
Compuf. & Ops Ru., VoL 5. pp. ZT7-242. Perguaon Pms. 1918. Printed in Great Britain 

NUMERICAL DETERMINATION OF THE 
PARITY-CONDITION PARAMETER FOR 

LANCHESTER-TYPE EQUATIONS OF 
MODERN WARFARE* 

JAMES G. TAYLOR? and GERALD G. BROWNS - - - - 
Departments of Operations Research and Computer Science, Naval Postgraduate School, Monterey, 

California 

Scope and purpose-This paper presents new computational methods that facilitate digital-computer 
analysis of some important military operations research problems. Lanchester-type combat models[l] are 
deterministic differentialequation models of combat attrition in which the state variables are typically the 
numbers of the different weapon-system types. Even though combat between two military forces is a 
complex random process, such deterministic combat models are commonly used for computational reasons 
in defense-planning studies, for example, to assess the relative importance of various weapon-system and 
force-level parameters. A so-called attrition-rate coefficient in such a combat model represents the fire 
effectiveness of a particular weapon-system type against a particular target type, and time-dependent 
attrition-rate coefficients are used to model temporal variations in fire effectiveness when, for example, the 
range between firers and targets changes appreciably during battle. For such a variable-coefficient 
Lanchester-type combat model that is a generalization of Lanchester's[Z] classic "square-law" model, we 
present a simple numerical procedure for determining the so-called parity-condition parameter, which is 
"the enemy force equivalent of a friendly force of unit strength" and may be used to predict battle outcome 
in specific engagements. These results allow one not only to predict battle outcome but also to tradeoff 
quality vs quantity of two opposing weapon systems. 

Abstract-This paper presents a simple numerical procedure for determining the parity-condition parameter 
for deterministic Lanchester-type combat between two homogeneous forces. Deterministic dierentid- 
equation combat models are commonly used in parametric studies for computational reasons, since they 
give essentially the same results for the mean course of combat as do corresponding stochastic attrition 
models. The combat studied in this paper is modelled by Lanchester-type equations of modern warfare with 
timedependent attrition-rate coefficients. Previous research has generalized Lanchester's classic "square 
law" to such variable-coefficient combat. It has shown that the prediction of battle outcome (in particular, 
force annihilation) without having to spend the time and effort of computing force-level trajectories 
depends on a single parameter, the so-called parity-condition parameter, which is "the enemy force 
equivalent of a friendly force of unit strength" and depends on only the attrition-rate coefficients. 
Unfortunately, previous research did not show generally how to determine this parameter. We present 
general theoretical considerations for its numerical noniterative determination. This general theory is 
applied to an important class of attrition-rate coefficients (offset power-rate coefficients). Our results allow 
one to study such variable-coefficient combat models almost as easily and thoroughly as Lanchester's 
classic constant-coefficient model. 

I. INTRODUCTION 
.c: 

As a consequence of pioneering work by F. W. Lanchester done about the time of World War I, 
military analysts have used simplified deterministic differential-equation models to develop 
insights into the dynamics of combat from about the end of World War I1 (see, for example, 
[l, 3-11]. Such deterministic models have been widely used because (among other reasons) the 
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corresponding stochastic formulations are for all practical purposes analytically intractable (see 
Note 1 on p. 65 of [12]). The advent of the modern high-speed digital computer has made feasible 
the development and use of quite complicated versio'ns of such Lanchester-type* models as 
practical defense planning tools [l3]. Thus, today militarily realistic computer-based Lanchester- 
type models of quite complex combat systems have been developed. Such models currently exist 
for almost the entire spectrum of combat operations, from combat between battalion-sized [14] and 
division-sized [I51 units to theater-level operations [ I  6, 171. 

A simple combat model, however, may yield a clearer understanding of important inter- 
relationships that are difficult to perceive in a more complex model, and such insights can 
provide valuable guidance for more detailed computerized investigations (see-[4,11]). In this 
paper we present a new important numerical procedure that facilitates parametric analysis (in 
particular, the parametric examination of force-annihilation prediction) of battle outcomes for 
such simplified Lanchester-type models of combat between two homogeneous forces with 
temporal variations in each side's fire effectiveness. Previously, such battle-outcome in- 
formation .could only be readily obtained from constant-coefficient models, and S. 
Bonder [3,18,19] has emphasized the deficiencies of constant-coefficient models (see Section 3 
below). These results are not only significant in their own right but are also useful in the 
quantitative analysis of time-sequential combat strategies (see, for example, [20,21]). 

It is important for the military operations analyst to have a clear understanding of how 
force-level and weapon-system-performance parameters interact to determine a battle's 
outcome. Such knowledge is particularly useful in weapon-system and force-level planning 
activities for defense planning (especially since one frequently uses models that are so 
complicated that trends are not directly discernible without extensive (and costly) computer 
runs). S. Bonder1s[3, 4,191 pioneering work on methodology for the evaluation of military 
systems (particularly mobile systems such as tanks, mechanized infantry combat vehicles, etc.) 
provides a motivation for interest in variablecoefficient, deterministic, Lanchester-type combat 
models such as we consider in this paper. He has stressed (see pp. 30-31 of [4]) the importance 
of analytical solutions to such models for developing insights into the dynamics of combat by 
portraying the relation between various factors in the combat attrition process and the surviving 
numbers of forces and for facilitating sensitivity and other parametric analyses (see [22]). 
Unfortunately, as work by Bonder and Farrell[4] and Taylor[l2,23] shows, the analytical (i.e. 
infinite series) solution to variable-coefficient equations generally by itself (i.e. without expli- 
citly computing force-level trajectories) provides little information about battle outcome 
because of its complexity. Therefore, one must seek new ways for developing insights. 

Taylor and Comstock[7] have given results that allow one to predict battle outcome (in 
' 

particular, force annihilationt) in theory without having to spend the time and effort of 
computing force-level trajectories. To be computationally practical, however, their results 
require the determination of the so-called panty-condition parameter ("the enemy force 
equivalent of a friendly force of unit strength"), which depends on onQ the model's attrition- 
rate coefficients. They analytically determine the parity-condition parameter for power attrition- 
rate coefficients with "no offset", which allow one to model combat between two weapon 
systems with the same minimum effective range but different range dependencies for each 
system's fire effectiveness (see also [6]). It is the purpose of this paper to show how to 
determine the parity-condition parameter in other cases, in particular for power attrition-rate 
coefficients with "positive offset", which &ow one to model such combat between weapon 
systems with different maximum effective ranges. Our results allow one to study in general such 
variable-coefficient combat models almost as easily and thoroughly as Lanchester's classic 
constant-coefficient model. 

The organization of this paper is as follows. We first review Lanchester-type equations of 
modem warfare, especially variable-coefficient formulations. Next we review force-anni- 
hilation-prediction conditions for such models and show how to use knowledge about the 

*Also frequently called differential models of combat[l~, 
tBonder and Honig[S] point out, however, that force annihilation may not always be the best criterion for evaluating 

military operations. See p p  192-242 of Bonder and FarreU[4] for a detailed Lanchester-type analysis of an attack scenario 
for which other "end of battle conditions" play the principal role. Nevertheless, it is of considerable interest (especially for 
developing insights into the dynamics of combat) to be able to easily predict the occurrence of force annihilation. 
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parity-condition parameter for one set of attrition-rate coefficients to numerically determine it 
in related cases of interest. This general theory is then applied to the important case of offset 
power attrition-rate coefficients, with detailed numerical examples being given. 

2. LANCHESTER'S CLASSIC COMBAT FORMULATION 

F. W. Lanchester[2] (see also p. 45 of 1121) hypothesized in 1914 that combat between two 
military forces could be modelled by 

- .- 

with initial conditions 

x(t = 0) = xo, y(t = 0) = yo, (2) 

where t = 0 denotes the time at which the battle begins, x(t) and y(t) denote the numbers of X 
and Y at time t, and (for a particular battle) a and b are nonnegative constants which are today 
called Lanchester attrition-rate coefficients and represent each side's fire effectiveness. The 
equations (1) are only valid for x, y > 0. For example, the first becomes dxldt = 0 when x = 0. 

Because of Lanchester's pioneering work[2], we will refer to any differentialequation 
model of combat attrition as a Lanchester-type combat model or as a system of Lanchester- 
type differential equations (or sometimes simply as Lanchester-type equations). In particular, 
we will refer to (1) as (constant-coefficient) Lunchester-type equations of modem warfare. 
Other forms of Lanchester-type equations appear in the literature[l,23], but we will not 
consider these here. Various sets of physical circumstances have been hypothesized to yield 
them: for example: (a) both sides use aimed fire and target acquisition times are constant[lO]; 
or (b) both sides use area fire and a constant density defense (see p. 345 of [I]). 

From (1) Lanchester deduced his famous square law 

Consider now a baffle terminated* by either force level reaching a given "breakpoint": for 
example, Y wins when xf = x(tf) = XBP = fxBPx0 but yf > ygp = fyBPyo, where tf, xf, yf denote 
final values and Xgp denotes X's breakpoint which is a given fraction fXBP of his initial strength. 
It follows from (3) that 

Y will win if and only if a< 

which for a fight-to-the-finish (i.e. fxBp = fyBp = 0) becomes the classic result 
* 

Y will win a fight-to-the-finish if an only if < J(i). 
Yo 

(5) 

Unfortunately, no relationship similar to (3) holds in general for variable attrition-rate 
coefficients except when a(t)lb(t) = constant (see p. 48 of [12]). This paper, nevertheless, shows 
how (5) generalizes in these cases, but so far we have not been able to generalize (4). Recalling 
that the time history of the X force level is given by 

x(t) = xo cosh V(/(ob)t - yod(;) sinh q(ab)t,  (6) 

we see that the battle trajectories depend on the two weapon-system-performance parameters: 
(I) the intensity of combat q a b ,  and (11) the relative fire effectiveness alb. Only the relative fire 
effectiveness, however, determines the battle's outcome [see (4) and (5) above]. 

*The modelling of battle termination is a problem area in contemporary defense planning studies (see pp. 524525 of 
[81). 
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3. VARIABLE ATTRITION-RATE COEFFICIENTS 

Bonder [l8] has pointed out that in many cases (for example, in the case of mobile weapon 
systems) the validity of the assumption of constant attrition-rate coefficients is open to question 
(see also [3,4,19]). Thus, we consider 

dxldt = - a(t)y, dyldt = - b(t)x, (7) 

where a(t) and b(t) denote time-dependent attrition-rate coefficients. We assume that a(t) and 
b(t) are defined, positive, and continuous for to< t <+a with t o so .  For convenience, we 
introduce the notation that a(t) E L(to, T) means Jc a(t) d t  exists (and is-given by a finite 
quantity). From our assumptions about a(t) and b(t), it follows that a(t) E L(to, T) implies that 

a(t) dt = +a. We also assume that a(t), b(t) E L ( t  T) for any finite T. We further take a(t) 
and b(t) to be given in the form a(t) = k&(t), b(t) = kbh(t), where k,, kb are positive constants 
chosen so that a(t)lb(t) = kdkb when g(t) = h(t). Analogous to the constant-coefficient case 
[see discussion after (6)], we have the two weapon-system-performance parameters: (I) the 
intensity of combat, I(t) = v(a(t)b(t)); and (11) the relative fire effectiveness, R(t) = a(t)lb(t). 
We accordingly introduce the combat-intensity parameter A* and the relative-fire-effectiveness 
parameter AR defined by 

Ar = v(kakb) and XR = kJkb. (8) 

Two significant developments in the Lanchester theory of combat during the 1960s were the 
development of methodology for (a) the prediction of Lanchester attrition-rate coefficients from 
weapon-system-performance data by S. Bonder[18,24] and (b) the (maximum likelihood) 
estimation of such coefficients from Monte Carlo simulation output by G. Clark[25]. Both these 
developments and others (see [12] for further references) have generated interest h t h e  model 
(7) and facilitated its application (and that of its generalization to combat between hetero- 
geneous forces [4) to defense planning studies. 

A large class of tactical situations of interest can be modelled with the following general 
power attrition-rate coefficients [4,7,12] 

a(t)=k,(t+C)*, and b(t)=kb(t+C+A)q (9) 

where A, C r 0. We will call A the ofset parameter, since it allows us to model (with p, v r 0) 
battles between weapon systems with different maximum effective ranges. We will call C the 
starting parameter, since it allows us to model (again with p, v r 0) battles that begin within the 
minimum of the maximum effective ranges of the two systems. For example, let us consider . 
Bonder's[3,19] model of a constant-speed attack on a static defensive position (see also 
[12,23]). Then we have 

9 

dddt = - a(r)y, dyldt = - B(r)x, 

where r(t) = Ro- ut denotes the distance (range) between the two opposing forces, Ro denotes 
the battle's opening range, u > 0 denotes the constant attack speed, 

p 2 0, and % denotes the maximum effective range of Y's weapon system. Similarly for Hr) ,  
with exponent v 2 0. In (11) the parameter p allows us to model the range dependence of Y's 
fire effectiveness (see Fig. 1). The off set and starting parameters are given by 

A = (R, - Q)Iv, and C = (& - Ro)lv, (12) 

and the assumption A,.C 2 0 imp& that Rg 2 Re 1 &. From considering (12) and Fig. 2, the 
reader should have no trouble understanding our terminology for A and C. 
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I Fig. 2. Explanation of offset parameter A and starting parameter C for power attrition-rate coefficients 
modelling constant-speed attack. [Notes: (1) the maximum effective ranges of the two weapon systems are 
denoted as 4 and Rg; (2) the opening range of battle (i.e. initial separation between forces) is denoted as 
Ro and, as shown, Ro<Minimum (%. RB); (3) the offset parameter is given by A = (Rg - R ~ / v ;  (4) the 

4 statting parameter is given by C = (& - Ro)lv.] 
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Fig. 1. Dependence of the attrition-rate coefficient a(r) on the exponent p with maximum effective range of 
the weapon system and kill capability at zero range held constant. (Notes: (1) the maximum effective range 
of the system is denoted as % = 2000 m; (2) a(r = 0) = a, = 0.6X casualtiesl(unit time x number of Y units) 
denotes the Y-force weapon-system kill rate at zero force separation (denoted here as range); (3) the 

opening range of battle is denoted as Ro = 1250 m and (as shown) Ro < %.) 

The time history of the X force level, i.e. the solution x(t) to (7), is given by [12] 

where the hyperbolic-like general Lanchester functions (GLF') Cx(t) and Sx(t) are linearly 
independent solutions to the X force-level equation 

with initial conditions 
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where to denotes the lzgest finite time at which a(t) or b(t) ceases to be defined, positive, or 
continuous. More precisely, to = sup (tlJeither a(t) or b(t) is not defined, positive, or continuous 
for some finite t 2 ti}= inf{t,lboth a(t) and b(t) are defined, positive, and continuous for all 
finite t > to}. For example, to = - C for the general power attrition-rate coefficients (9). The time 
history of the Y force level may be similarly obtained, with Cy(t) and Sy(t) being analogously 
defined for the corresponding Y force-level equation. 

For the numerical determination of the parity-condition parameter, it is convenient to 
introduce a new independent variable s defined by 

where the parameter K is to be chosen to simplify the form of J(s) given by (18). We denote 
s(t = 0) as so, and then so r 0 if and only if t o s  0. The substitution (16) transforms (14) into the 
normal form 

where 

and t = t(s). We also define the normal-fonn hyperbolic-like GLF cx(s) and sx(s), which 
satisfy (17) and the initial conditions 

It follows that 

4. FORCE-ANNIHILATION-PREDICTION CONDITIONS 

Recently, Taylor and Comstock[7] have generalized the constant-coefficient force-anni- 
hilation-prediction condition (5) to battles modelled with Lanchester-type equations of modern 
warfare with timedependent attrition-rate coefficients (7). In some sense their results generalize 
Lanchester's famous square law to variable-coefficient combat. ~ay$or and Comstock have 
shown that for the model (7) force-annihilation prediction involves (besides the initial force 
ratio xo/yo and a relative-fire-effectiveness parameter AR) a single parameter, which they call the 
panty-condition parameter, denoted here as Q*. Their main theoretical result is stated here for 
the reader's convenience as Theorem 1. 

Theorem 1 
Taylor and Comstock[7], assume that either a(t) 6? L(0, +a) or b(t) E L(0, + 4. Then the 

X force will be annihilated in finite time if and only $ 

where the panty-condition parameter Q* is unique and given by 

Sx(t) - 1 lim -- 
t++- Cx(t) Q*' 
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Remark 1. The condition (21) means that neither force is annihilated (in other words, the 
forces are of "equal fighting strength) if and only if 

which when to = 0, simplifies to 

In other words, the above equation (23) is a condition under which two forces are "at parity" 
with one another (hence, the term parity-condition parameter). Observing the special case (24), 
we may consider the parity-condition parameter to be "the enemy force equivalent of a friendly 
of unit strength" (see also equation (17) of [7]). 

Remark 2. We also have lim,, {Sy(t)lCy(t)) = Q*. 
Remark 3. When to = 0, (21) simplifies: X will be annihilated in finite time if and only if 

XO/YO < ~(AR.R)/Q*. 
Remark 4. The result (22) suggests a numerical procedure for approximately determining 

the parity-condition parameter Q*: we may approximate the parity-condition parameter Q* by 
Q = ~ / { S ~ ( ~ ) / C ~ ( ~ ) } ,  where { is a "suitably large" value of t. In other words, we may estimate 

I 

Q* simply by picking a large value for t (we denote this selected large value by t), computing 
sx(;) and cx({), and then forming their ratio. Our estimate for Q* is then given by Q = 
l / { ~ ~ ( i ) l ~ ~ ( t j } .  The only problem is that we do not know how large to take {for "satisfactory" 

& 

estimation of Q*: There is an estimation error, E ( F )  = Q* - &{), which depends monotonically 
on ( and a priori we do not know how large this error is. The present paper develops a bound 
on the magnitude of this error, and our new error estimate allows the goodness of ap- 
proximation to be easily evaluated in many cases of interest. 

1 

We may also determine the parity-condition parameter with the normal-form hyperbolic-like 
GLF, since lim,,{sx(s)lcx(s)}= lIZ*= KIQ*, where Z* is called the modified parity- 

? condition parameter. In fact, we will find it more convenient to do so. With this in mind, let us 
introduce the Y-functions c&) and sY(s) [corresponding to cx(s) and sx(s)] defined by r 

dcylds = J(s)sx, dsylds = J(s)cx, (25) 

with initial conditions 
I 

cy(s=O)=I, sy(s=O)=O. 

1 It follows that cy(s) and sy(s) are linearly independent solutions to the modifie8 Y equation 

and 

In terms of the new time variable s defined.by (16), Theorem 1 reads as follows: 

Theorem 2 
Assume that either a(t) E L(0, +w) or b(t) E L(0, +m). Then the X force will be annihilated 

in finite time if and only if 

CAOR Vol. 5. No. 4 4  
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where the modified time variables is given by (16), and CX(S), sX(s), cy(s), and sy(s) denote the 
normal-form hyperbolic-like GLF. The modified panty-condition parameter Z* is unique and 
given by 

sxb )  - 1 lim -- 
3- cx(s) Z*' 

We observe that 

Q* = KZ*, 

and lim,,{sy(s)lcy(s)}= Z*. When (27) holds, the time to .annihilate X,-denoted as tax, is 
determined by x(taX) = 0. If we denote the quotient of the two normal-form hyperbolic-like 
GLF sx(x) and cx(s) as qx(s), then it follows from (13) that 

where 

5. DETERMINATJON_O_F _THE PARITY-CONDITION PARAMETER - .---- 
We will now show how knowledge about the modified parity-condition parameter Z* for one 

pair of attrition-rate coefficients, a(t) and bl(t), allows us to determine Z* for a related pair, 
a(t) and b(t). With this in mind, let us denote cx(s) corresponding to a(t) and b(t) as 
cx(s; a, b), and similarly for s, and qp In other words, we will now write (31) corresponding to 
the attrition-rate coefficients a(t) and b(t) as 

qx(s; a, b) = sx(s; a, b)lcx(s; a, b). (32) 

In this notation, we will write (28) as 

,' lim q d s ;  a, b) = l/Z*[a, b]. 
a- 

We use the notation Z*[a, b] to show that the modified parity-condition parameter is a 
functional (i.e. a function for which the independent variables themselves are functions), which 
depends on only the attition-rate coefficients a(t) and b(t). In other words, the attrition-rate 
coefficients are functions defined for to s t < +a, and the parity-condition parameter depends 
on these entire functions (and not merely particular values of them). 

Our main result is Theorem 5, which gives an error estimate for the approximation that we 
propose for Z*. The theoretical basis for Theorem 5 is given by Theorem 4, which (in turn) is a 
consequence of Theorem 3. The proof of Theorem 3 follows along the lines of well-known 
arguments (see p. 225 of 1261). 

Theorem 3 
Comparison Theorem: Let x(t) and x,(t) satisfy 

with initial conditions 

where a(t) > 0 and b,(t) < b(t) for all t > to. Then x,(t) < x(t) for all t > to as long as x(t) > 0. 
.- - 

. The basic theoretical result upon which our numerical determination of Z* is based is: 
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Theorem 4. 
Assume that bl(t) < b(t) for all t > to. Then 

I X ~ ;  a, b) < lIZ*[a, bl < ~ x ( s ;  a, b) +{(llZ*[a, b 8  - qx(s; a, bdl. (34) 

Proof. We observe that [7] qX(s; a, b) satisfies the differential equation 

with qx(s = 0; a, b) = 0, and similarly for qx(s; a, bl). Theorem 3 (the comparison - - - theorem) -. .- 

yields that cx(s; a, b) > e x ( ~ ;  a, b,) for all s > 0. Thus, for all s > 0 

whence integration between 0 and s yields the desired result. Q.E.D. 
Similar to the observations made in Remark 4 above, we observe that (33) suggests that we 

estimate Z*[a, b] with 2 defined by 

&s^; a, b) = llqx(s^; a, b), (361 

where ŝ  denotes a suitably chosen value for s. Moreover, from (35) we see that qx(s; a, b) is a 
strictly increasing function of s so that the larger we take 3 in (36), the better our approximation 
becomes. The only problem (see Remark 4) is that a priori we do not know how large to take ŝ  
for "satisfactory" estimation of Z*. Theorem 5, however, tells us exactly how large to take f. 

Theorem 5 
Error Estimate for Approximation: Assume that bl(t) < b(t) for aN t > to. Let fE(S) denote 

the fractional error made in the estimation of Z*[a, b] by &; a, b), i.e. 

Proof. The theorem follows by simple algebraic manipulation after setting s = i in (34) and 
? using (37). Q.E.D. 

Thus, we have presented a method for numerically determining Z*[a, b]. We simply pick a 
large value for s (we denote the selected value as i) ,  compute sx(s^) and cx(s^), and then 
compute the estimate &s; a, b) according to (36). Theorem 5 allows us to know t& accuracy of 
our approximation, which can be improved by taking ŝ  larger. Thus, we can numerically 
'determine Z*[a, b] to any specified degree of accuracy once Z*[a, bl] is known. In the next 
section we apply this theory to the analysis of battles modelled with offset power attrition-rate 
coefficients. 

6. APPLICATION OF THEORY TO OFFSET POWER ATTRITION-RATE COEFFICIENTS 

In the application of Theorems 4 and 5, two pairs of attrition-rate coefficients are involved: 
qne pair for which the modified paritycondition parameter is known [denoted as a(t) and bl(t)], 
and one for which it is to be determined [denoted as a(t) and b(t)]. Accordingly, we rewrite (9) 
with A > 0 as 

a(t)=k,(t+C)', and b(t)=k,(t+C+A)q (39) 

where (as before) C 2 0. We will refer to these coefficients (39) for which A > 0 as power 
attrition-rate eoelgicients with "positive ofset". If we choose 
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it follows from (16) that the modified time variable s is given by 

and the invariant J(s) of the normal form (17) simpkes to 

where p = (p + 1)12, (I = 1/(p + I), P = (v - p)I(p + l), y = A-• [AA(p-+ l)lm2 -+d 8 = p + v + 2. 
Here we have denoted the invariant corresponding to the attrition-rate coefficients a(t) and b(t) 
as J(s; y, p, v), since we may take y, p, and v as a basis for generating the four parameters a, P, 
y and v that explicitly appear in the right-hand side of (42). Furthermore, we will denote the 
normal-form hyperbolic-like GLF that correspond to J(s; y, p, v) as cx(s; y, p, v) and 
sx(s; Y, p, v). 

The known results[fl that we use in the Theorems 4 and 5 are for the case of power 
attrition-rate coelpicients with no offset [i.e. set A = 0 in (911 

(43) a(t) = k,(t + C)", and bl(t) = kb(t + a*, 
where C 2 0. We observe that bl(t) < b(t) for all t > - C. It follows that J(s; a, bl) = sa and[7] 

z*[a, bl] = p ~ P - D r ( i  - p)/r(p). (44) 

Thus, for the bound on Z*[a, b] = Z*(y, p, v) given in Theorem 4 and the error estimate for our 
approximation (36) given in Theorem 5, we have [6] 

where S = 2 p ~ " ~ ~ ' ,  q = 1 -p, and T, denotes a Lanchester-Clifford-Schliitli (LCS) function, 
which is analogous to the hyperbolic tangent (see Table 1). These functions were introduced in 
[I21 and redefined for reasons of force-annihilation prediction in [6]. In fact, 

q(s; a, bl) = tanh s, when p = v. (46) 

This result is one of our reasons for introducing the normal form (7). 
We have thus shown that the following theorem holds. 

Table 1. Lanchester-CliITordSchlZfli functions - 
-. - (~12)~' 

=F 

Fa(x) = r ( 4  2 

Relation to normal-form GLF 

CX(S) = FJS) s~(s) = P[I-*)H,,(S) 

where q =  1-p and 
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Theorem 6 
Assume that either p > - 1 or v > - 1. Then for a battle modelled with the ofset power 

attrition-rate coeficients (39), bounds on the modified parity-condition parameter Z*(y, p, v) 
are given for y > 0 by 

where q = 1 - p, S = 2ps1'*p', and ~ x ( s ;  y, p, v) denotes the quotient of two nonnal-fonn 
hyperbolic-like GLF for the attrition-rate coejicients (39), i.e. qX(s; y, p, v) = sX(s; y, p, v)/ 
cx(s; y, p, 4: . - - - - - . - - 

It follows from Theorem 6 (or, equivalently, Theorem 4) that if we approximate Z*(y, p, V) 
with g ( f ;  y, p, v) defined by 

.&f; Y, P, v) = l/qx(f; y, p, 4, (48) 

then bounds on the. fractional error made in this estimate are given by 

where f&) denotes the fractional error and is defined by (37). 
The right-hand inequality in (49) [equivalently, (47)J tells us exactly how large to take s  ̂ for 

the estimation of Z*(y > 0, p, v) by Z( i ;  y, p, v) to any specified degree of accuracy. The LCS 
function Tq is involved in the bound on the fractional error f&) in this estimate when p# v. 
As (46) and Table 1 show, Tq(S) = tanh s when p = v. Thus, the LCS functions as redefined by 
Taylor and Brown[6] yield valuable information about battles modelled with not only the power 
attrition-rate coefficients with no offset (43) but also the offset power attrition-rate coefficients 
(39). Availability of tabulations of these LCS functions is discussed in [6]. 

7. NUMERICAL RESULTS 

In this section we will eximine several numerical examples to show how the modified 
parity-condition parameter Z* may be numerically determined and to show some important 
insights into the dynamics of combat that may be consequently obtained. In order to numeric- 
ally determine the modified paritycondition parameter for the offset power attrition-rate 
coefficients (39), we must use knowledge about how quickly the limiting value (i.e. Z*[a, bl]) of 
a hyperbolic-tangent-like function of a related pair of power attrition-rate coefficients with "no 
offset" (43) is reached as its argument is increased [recall Theorem 6 and (49)l. In Fig. 3 we see 

I 
1.0 2.0 5.0 10.0 

S 

Fig. 3. Rapidity with which limiting value of hyperbolic-tangent-like LCS function T.(S) is reached as 
S++m. Note: TJS)  = tanh s for a = 112, which corresponds to p = v in (43). 
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Modified 
Parity - Condition 

Parameter. Z * 

Modified Offset Parameter, y 

Fig. 4. Dependence of the modified parity-condition parameter Z* on the modified offset parameter y for 
the offset power attrition-rate coefficients. The modified offset parameter is given by y = A [Ar/(p + I)]*, 

where A is the offset parameter and X = p + v + 2. 

that this limiting value, denoted as Z*(p, v) = Z*[a, b,], is quite quickly reached: if one takes 
ŝ  = 10.0, then Z*(p, v) is approximated to better than six decimal places by &; p, v) = 
llqx(s^; p, v), where qx is given by (45). Experimental computing for various values of p and v 
and comparison with the known value (44) for Z*(p, v) bears out this degree of accuracy [i.e. 
speed of convergence of .&; p, v) to Z*] for essentially all allowable values of p and v. Thus, 
f ( s ^ ;  p, V) for the coefficients (43) has essentially converged to Z*(p, V) when ŝ  = 10.0, and by 
Theorem 6 or (49) we know that the same is true for &ŝ ; y, p, v) for the coefficients (39). 

We have accordingly generated by this procedure the results shown in Fig. 4. For computing 
qx = sx1cX, we have used the series solutions shown in Tables 2 and 3. (In Tables 2 and 3 we 
have for convenience denoted, for example, sx(s; y, p, v) simply as s d s ;  p, v), i.e. s d s ;  p, V) 
denotes sx corresponding to the general power attrition-rate coe5cients (9) with exponents p 
and v.) The series were obtained by solving (17) by the method of successive approximations 
(see [23]). We used these series instead of developing approximate solutions by finite-difference 
methods because we did not have any error bounds for the latter. 

Let us now give an intuitive interpretation of the curves shown in Fig. 4 of the modified 
parity-condition parameter Z* plotted vs the modified offset parameter y. In Taylor and 
Comstock[7] it is shown that Z* may be considered to be the initial Y force level that leads to a * 

Table 2. Normal-form offset linear Lanchester functions 

where the offset coejkients are given by* 

B + B  for Osjsk 

*We have adopted the convention that Ai,  B t  = 0 for j < 0 or j  > k. 
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Table 3. Offset power Lanchester functions for p = 1 and v = 2 

where the ofset coefficients are given by* 

( ~ , , " = 1 ,  mdfor k + l  

for 

for 

*We have adopted th; convention that At ,  BJ = 0 for j < 0 or j > 2k. 

draw* (i.e. parity between the forces) in the battle against an X force of "unit strength" 

dxlds = - y with x(s = 0) = 1, 
(50) 

dylds = - J(s)x with y(s = 0) = Z*, 

where J(s) denotes the invariant of the normal form (17). Thus, we may consider Z* to be "the 
Y equivalent of an X force of unit strength" for the modified battle (50). Now let us consider 
the general power attrition-rate coefficients (9) with exponents p and v. As we did in Tables 2 
and 3, we will denote the corresponding J as J(s; p, v) and Z*(p, v) to stress the dependence 
on p and v (but suppressing that on 7). We then have from (42) that J(s; 1,l) = 1 + y/.\/(s) and 
J(s; 1,2) = V(s)(l+ $V(S))~. From (44) we find that Z*(1, 1) = 1.000 and Z*(1, 2) = 0.806 for 
y = 0. Observing that for y > 1 we have J(s; 1 , l )  < J(s; 1,2) for all s r 0, it is imitatively clear 
from (50) and the interpretation of Z* as a force equivalent that we must have Z*(1,1) < 
2*(1,2) for all y > 1 because X always has greater fire effectiveness against Y .when p = 1 and 
v = 2 than when p = 1 and v = 1. However, for y near zero, the situation is reversed and 
Z*(1, 2) must lie below Z*(1, 1) for y near zero. Thus, we have given an intuitive explanation of 
why Z*(1, 2) lies below Z*(1,1) for y near zero but above it for y > 1 as Fig. 4 shows. 

Next, we will consider numerical results for a particular battle to show some of the 
important insights that may be gained into the dynamics of combat from our ne&esults. As in 
[6,12,23] we consider S. Bonder's[3,19] model (10) for the constant-speed attack of mobile 
forces against a static defensive position. We will focus on the new results given in this paper 
(in particuular, the prediction of battle outcome from initial conditions without explicitly 
computing the force-level trajectories). Input data and computed parameter values are shown in 
Table 4. We will now consider two cases: (I) Ro = 1500 m; and (PI) Ro = 1250 m. 

When Ro = 1500 m, we have C = 0 and so = 0. The maximum time that the battle can last is 
t,, = 11.18 min, since at this time the advancing attackers overrun the defensive position. In 
this case Z*(y, p, v) = Z*(0.32,1.1) = 1.381, so that Theorem 2 tells us that X can be annihilated 
< = = > xo/yo < 0.264. By (30) the X-force annihilation time is given by qx(s(tax)) = 2.739xolyo. 
For xo = 10 and yo = 50, we have qx(saX) = 0.54772 so that by the techniques introduced in [6] 
we find sax = 0.771. These computations for determining sax involve the generation of a table 
of sx, cx, and qx for y = 0.32, p = v = 1 (see [6]). Hence, (36) yields tax = 10.25 min and 
r/ = 125.7 m. Further results are given in Table 5. 

When Ro = 1250 m (see Fig. 5 of [12]), we have C = 1.864 min, so = 0.0255 and t, = 9.32 min. 

*In other words, x(s) and y(s) > 0 for all s E [0, t m) but lim,,x(s) = 0 = lirn,,,y(s). 
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Table 4. Particulars for the numerical examples 

I. Input data 
,'=,,=I ' 

no = 0.06X casualtieslminlY unit 
Bo = 0.6 Y casualtieslmin/X unit 
R. = 1500 m. Rg = 2000 m 
v = 5 mileslhr 

Table 5. Annihilation of the X force as a function 
of the initial force ratio for Ro = 1500 m 

(XO/YO) tax(min) r a X M  

2. Parameter values 
k, = 5.364x 10-3X casualties/minlY unit 
kb = 4.023 X 10-'Y casualtieslmin/X unit 
p = q = 1 / 2  ' 

A = 3.728 min, y = 0.320 (ca~ualties/min)'~ 

- 

*tm,= 11.18 min and xf = x(r = 0) = 2.48. 

Table 6. Annihilation of the X force as a function 
of the initial force ratio for Ro = 1250 m 

*tm, = 9.32 min and x, = x(r = 0) = 1.74. 

In this case X can be annihilated < = = > xo/yo < 0.281 with the X-force annihilation time given 
by rn(sax) = (1 .001~~ + O.OO!J)/(O. l27& + O.366), where uo = xo/yo. Numerical results are given in 
Table 6. Finally, these parametric results should be contrasted to those previously possible (e.g. 
compare them with, for example, the single force-level trajectory for Rp = 2000 m shown in Fig. 
5 of [12]. 

\ 
8. DISCUSSION 

S. Bonder[3,18,191 has emphasized the shortcomings of constant-coefficient Lanchester- 
type combat models. Work by Bonder[3,18], Clark[25], and others[4] on the prediction of 
Lanchester attrition-rate coefficients (see Taylor and Brown[l2] for further discussion and 
references) has generated interest in variablecoefficient models. Moreover, there is not only 
intrinsic interest (see [3,191) in the model (7) but also interest for obtaining insights into the 
behavior of complex Lanchester-type system models (for example, the Bonder-IUA model (see , 

[4,5,14])) that have been enriched in military detail see [4,5,14-11). The attrition-rate 
coefficients in (7) represent the fire effectiveness of the combatants and allow us to model 
temporal variations in .fire effectiveness on the battlefield. Interest in the general power 
attrition-rate coefficients (9) is provided by S. Bonder's[3,5,19] constarff-speed attack model* 
(lo), (11) and his examination of the range dependence of attrition-rate coefficients for various 
weapon systems (see pp. 196-200 of [4]). 

We have given results that allow one to study the variable-coefficient model (7) (especially 
with the general power attrition-rate coefficients (9)) almost as easily and thoroughly as 
Lanchester's classic constant-coefficient model (1). Taylor and Comstock[7] (see Theorems 1 
and 2 above) have shown how to predict force annihilation without having to spend the time 
and effort of explicitly computing force-level trajectories. Using their theoretical results, we 
gave results in a previous paper[6] that made combat modelled by power attrition-rate 
coefficients with no offsett [i.e. A = O  in (9)] almost as easy to analyze as the constant- 
coefficient case. The results of the paper at hand allow one to analyze combat modelled by 
power attrition-rate coefficients with positive offset* [i.e. A > 0 in (9)] just as conveniently. 

Thebrem 1 (see also Theorem 2) is the generalization of the classic constant-coefficient 
result (5) to cases of time-dependent attrition-rate coefficients. However, one needs to know the 

*Thus, the range between firer and target changes during the engagement 
tModelling, for example, combat between two weapon systems with the same maximum effective range. 
$Modelling, for example, combat between two weapon systems with different maximum effective ranges. 
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value of the so-called paritycondition parameter Q* in order to predict force annihilation in 
specific instances. In this paper we have presented theoretical considerations (see Section 5 
above) for the noniterative numerical determination of the parity-condition parameter. We. 
applied our general theory to the specific case of general power attrition-rate coefficients (9) 
(see Section 6) and illustrated these theoretical results by considering some numerical examples 
(see Section 7). 

Curves of the modified paritycondition parameter Z* plotted against the modified offset . 
parameter y such as those shown in Fig. 4 allow one to analyze parametrically "modern" 
combat modelled with the general power attrition-rate coefficients (9). For example, we can now 
parametrically (for example, varying the maximum effective range of >he d.effender'sxeapons) 
determine whether the defender will be overrun in Bonder's[3,5,19] constant-speed-attack 
model (10) with attrition-rate coefficients (11) without having to compute the entire force-level 
trajectories. We have illustrated this analysis capability with some numerical examples, which 
show that the defender's annihilation (i.e. saturation of his defensive position with offensive 
fire) depends on the initial force ratio (of defender to attacker) being below a certain threshold 
value. Our new results allow one not only to determine easily such force-ratio thresholds of 
survivability but also to study their dependence on weapon-systemcapability parameters. 

Our new results let us conveniently obtain much valuable information about the model (7). 
The classic ordinary differential equation theories (see, for example, Ince[26] were inadequate 
to answer many important questions (for example, "who will win? Be annihilated?") about such 
combat models. Previously one was limited to only computing force-level trajectories, but now 
we can predict battle outcome (in particular, force annihilation) without explicitly computing 
force-level trajectories. Moreover, these new results facilitate parametric analysis of such 
combat situations. S. Bonderr221 has suggested that an increased emphasis be place on 
parametric analyses in systems analysis studies (see pp. 21-22 of [22]). In particular, Theorems 
1 and 2 explicitly exhibit a tradeoff between quality (as quantified by the relative-fire- 
effectiveness parameter AR and the paritycondition parameter Q*) and quantity (as quantified 
by the initial force ratio xolyo) of two weapon systems in combat against each other. In other 
words, one can use an expression like (21) to develop quantitative insights into how the quality 
of a weapon system may be substituted for sheer numbers. Moreover, an unanswered 
theoretical question is to determine how the parity-condition parameter Q* depends on the 
combat-intensity parameter A, and the relative-fire-effectiveness parameter AR. Finally, our 
results here are signposts as to the diffculty of analytically extracting information (particularly 
parametric information without excessive computations) from variable-coefficient Lanchester- 
type models such as (7). 

, 
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