BTRA) [DHS 2006].  BTRA estimates risks 

of many bio-terror attack possibilities, and classifies a list of particular bio-terror agents as most-, 

intermediate-, and least-threatening. 

The BTRA risk assessment depends upon subject-matter experts (SMEs) advising, with perfect 

knowledge, the probability that the “attacker” (terrorist or terrorist group), or “defender” (the federal 

government), will choose some particular option at each stage of an 18-stage probability risk assessment 

tree. 

We contend that representing intelligent adversarial decisions with static probabilities elicited from 

SMEs is an untenable paradigm:  Not only can experts make mistakes, but static probabilities make no 

sense when the attacker can observe and react, dynamically, to any earlier decisions made by the 

defender.   

We also hold that the business of DHS lies not just in assessing risks, but also in wisely guiding 

investments of our nation’s wealth to reduce these risks.  These are strategic decisions that must be made 

now, in a deliberative fashion. 

Here, we try to adopt the same problem context as BTRA to recoup its estimable investment in risk 

modeling.  But, we distinguish between (a) strategic investment decisions that DHS makes that are visible 

to terrorists, (b) the decision a terrorist makes to attempt an attack and, finally, (c) the after-attack 

mitigation efforts that prudent DHS investments will have enabled. 

Our work applies equally well to any category of threat that concerns DHS enough to warrant 

investments so significant they cannot be hidden from our taxpayers, and thus not from terrorists, either.  
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Such threats cover biological, nuclear, chemical, and conventional attacks on our infrastructure and 

citizens, as well as sealing our borders against illegal immigration, and a host of military topics.   

The modeling presented here has been motivated and validated by more than one hundred 

worldwide infrastructure vulnerability analyses conducted since 9/11 by the military-officer students and 

the faculty of the Naval Postgraduate School [Brown et al. 2005a, Brown et al. 2006a].  Some of these 

studies have been developed into complete decision-support systems:  

• Salmerón, et al. [2004] have received DHS and Department of Energy support to create the 

Vulnerability of Electric Grids Analyzer (VEGA), a highly detailed, optimization-based 

decision-support system.  VEGA can evaluate, on a laptop computer, the vulnerability and 

optimal defense of electrical generation and distribution systems in the U.S., where risk is 

measured as expected unserved demand for energy during any repair-and-recovery period. 

• We have developed a decision-support system to advise policy regarding the interdiction of a 

proliferator’s industrial project to produce a first batch of nuclear weapons [Brown et al. 2006b, 

2007]. 

• The U.S. Navy has developed a decision-support system to optimally pre-position sensor and 

defensive interceptor platforms to protect against a theater ballistic missile attack [Brown et al. 

2005b]. 

The message here is that, with experience, we have gained confidence that these new mathematical 

methods produce results that exhibit the right level of detail, solve the right decision problems, and 

convey useful advice and insight to policy makers.  Such capabilities have not been available before. 

 

THE MODEL, “MXM” 

BTRA uses a descriptive model.  Our focus is prescriptive, rather than descriptive: our models 

suggest prudent investment and mitigation plans for biodefense, and we strive to provide a realistic 

representation of the attack decisions made by an intelligent adversary. 
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As the defender, we seek to allocate a limited budget among biodefense investment options to form 

a defense strategy that minimizes the maximum risk to a terrorist attacker’s actions.  We might define risk 

as the expected number of fatalities, or as the expected 95-th percentile of fatalities, or as any other gauge 

that appeals.  Risk is a somewhat ambiguous term when used to discuss our bilateral view of conflict 

between intelligent adversaries, so we hereafter substitute “expected damage to the defender.”  We 

assume that an intelligent adversary will attempt to inflict maximum expected damage.  The following, 

simplified model minimizes a reasonable upper bound on expected damage; we discuss generalizations 

later.  

Indices 

d D∈  defense strategy, e.g., stockpile vaccines A and B, but not C 

a A∈   attack alternative, e.g., release infectious agent V  

m M∈  after-attack, mitigation activity, e.g., distribute vaccine A 

dm M∈  mitigation activities enabled by defense option d , e.g., distribute vaccine A, distribute 

vaccine B 

md D∈  defense strategies that enable mitigation activity m  

k K∈  resource types used by mitigation activities, e.g., aircraft for distributing vaccine, 

personnel for administering vaccine 

Data 

,d adamage  expected damage if defense strategy d and attack alternative a are chosen, given no 

mitigation 

, ,d a mmitigate  expected damage reduction of after-attack mitigation effort m, given investment strategy 

d and attack a ,  (assumes additive reduction and , , ,d a m d a
m

mitigation damage≤∑ ) 

,k dr  total mitigation resource of type k  available if defense strategy d  is chosen 
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, ,k d mq  consumption of mitigation resource k  provided by defense option d for mitigation 

activity m   

Decision Variables 

dw   1 if defense strategy d chosen, else 0 

ax   probability attacker chooses attack alternative a ( 0 1ax≤ ≤ ) 

,d my   fraction of defense strategy d effort devoted to mitigation activity type m 

Formulation: MIN-MAX-MIN (MXM) 

(Defender-Attacker-Mitigator) 
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Description 

The order of appearance of the operators, min, followed by max, followed by min, in the objective 

function (D0) represents the sequential nature of the decisions we are modeling, from the outside to the 

inside. The coefficient ,d adamage  in the objective accounts for any interdiction effects that strategy d 

has on attack a, effects that are independent of any mitigation activities.  (For example, vaccinating 

emergency and health-care providers falls under the category of “interdiction”: after an attack, no follow-

up mitigation efforts apply to this vaccination.) The right-most minimization term, over ,d my , subtracts 

from expected damage if a mitigating effort has been enabled by the defense plan, and if some amount of 
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that mitigation is applied.  For simplicity of exposition, we assume that mitigation results are additive and 

restricted to sum to some value not exceeding total expected damage.  (See the definition of 

, ,d a mmitigate .)  Constraint (D1) simply limits the defender to choosing one defense strategy.  Constraint 

(A1) limits the attacker to choosing a mixed attack strategy, which of course admits a pure attack as well.   

Constraints (M1) are joint resource constraints on mitigation efforts; constraints (M2) stipulate that 

mitigation efforts are permitted only if the enabling defense strategy has been chosen.  Constraints (M1) 

subsume those of type (M2), but we keep these separate for later clarity.  The attack variables, xa, and the 

mitigation variables, yd,m, are continuous.  If the attacker variables are restricted to be integer (for 

instance, they might be binary variables indicating whether or not the terrorists decide to fully develop 

and deploy a particular pathogen in an attack), then the resulting analysis becomes significantly more 

complicated than that which we present here.  Although dealing with bioterrorist attacks might be most 

naturally modeled using integer attacker variables, our model with continuous attack (ya) variables will at 

least provide a conservative estimate of the defender’s objective; i.e., the attacker’s abilities to inflict 

damage are over-estimated by our model. 

Discussion of MXM 

Figure E 1 depicts a tree showing the sequential actions of the defender (selecting a defense 

strategy), the attacker (choosing attack alternatives), and the defender (mitigating damage with resources 

put in place by the defense strategy).  (We use the generic term “tree” to represent the sequence of 

defender and attacker decisions we model.  The “decision tree” of Raiffa [1968] pits a single decision 

maker against Mother Nature, while here we have two opponents trying to shape an outcome governed by 

Mother Nature.  The term “game tree” [Kuhn, 1953] is a more appropriate term for our bioterror 

situation.)  Each defense strategy has an immediate effect on the maximum damage of any attack, 

reflected in ,d adamage ; it can also enable the capability to reduce after-attack damage by as much as 

, ,d a mmitigate , if the chosen defense strategy permits a full allocation of mitigation resources to 

mitigation action m.  Given a fixed defense strategy, we assume the attacker will first observe this 
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strategy and then respond with a mixed strategy over the set of possible attacks.  As we have said, this 

might be a relaxation of the original optimization problem faced by the attacker, and therefore grants him 

more attack capability than he really has in this sequential decision-making.  In general we cannot tell 

how weak this relaxation is, but for specific cases (especially those with a moderate number of feasible 

attacker decisions) we can use enumeration to bound the effect of this relaxation on the optimal objective 

function value. 
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Figure E 1.  This tree depicts, left-to-right, a leading defense strategy choice dw , consisting of 

component defense investment options, and visible to an attacker, followed by attack alternative 

choice(s) ax  that (each) inflict expected damage ,d adamage .  Square nodes indicate defender 

decisions, and circle nodes indicate attacker decisions.  We only illustrate a mitigation subtree (yd,m 

decisions) for one (wd, xa) pair.  For a given defense strategy 1dw = , the optimization recommends a 

mixed attack strategy for the attacker and a mixed mitigation response ,d my from the defender.  The 

defense strategy establishes all mitigation resources that can be used after an attack.  That strategy is 

seen by the attacker when he develops his attack plan.  Enabled mitigation resources can reduce 

expected damage through , , ,d a m a d mmitigate x y− .  (Our conservative model does not allow the defender 

to observe the precise type of attack, however, so the mitigation response may not be optimal.) . 

A “mixed attack strategy” means that the optimal attacker decision includes multiple attacks and 

then we choose mitigation responses, and this results in some damage that can only be estimated, and 

some part of that estimation can involve an expectation. (For example, the damage could involve an 

expectation taken over a probability distribution for the time between when an attack is launched to when 
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it is discovered.)  Thus, integrating damage over one or more probability distributions yields an objective 

function that measures “expected damage.” 

Solving MXM 

Temporarily fixing ˆw w=  in MXM, we take the linear-programming dual (hereafter referred to simply 

as “the dual”) of the innermost minimizing linear program, using dual variables kα  for constraints (M1), 

and ,d mβ  for constraints (M2).  This converts the inner “max-min problem” into a “max-max problem,” 

which is a simple maximization: 

Formulation: MAX-ATTACKER-LP ( )ŵ  
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Now, leaving ˆw w=  as shown in MAX-ATTACKER-LP, we take the dual of this linear program, 

using dual variables ℜ  for constraint (A1) and ,d my  for constraints (DM1), and then release w to vary as 

before, to achieve the following integer linear program which is essentially equivalent to MXM: 

Formulation: MIN-ILP 

(Defender-Attacker-Mitigator) 
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The optimal solution to MIN-ILP prescribes among other things a choice for the defense strategy, 

w*, to be implemented immediately by the defender, before an attack occurs.  Given optimal incumbent 

solution w*, we recover the attacker’s optimal strategy x* by solving MAX-ATTACKER-LP(w*). 

 

A Numerical Example of MXM 

We provide a small numerical example to illustrate the features of MXM. 

We introduce a number of defensive investment options, programs that can be composed in groups 

into defense strategies.  Table E 1 displays defensive investment options and costs. 

i costi

i01 2
i02 3
i03 5  

Table E 1. Defensive investment options and costs.  For example, option “i03” costs 5.  

Total budget, logical, and perhaps political considerations will limit the combinations of 

these options that can comprise admissible defense strategies. 

 

In our example, the defensive investment options are denoted “i01,” “i02,” and “i03.”  From this 

set, policy makers have determined 6 combinations that comprise the subset of admissible defense 

strategies whose implementation will depend on the available budget; see Table E 2.  Table E 3 displays 

expected damage resulting from each defense strategy and each attack alternative, i.e., the terms 

,d adamage . 
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Investment options
i01 i02 i03

d00
Defensive d01 x
strategies d02 x

d03 x
d04 x x
d05 x x  

Table E 2. Defensive investment options in each potential defense strategy.  

Strategy “d00” makes no investment at all.  Defense strategy “d05” includes investment 

options “i02” and “i03.”  Logical, political, or other considerations preclude some of the 

strategies, for example, {“i01,” “i03”}.  The total available budget, not yet specified, 

can also preclude certain strategies.  For instance, {“i02” and “i03”} cannot be selected 

if the total budget is less than 8. 
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Figure E 2.  The purpose of DHS defensive investment options is to reduce expected 

damage before an attack occurs, and/or allow mitigation of expected damage after one 

occurs.  The generic relationship illustrated here conjectures little to no effect at low 

investment levels, followed by increased effectiveness, and eventually leveling off with 

diminishing returns.  The triangles represent points we might use as alternate investment 

options to adequately represent the entire function. 
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Figure E 2 illustrates the generic relationship relating investment options to the ability to reduce 

expected damage from any terrorist attack before it is carried out, and/or mitigate damage after an attack 

occurs.  This is a complicated function, neither convex nor concave, but our sampling of representative 

points can be used to represent this in characterizing component investment options in defense strategies. 

Damage estimates in Table E 3 include any synergies among or interference between component 

investment options in each defense strategy preparing for each attack.  This is key.  BTRA makes a point 

of such dependencies, and we represent these in complete, realistic detail here. 

a01 a02 a03
d00 10 10 10
d01 10 5 7
d02 6 8 7
d03 6 6 6
d04 4 3 5
d05 5 5 4  

Table E 3. Expected damage resulting from each defense strategy 

(row) and each attack alternative (column), accounting for 

interdiction but not mitigation.  (This table gives the values for 

,d adamage  for MXM.  We use integral data to permit reproduction of 

our results.) 

Table E 4 represents estimated mitigation capabilities. These mitigation estimates correspond to a 

single, “full-strength” mitigation effort being applied to a single attack alternative.  If the attacker chooses 

a mixed attack strategy, we may need to spread mitigation effort across multiple activities, reducing the 

expected effectiveness of each activity accordingly. 
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m=m1 a01 a02 a03 m=m2 a01 a02 a03
d00 0 0 0 d00 0 0 0
d01 1 0 0 d01 1 0 0
d02 0 1 1 d02 0 2 0
d03 0 0 1 d03 0 0 1
d04 1 1 1 d04 0 1 2
d05 0 1 1 d05 0 0 2  

Table E 4.  Maximum expected damage reduction from a mitigation activity enabled (prior to an 

attack) by a defense strategy (and applied after an attack).  These tables specify  , ,d a mmitigate  for 

MXM, for each of two mitigation options (“m01” and “m02”), for each combination of defense and 

attack.  For example, with defense option “d04” and attack “a03,” if we choose mitigation “m01” we 

reduce the damage by one unit, but if we choose mitigation “m02” we reduce the expected damage by 

two units (circled values). 

 

The choice of defense strategy is limited by a total budget, which we vary over the integers from 0 

to 11.  We allow full employment of either mitigation effort, or any convex combination of them. 

Because the defender is minimizing the optimal objective function value of a maximization 

problem, the optimal solution invests to reduce the expected damage, given future mitigation capability, 

of the most-threatening mixed attack.  This requires that the defender invest in a defense strategy that 

enables him to mitigate several very-damaging attacks, and not just the worst one. 

Figure E 3 shows minimized maximum expected damage as a function of total defense budget, and 

Table E 5 summarizes the solutions for each budget break-point.  For instance, with a budget of 3, the 

optimal defense plan in MXM is to choose defense option “d02.”  The terrorists’ optimal attack is a 

mixed strategy, with a probability of 0.50 of choosing “a02” and probability 0.50 of choosing “a03”.  The 

resulting expected damage, after mitigation, is 6.5.  Analysis of this simple case reveals that we have 

optimally allocated our mitigation effort among the two worst attacks, reducing the expected damage in 

each attack to the same value, 6.5.  We can do no better than this, given our conservative approximation. 
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Expected Damage as a Function of Defense Budget
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Figure E 3. Expected damage as a function of defense budget.  This display is for policy makers:  as 

we devote more and more defense budget, we achieve less and less expected damage.  Because the 

defender’s investment options here are discrete, each improvement appears as a staircase drop as soon as 

sufficient budget permits some new, improved cohort of investment defense options, i.e., a new defense 

strategy.  The law of diminishing returns is evident: expected damage reduced by each budget dollar 

decreases as budget increases.  Policy-makers can usually put their finger on the spot that appeals in an 

illustration such as this, perhaps based on criteria not part of the underlying modeling.  The uppermost, 

solid line displays the expected damage when all mitigationd,a,m values are set to zero (i.e., we have no 

mitigation capability) and only consider the expected damage from adopting a defense strategy, and then 

suffer the worst-case attack per expected damage in Table E 3.  The dashed line illustrates the expected 

damage from MXM, the tri-level optimization. 
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Budget w x z * w x y z *
0 d00 a01 10 d00 a01 - 10
2 d01 a01 10 d01 a01 m01 9
3 d02 a02 8 d02 a02(.50) m01(.50) 6.5

a03(.50) m02(.50)
5 d04 a03 5 d04 a01(.50) m01(.50) 3.5

a03(.50) m02(.50)

MXM with y = 0 MXM

 

Table E 5. For each budget just sufficient to afford a new defense strategy, we show the Defender-

Attacker solution and expected damage (i.e., for MXM with =y 0 ), the Defender-Attacker-

Defender solution (for MXM) and expected damage.  For example, with a budget of 3, the optimal 

defense strategy in MXM is “d02”.  The terrorists’ optimal attack is a mixed strategy, choosing alternative 

“a02” with probability 0.50, and “a03” with probability 0.50.  We anticipate responding accordingly with 

“m01,” the optimal response to “a01,” with the same probability (0.50), and similarly with “m02” with 

probability 0.5.  The resulting expected damage, after optimal mitigation in each case, is 6.5. 

 

Generalizing Beyond Tri-level Decision Problems 

The DHS biological threat risk assessment (BTRA) consists of an 18-stage probability risk 

assessment tree, where each decision has been replaced by an a priori probability; for example, see NRC 

[2007].  In the case of the each opponent, these probabilities are determined by subject-matter experts 

assessing how terrorists might make each decision, and how well DHS will do thwarting a bioagent attack 

at some intermediate stage of its development. 

We could instead model BTRA as a 19-stage defender-attacker-defender model, with a new stage 

zero describing how DHS can invest in strategic biological defense strategies, and each of the 

intermediate stages represented by a set of decision variables that prescribe attacker or defender behavior, 

and solve a multi-stage defender-attacker-defender(-attacker-...) model to determine optimal stage-zero 

investment decisions to minimize expected damage assuming each opponent makes the optimal decision 

at each node of the corresponding tree.  To fully represent the sequential nature of these decisions, we 

would require all decisions (except maybe those in the final stage) to be modeled with integer variables.  

However, solving such a model for just two stages of integer decisions is difficult.   
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We do not have the technology to handle three, much less 18, stages of alternating integer 

decisions.  Allowing continuous decision variables in each of the stages except stage zero (our defense 

decision variables) would again be a relaxation of the restrictions on the attacker, and could, in some 

cases, yield extremely weak bounds on our defensive capability.   

We now show in the case of a two-stage model how this relaxation from integer to continuous 

variables reduces the sequential decision problem to a simultaneous two-person zero-sum game. 

Consider the bi-level attacker-defender, max-min optimization formulation: (ALDL), where the 

subscript “L” denotes a linear program (i.e., continuous decision variables, and objective and constraints 

that are linear in those decision variables): 
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(ALDL) is a more general version of the model used by Fulkerson and Harding [1977] and Golden [1978] 

for their work on continuous network interdiction models. 

 Take the dual of the inner (defender, “y”) problem in (ALDL): 
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This is our standard way to convert a “max-min” problem, for which there is no conventional 

optimization method, into an equivalent “max-max” problem that is nothing more than a conventional 

linear program. 

Now, reverse the order of play in (ALDL) to (DLAL): 



   

                                                           E-17 

[ ]

[ ] ( )
[ ] ( )

min max dual variables

s.t. B1

B2
0

0 .

T T T

y x
g x x Qy c y

Ax b

Dy d
x

y

π

μ

+ +

≤

≥

≥
≥

  (DLAL) 

This variation on (ALDL) is formulated as if the defender makes his decision first. 

Take the dual of the inner, attacker, (“x”) problem in (DLAL):  
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This formulation is equivalent to (DLAL), and is also a linear program. 

We observe that ( )L LA D  and ( )L LD A  are linear programming duals of each other, and thus 

(assuming both are feasible) have the same optimal objective-function values, which is the same as the 

optimal objective value of (ALDL).  Therefore, the sequence in which the decisions are made (either 

attacker first, followed by defender, or defender first, followed by attacker) has no impact on the optimal 

objective-function value. 

We have therefore proved the following: 

Theorem 1: for any attacker-defender model in the form (ALDL), we can exchange the 

order of decisions without affecting the optimal objective function value. 

Theorem 1 is a simple extension of von Neumann's [1928] minimax theorem for polyhedral feasible 

regions using a proof technique similar to Ville [1938], but using the more modern technology of LP 

duals directly.  This exchange argument, along with the observation that any two consecutive decision 

stages controlled by the same decision maker are equivalent to a single stage, (since both stages are either 

a maximization or both are a minimization over a set of decision variables, this is equivalent to a single 

maximization, or minimization, over all of those variables simultaneously), can be repeated for any 
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number of consecutive stages with continuous decision variables.  The final model obtained in this 

manner is a simple maximization or minimization problem.   

Specifically, if we were to apply this to the 18-stage BTRA model, (i.e., the model we would solve 

for any fixed, known defense decision in stage zero) we would aggregate adjacent attacker stages (and 

adjacent defender stages, if there are any) and reduce the 18-stage BTRA tree to eight stages.  We would 

then require that all decision variables be continuous, and then swap adjacent defender-attacker pairs of 

stages until we obtain a model having all of the attacker decisions in stage one and all of the defender 

decisions in stage two.  This resulting model is equivalent to model (ALDL), above, and hence is 

equivalent to a simultaneous game. 

The optimal solution would prescribe mixed strategies for the attacker and defender, eliminating the 

sequential nature of the real decisions that must be made.  In general the results from such an analysis 

might not be very accurate, as every relaxation of a block of integer variables to continuous and the 

subsequent interchange and aggregation of adjacent stages can result in a significant relaxation of attacker 

restrictions; in some models these approximations could get significantly less informative with each 

additional stage exchanged in this manner.   

However, if the sequencing of two adjacent attacker-defender stages is not a critical component of 

the formulation then the optimal solution of the relaxation might not be far off from that of the original 

model.  As a simple example, if the attacker chooses which pathogen to load into a truck, and the 

defender then chooses whether or not to emplace transportation blockades, relaxing the decision variables 

and exchanging these two stages might not be as significant a relaxation as in a situation where the 

attacker decides whether or not to release a pathogen, and the defender then chooses whether or not to 

employ his stockpile of a certain vaccine that can treat the attacker’s pathogen.  In the former case the 

blockades will work against the truck regardless of the pathogen chosen, while in the second example 

committing to use the vaccine before a pathogen is released is clearly a bad idea, and allows the attacker 

to cause significantly more damage. 
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How to Generalize BTRA to a Decision Model Prescribing Defense Investments 

If we are to leverage the considerable effort that went into the development of BTRA, we must use 

the data obtained, and elicit subject-matter-expert input, to develop a two- or three-stage sequential 

decision model of defensive investments, attacks, and mitigation responses such that the relaxation 

obtained by allowing continuous attacker variables, as in MXM, is at least a reasonable approximation. 

If we are successful in our new modeling effort, then the decisions at each stage except our new 

stage-zero will be continuous (and, more specifically, interpreted as mixed strategies), but now the values 

of these mixed-strategy probabilities will be prescribed by the optimization model: for the stage under 

control of the terrorists, these will represent the worst-case mix of attack decisions the terrorists can 

devise; in the mitigation stage, under DHS control, these will represent the best response to each of the 

attacker’s possible decisions in the previous stages. 

It is not lost on us that some of the BTRA probabilistic risk assessment tree’s probabilities exhibit 

dependence on the outcomes of some prior stages in the tree.  A reformulation to a two- or three-stage 

sequential decision model would necessarily require some reworking of this data.  For brute-force 

permutation of (potentially aggregated) stages, we could unwind the conditional probabilities with Bayes 

Theorem (just as DHS already does when they split the single BTRA tree into 28 independent trees, one 

for each bioagent, where selection of bioagent is the third terrorist stage in the original tree). 

However, we hope to move away from subject-matter-expert elicitations of highly dependent 

probabilities as follows.  These dependencies are presumably due to the influence of prior stages on the 

state of the terrorist (or DHS) in terms of exhaustion of limited resources.  MXM would explicitly guide 

strategic defensive investment in stage zero, and subsequently offer all the explicit resource-limiting 

features of a linear program for all the attacker decisions, and in parallel all the defender’s mitigation 

decisions that consume the mitigation resources provided by stage zero.  Linear programming has long 

been widely applied to planning industrial and military operations that precisely mimic a bioterror-agent 

production program, or a defense plan. 
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We recommend eliciting from SMEs an explicit assessment of the resources and capabilities of 

each opponent, and the way and rate at which various alternate activities would consume these.  This is, 

in fact, the way BTRA reports that the SMEs explained their reasoning to support probability 

assessments.  We advise using these technological estimates as explicit inputs, and letting MXM 

determine attacker mixed-strategy probabilities and expected consequences as outputs.  This would be 

much more transparent modeling, provide better documentation, and be less likely to be influenced by 

poor SME guesses about high-dimensional decisions governed by complicated resource limitations.  This 

also avoids the current step where SMEs convert capabilities assessments into just a few discrete, 

qualitative probability classes (e.g., “not likely”=0.2, “likely”=0.5, “very likely”=0.8). 

The initial linear integer program, and subsequent pair of linear programs afford us a great deal of 

flexibility and fidelity in describing the actions of each opponent, and we can solve these at very large 

scale with off-the-shelf optimization software.  Also, solutions to such optimization models can be 

analyzed to discover the “why” as well as the “what” of each plan.  Powerful, effective sensitivity and 

parametric analysis techniques are well-known for these optimization models. 

We represent defensive investment strategy selection simply, as we think realistic and politically 

palatable during this early phase of homeland security capital planning.  We anticipate that this will 

eventually mature to more closely resemble classic military capital planning [e.g., Brown, et al. 2004]. 

We present a deterministic model that minimizes the maximum expected risk.  If stochastic 

evaluation proves essential, our model can be used within a simulation.  Banks and Anderson [2006] 

demonstrate such exogenous simulation with a two person, zero-sum game.  Tintner [1960] shows this for 

a linear program.  Our integer linear program is amenable to such simulation. 

 

Secrecy in Planning 

If, as the defender, we strongly believe that we are able to conceal some of our defensive capability 

from the attacker, then the transparency of model MXM is likely to be inappropriate for determining 

optimal defense decisions.  Instead, we find ourselves in an asymmetric conflict: the attacker and the 
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defender do not agree on the objective function.  This more general case falls in the domain of bilevel and 

multi-level programming (see, for example, Candler and Townsley [1982], Bard and Moore [1992], and 

Migdalas et al. [1998]), and the associated mathematical models are more difficult to solve than those we 

have presented here. 

In an extreme case, for example, we might believe that even though the attacker can observe our 

strategic defensive investments, he is completely unaware of our mitigation capabilities.  We could then 

assume that he will make his decisions based only upon the damaged,a values, whereas, given that we are 

perfectly aware of our mitigation capabilities, we will make our investment decisions based on 

damaged,a−mitigated,a,m values.  This would be formulated as a tri-level integer programming model, the 

most general versions of which are difficult to solve.  However, a straightforward heuristic for solving our 

problem would solve an attacker-defender version of the problem with no mitigation options (i.e., by 

fixing yd,m=0), and then choose the optimal mitigation decision for whatever defense and attack decisions 

are made. 

Clearly this can lead to a suboptimal defense investment, especially when there are defense options 

that do not directly reduce expected damage (i.e., damaged,a might be high for those defenses) but that 

enable mitigation efforts that are significantly more effective than those available under other defensive 

investments.  We can use the stockpiling of a vaccine as an example; creating the stockpile will not 

reduce the damage of any attack, but the mitigation activity of distributing the vaccine and inoculating the 

susceptible population can be extremely effective.  In this case, the optimal defense and the resulting 

worst-case attack damage can differ significantly from the myopic defense.  There are other, more 

effective heuristics for multilevel optimization in the literature, the breadth of which is beyond the scope 

of this paper. 

In the case where the “secret” objective values maintain the same relative ranking between each 

pair of feasible defense and attack combinations as discloseded by the “public” objective function, then 

the optimal defense and resulting worst-case attack do not change.  For example, if the mitigation effects 

mitigated,a,m are always a fixed percentage of damaged,a, then the optimal defensive investments, and the 
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corresponding worst-case attack, will be the same, and the overall expected damage will be reduced by 

that fixed percentage.  In this case, (and similar cases, in which the mitigation efforts do not produce 

drastically different results from each other relative to the defense-and-attack combination they are 

applied to), it makes no sense to take extreme measures to conceal our mitigation capability.  In fact, we 

should broadcast it widely, in hopes that it will deter attacker efforts. 

However, in the case where our mitigation capabilities are much more (or less) effective for one (or 

a small number of) attacks than for the rest, and this fact fundamentally changes the worst-case attack 

decision for each of our defense options, then we conjecture that we should conceal this capability to 

maintain our advantage (or conceal our weakness) for that attack, and hopefully “shape” the attacker’s 

decisions towards the attacks that we are more capable of handling.  However, every situation is different, 

and it is extremely hard to predict what the effect any given “secrecy policy” will have on the optimal 

outcome, much less on the actual attacker behavior.  More research in this area is required. 

 

Solving MXM At Very Large Scale with Decomposition 

Although we have solved large attacker-defender models of the same form as MXM, [Brown et al., 

2005b], if instances of MXM become too large to solve using commercial off-the-shelf integer linear 

programming software, we can use (and have used) a version of Benders decomposition [e.g., Bazaraa, 

Jarvis, and Sherali, 1990, pp.366-367] to solve MIN-ILP, with integer stage-zero investment decisions 

and continuous mitigation decisions in the master problem, and the resulting attacker LP subproblems.  

Israeli and Wood [2002] explicitly develop such a decomposition for the case of shortest-path network 

interdiction problems. 

We modify MIN-ILP, replacing equations (DILP1) with a set of constraints (DILP-CUTS), and 

calling the resulting model MIN-ILP-DECOMP ˆ({ )xN } , where ˆ{xN }  represents the set of all attacker 

plans from completed decomposition iterations: ˆ ˆ} { , 1,..., }N nx x n N≡ ={ . 

, , , ,
, , ,

ˆ ˆ 1,..., (DILP-CUTS)n n
a aad a d d a m d m

d a d a m
damage w x mitigate x y n Nℜ ≥ − =∑ ∑ . 
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The complete decomposition algorithm is as follows: 

Algorithm DHS-MXM-DECOMP 

Input: Data for bio-terror defense problem, optimality tolerance 0ε ≥ ; 

Output: ε-optimal (MXM) defender plan ( *, *)w y ; 

1) Initialize best upper bound UBz ←∞ , best lower bound 0LBz ← , define the 

incumbent, null (MXM) defender plan * 11ˆ( "d00", * 0)w w y y← ≡ ← ←  as the best 

found so far, and set iteration counter N ← 1; 

2) Subproblem: Using ˆ ˆ Nw w= , solve the linear program subproblem MAX-

ATTACKER-LP ˆ( )w  to determine the optimal attack plan ˆ Nx ; the bound on the 

associated total expected target damage is max ˆ( )Nz x ; 

3) If ( max ˆ( )N
UBz z x>  ) set max ˆ( )N

UBz z x←  and record improved incumbent MXM 

defender plan * * ˆ ˆ( , ) ( , )N Nw y w y← ; 

4) If ( UB LBz z ε− ≤ ) go to End; 

5) Given attack plans ˆ }xN{ , attempt to solve master problem  

MIN-ILP-DECOMP( ˆ }Nx{ ) to determine an optimal defender plan 1 1ˆ ˆ( , )N Nw y+ + .  

The bound on the total expected target damage is min ˆ ˆ( , )z w y ; 

6) If  min ˆ ˆ( , )LBz z w y<  set min ˆ ˆ( , )LBz z w y← ; 

7) If  ( UB LBz z ε− ≤ ) go to End; 

8) Set N ← N +1 and go to step (2) (Subproblem); 

9) End:  Print “ * *( , )w y  is an ε-optimal (MXM) defender solution,” and halt. 

The optimal attacker plan *x  can be recovered by solving MAX-ATTACKER-LP ( )w* . 
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Each instance of MAX-ATTACKER-LP ˆ( )w  is a linear program of a form we expect to be easy to 

solve even at large scale. 

MIN-ILP-DECOMP( ˆ }Nx{ ) is easy to solve, but might get more challenging if embellished with 

too many more linear constraints.  For a difficult instance, or at very large scale, we can solve MIN-ILP-

DECOMP( ˆ }Nx{ ) with an approximate, but very fast heuristic, and our decomposition is still valid. 

The iterative behavior of the decomposition is instructive.  Set a defense plan, and observe the 

attack response.  Set another defense plan that is robust with respect to the attack response observed, and 

then observe another attack response.  As such iterations continue, the defender learns more about the 

attacker, and refines his defense plan accordingly.  Ultimately, the defender learns enough to declare that 

his best defense plan is (ε -) optimal against the best possible attacker plan, and attains a mathematical 

certificate of the quality of his defense preparations.  (See Table E 6.) 
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Iteration 

Defense 

Strategy 
Lower 

Bound
Attack 

Alternative 
Upper 

Bound
 

 
n 

MIN-ILP- 

DECOMP 
 

LBz  
MAX- 

ATTACKER-LP
 

UBz  
 
Mitigation 

1 “d00” 0 “a03” 10 “m01” 
2 “d05” 2 “a01”  5 “m02” 
3 “d04” 3.5 “a01”(0.5) 

“a03”(0.5) 
3.5 “m01”(0.5) 

“m02”(0.5) 
Table E 6:  Decomposition iterations reveal learning by opponents.  Here, the defender 

starts with defense strategy “d00” (do nothing), the attacker responds with his most-

damaging alternative “a03” inflicting damage 10.  Subsequent iterations adjust defense 

strategy based on elicited attacker behavior, until neither opponent can take another turn for 

any further improvement.  Our subject-matter experts (SMEs) are now optimization models.  

The last iteration yields the same optimal solution as shown in Table E 5.  Instead of using a 

“do-nothing” solution to initialize the algorithm, we can just as easily take any feasible 

incumbent proposed by any decision maker as our first attempt: the algorithm will evaluate 

this solution, and then either obtain a certificate of its optimality, or find a better incumbent.  

This is the distinguishing advantage of viewing these decomposition algorithms as 

“learning” methods that iteratively improve upon an incumbent, possibly suboptimal, 

solution. 

 
The decomposition mathematically represents two opposed sets of subject-matter experts:  a Blue 

Team (defender), and Red Team (attacker).  The decomposition iterations mathematically mimic a 

wargame between these opponents, where the defender suffers the disadvantage of not being able to hide 

his defense strategy, but the players play the game again and again, honing their respective strategies, 

until neither opponent can improve. 

At ultra-large scale, we can nest decompositions.  We do not anticipate this will be necessary for 

this application. 

We have implemented MXM and our decomposition algorithm for solving it in GAMS [2007].  All 

model instances have been solved optimally.  The complete implementation is available from the authors. 
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How do we get here from a descriptive risk assessment (e.g., DHS BTRA)? 

First, we must recognize and accept that each event-tree path in BTRA consists almost exclusively 

of a set of decisions—these are not random events.  There are 18 successive “events” in the NRC 

rendition of BTRA [NRC 2007, Table E 3-4].  From start to finish, we show each event number, using 

parentheses to distinguish defender actions, and brackets for Mother Nature at the end:  the BTRA event 

sequence is 1-5, (6), 7-11, (12), 13, (14-15), 16, (17), [18].  The first attacker event sequence addresses 

selection of agent, target method of dissemination, and acquisition, the next attacker sequence involves 

details of agent production and processing, the following attacker sequence describes transport and 

storage, and the last estimates repeated attacks.  These attacker sequences are interrupted by opportunities 

for the defender to interdict.  The last stage [18] represents Mother Nature influencing consequences.  For 

our purposes, there are merely four alternations from attacker to defender, followed by one truly random 

event governed by Mother Nature at the end. 

Second, we decide how to reckon ,d adamage  as a function of defense strategy d and attack 

alternative a.  This is not a glib statement, but rather a meta-design guide to return to the foundations of 

BTRA and critically review the assumptions of sequence-dependence and level of detail. 

In theory, this could be achieved by setting a defender option d, and estimating the consequences of 

this action on BTRA for each pure attacker response.  This is no harder than for BTRA, and if we 

concentrate on estimating ,d adamage  as a function of defense option d and a more palatable (i.e., unlike 

BTRA, a less minutely-detailed and less overwhelmingly numerous) set of attack alternatives a, we would 

create a risk-calculation engine that is at once credible, and efficient. 

By whatever means, we must estimate ,d adamage  for each defense option d and each attack 

alternative a.  If we cannot estimate risks at this fidelity, we have no business doing risk analysis. 

We would prefer to be able to choose a number of defense strategies, rather than just one.  But, 

current risk analysis produces a single damage estimate distribution for each attack scenario.  We assume 

these damage estimates are neither additive nor separable between and among attacks, so we must rely on 
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the simplified risk analysis we have.  Accordingly, we endow each defense strategy with the number of 

defense investment options reflected in each BTRA path. 

Our attack alternatives have not specified any particular agent.  Our methods can accommodate 

attacks by classes of agents that include engineered and future agents not yet known. 

Solving the tri-level model achieved here isolates an optimal defense strategy, and all its component 

investment options.  Because this optimal strategy dominates every attack by any agent, we have 

presented an intrinsic risk analysis that highlights the most-critical, achievable defense strategy.  We can 

trivially rule out this best strategy, and solve for the second-best, and so forth.  This renders an explicit, 

unambiguous prioritization of defense strategies 

 

Mere probabilistic risk assessment is not enough 

What we are proposing here responds directly to the explicit language of HSPD 10: 

“the United States requires a continuous, formal process for conducting routine 

capabilities assessments to guide prioritization of our on-going investments in 

biodefense-related research, development, planning, and preparedness.” 

 

Further, we could not agree more with this: 

“Successful implementation of our program requires optimizing critical cross-cutting 

functions” 

 

Recently, HSPD 18 [The White House, 2007] has further clarified our direction: 

“optimize the investments necessary for medical countermeasures development, and 

ensure that our activities significantly enhance our domestic and international response 

and recovery capabilities” 

 

Further: 

“Mitigating illness and preventing death are the principal goals of our medical 

countermeasure efforts.” 

 

Moving beyond mere descriptive risk analysis, we want to address: 
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“(a)  Target threats that have potential for catastrophic impact on our public health and 

are subject to medical mitigation; 

(b)  Yield a rapidly deployable and flexible capability to address both existing and 

evolving threats; 

(c)  Are part of an integrated weapons of mass destruction consequence management 

approach informed by current risk assessments of threats, vulnerabilities, and capabilities; 

and 

(d)  Include the development of effective, feasible, and pragmatic concepts of operation 

for responding to and  recovering from an attack.” 

 

We can see from these policy directives that the highest-level DHS problem is planning 

investments—huge investments—to prepare to mitigate the consequences of any attack. 

The material presented here follows both the letter and the spirit of this direction. 
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