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Practitioners of optimization-based decision support advise commerce and government on how to coordinate
the activities of millions of people who employ assets worth trillions of dollars. The contributions of these
practitioners substantially improve planning methods that benefit our security and welfare. The success of real-
world optimization applications depends on a few trade secrets that are essential, but that rarely, if at all, appear
in textbooks. This paper summarizes a set of these secrets and uses examples to discuss each.

“Thou shalt never get such a secret from me but by a parable.”
Shakespeare, The Two Gentlemen of Verona
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Clients consult specialists because they have real-
world problems to be solved. Clarifying a

problem statement by talking with a client or, better,
getting first-hand experience with the client organi-
zation is very different from reading a textbook case
study. (However, some clients might feel that your
success would threaten their jobs.) In this paper, we
offer advice that we learned from completing hun-
dreds of optimization-based decision-support engage-
ments over several decades. These are hard-won
lessons based on field experience. As a practitioner of
our optimization art, you must obtain some experi-
ence beyond textbook coursework before these sug-
gestions will make complete sense to you. Thus, you
will not find this material highlighted in any textbook.
Providing decision support in the real world is diffi-
cult because it requires that you deal with enterprise
data systems, legacy procedures, and human beings
who might not share your passion for making things
better.

We receive many phone calls from colleagues
and ex-students who are working with optimization.
Sadly, too many of these callers do not extol the
wonders of optimization; rather, they lament prac-
titioner problems in getting things to work right.

Unfortunately, this may have given us a distorted
view of the issues we address here.

In this paper, we present our tradecraft in the topi-
cal categories that we have used to collect our lessons
learned. Even if you are not a practicing optimizer,
we suspect you will find insights here.

Design Before You Build
We have had an astonishing number of opportunities
to address problems with optimization models that
have been implemented, but are behaving badly (e.g.,
they are very hard to solve, too large to solve, or pro-
duce strange results) and are not documented. They
have been built without a design!

Documentation must—not should, must—include
these three critical components:

• A nonmathematical executive summary,
• A mathematical formulation, and
• A verbal description of the formulation (Figure 1).
A nonmathematical executive summary must answer

the following five questions, preferably in this order
(Brown 2004a):

• What is the problem?
• Why is this problem important?
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Figure 1: The model sponsor will only likely see the nonmathematical
executive problem summary and the verbal problem description. The
actual model implementation must be embedded with these two essential
documents and with a mathematical formulation. In our experience, there
is no substitute for any of these components.

• How would the problem be solved if you were
not involved?

• What are you doing to solve this problem?
• How will we know when you have succeeded?
Express your executive summary in your executive

sponsor’s language, rather than in technical jargon. If
you have trouble writing such a summary in less than
five pages, you are not ready to proceed. The follow-
ing tricks will make writing your summary easier and
more effective:

• Have a nonanalyst read your executive summary
to you, out loud,

• Ask this reader to explain your executive sum-
mary to you,

• Listen well, and
• Revise and repeat.
A mathematical formulation should include the fol-

lowing in this order (Brown and Dell 2007):
• Index use (define problem dimensions),
• Given data (and units),
• Decision variables (and units),
• Objectives and constraints, and
• (perhaps) a dual formulation.
Remember to define terms before using them. The

earliest definition of such a standard formulation for-
mat appears in Beale et al. (1974). To distinguish
inputs from outputs, adopt a convention such as

using lowercase for indexes and data, and uppercase
for decision variables.

A verbal description of the formulation (Figure 1)
explains, in plain English and in your executive spon-
sor’s language, what each decision variable, objec-
tive, and constraint adds to the mathematical model.
It gives you the opportunity to define what the
mathematics means and why each feature appears
in your model. Avoid literally translating mathe-
matics into English. For example, avoid saying “the
sum of X over item subscripts i must be no more
than m for each time subscript t.” Instead, say “the
total production of all items must not consume more
raw material than will be available in any year.”
Do state and justify any simplifying assumptions
(some examples include “our planning time fidelity is
monthly, with a 10-year planning horizon,” and “we
allow fractional production quantities of these large
volumes”).

Bound All Decisions
Bounds restrict the domain of every decision. An
unbounded variable does not exist in our real, OR
analyst’s world. Establishing bounds for each deci-
sion variable is a trivial concept that is often ignored.
While any reasonable optimization solver will do this
automatically, the solver cannot tell you that its anal-
ysis is based on bogus data or missing features in
your model. If you manually apply simple ratio tests
(e.g., “If I had all the steel the world produced this
year, how many automobiles could I build?”) and get
ridiculous answers (e.g., “2.1 autos,” or “10 trillion
autos”), you have discovered an error either in the
data or in the description of the manner in which
automobile production consumes steel. These conver-
sions reveal an erroneous steel consumption rate per
auto or a constraint that has no influence on your
model; thus, you can jettison them.

Do you remember all the formal “neighborhood”
assumptions that underlie your optimization method?
Taylor’s theorem makes any continuous function
appear linear if you bound your decision neighbor-
hood tightly enough. All your costs and technology
likely exhibit nonlinear effects across widely vary-
ing magnitudes; however, they might not exhibit the
same effects over a small neighborhood—the domain
for which you are planning.
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It is easier to branch-and-bound enumerate mod-
els with integer variables if the bounds on the inte-
ger variables are as tight as possible. This is worth
addressing before you try to solve large models. If the
tightest bounds that you can state permit a “large”
integer domain, relax the integrality requirement and
round the continuous result to the nearest integer.
The inaccuracy that rounding inflicts will be no worse
than one divided by the final value of the variable.

Bounding all your decision variables pays an unex-
pected bonus. Pull out your favorite optimization
textbook and look at the basic theorems that might
have seemed so hard in class. Notice how much math-
ematical lawyering becomes superfluous when you
rule out the unbounded case. Voila!

Expect Any Constraint to Become
an Objective, and Vice Versa
Important planning models almost always exhibit
multiple, conflicting objectives. Get familiar with a
“weighted average objective,” and what it really
means. Learn about “hierarchical (i.e., lexicographic)
objectives,” and how to coerce off-the-shelf opti-
mization software into following your hierarchy. For
example, you might maximize the highest-priority
objective, and then add a constraint on this objective
to maintain this performance in all subsequent solu-
tions. Repeat this process with each lower-priority
objective until these successive restrictions have
addressed your entire hierarchy, or your model is
so overconstrained that further restriction would be
pointless. Using some algebraic modeling languages,
you can automate all of this as a single model
excursion.

You can see that there is a continuum (sic) between
weighted objectives in a single monolithic model, and
strictly hierarchical ones in a sequence of successive
restrictions. It is possible to force hierarchical results
by using wide-ranging values for weights; how-
ever, you might regret the attempt. Take care to use
your model-generation logic to control a hierarchal-
solution sequence, rather than try to force your opti-
mization model to make this asymptotic transition
from finite weights to the infinite weights required
to render absolutely lexicographic results. Floating-
point numerical errors increase in direct proportion to

the relative magnitude of the terms in your additive
weighted objective. You might be able to express such
an objective; however, your solver will not see what
you intend to be lower in the objective hierarchy.

In one of our engagements, we dealt with an ex-
treme case with 14 objectives, each weighted at least
an order of magnitude more than its predecessor in
the weighted hierarchy. This was not a pretty numer-
ical experience for the solver.

Expert guidance from senior executives frequently
filters down to modelers as constraints (i.e., orders). In
our experience, constraints deriving from literal inter-
pretation of such guidance inevitably lead to an infea-
sible planning model. Discovering what can be done
changes your concept of what should be done. This
leads you to “aspiration constraints,” a situation in
which you determine how much of something you
can maximize in isolation; you can then write a con-
straint saying, for example, “I’ll settle for 90 percent of
this isolated maximum.” If you work with your senior
sponsors using these simple methods, you will be able
to guide them to give you better advice. As OR ana-
lysts, we may think that our job is to give advice;
however, our real objective is to help our sponsors to
make the right decisions.

Much of the relevant literature advises us on how
to deal with multiple objectives. It does a nice job
of defining and explaining concepts, such as pareto-
optimality. However, simple ideas usually work best.

Classical Sensitivity Analysis Is
Bunk—Parametric Analysis Is Not
Blind application of dual values, right-side ranging,
and other textbook tricks offer little useful advice
on how the solution will respond as the inputs all
change. Even for the few models that are continu-
ously linear, classical textbook sensitivity analysis is
rarely useful. Some of the best off-the-shelf mathemat-
ical modeling languages and solvers do not support
such analysis. We professors love to teach this “stuff.”
We will continue to teach it because it conveys lessons
on the foundations of our optimization methods, and
on how to interpret the quantitative (how much to do)
and qualitative (what to do) influence of restrictions
and relaxations.

However, in the real world, plan on solving many
model excursions; do not hesitate to try this approach
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because “it may take weeks to complete.” In the
past 15 years, improvements in linear program (LP)
solvers and, in particular, in integer linear pro-
gram (ILP, aka MIP) solvers and their controls have
improved performance by a factor of at least 10,000
independent of the much faster speeds of newer computers.
Some in our profession, especially the senior, expe-
rienced professors and textbook authors, still recall
overnight batch processing of mathematical program-
ming system (MPS) tapes. This is not a fond memory;
therefore, our advice is simple—“get over it.” All you
need today is a reasonably endowed desktop or lap-
top computer. For almost any modeling engagement,
we can expect to set up an optimization model that
allows us to express a question and get an answer
while our sponsor still remembers the question.

Model and Plan Robustly
Ensure that your model considers alternative future
scenarios and renders a robust solution. There are
many ways to capture this in your model; all boil
down to arriving at a single plan that, if applied
to any of your scenarios, solves that scenario with
acceptable quality, and which you can express as
some combination of feasibility and optimality.

In the military, we plan for what is possible, not
what is likely; therefore, we seldom employ random
variables to represent the likelihood of each alter-
native future. We use simulation to make quanti-
tative (perhaps random) changes to data elements;
however, we rarely randomly sample qualitative
future changes. Senior planners use judgment to
arrive at what they think is a fully representative set
of deterministic scenarios. While there could be many
theater-war plans, we normally only have one chance
per year to request what we need to prepare for all of
them.

We pay attention to the current defense-planning
guidance. As we develop our model, we try to
address the sponsor requirements. For example, sup-
pose that our guidance is to fight and win one engage-
ment while suppressing another, and then to fight the
other and win it. If we do not have the option of
selecting our favorites of 20 available war plans for
such potential engagements, we might have to plan
for 20-times-19 permutations of engagement pairs.

You might not be able to develop a plan that
addresses all scenarios; thus, you could be motivated
to search for a worst-case plan, which will distort
your results. It is better to convey truthful insights to
your sponsor than to delude yourself with baseless
optimism. From the full scenario set, we can devolve
to, for example, meeting a maximum subset of sce-
nario requirements, or maximizing some gauge of sce-
nario fulfillment. Whatever plan you select, do your
best to document with exquisite clarity your assump-
tions and compromises that differ from the overar-
ching defense-planning guidance. Despite apocryphal
tales of the demise of analysts bearing bad news, an
OR analyst who uses diplomatic, unambiguous lan-
guage and careful analysis to deliver bad news will
be a hero.

We seek the worst case among a reasonable set of
outcomes that we control because that is what we are
obligated to worry about and defend against. There
are many commercial analogs to this advice. We find
little to distinguish private-sector competition from
military planning.

Model Persistence
Optimization has a well-earned reputation for ampli-
fying small changes in inputs into breathtaking
changes in advice.

Decision-support engagements typically require
many model excursions, followed by analysis, fol-
lowed by revisions and more model runs. When we
have invested heavily in analyzing a legacy scenario,
and must make some trivial adjustment to attend to
some minor planning flaw, the last thing we want is a
revision that advises major changes. This is always an
issue with rolling-horizon models; it also arises when
you make iterative refinements to a static model.

If your model is unaware of its own prior advice,
it is ignorant. You can expect annoying turbulence
and disruption when solving any revision of a legacy
model. Any prescriptive model that suggests a plan,
and, if used again, is ignorant of its own prior advice,
is free to advise something completely, needlessly dif-
ferent. This will surely cost you the faith of your
sponsor. Sometimes, there are many nearly optimal
policies; however, if you have already promulgated
one of these, it is now a legacy-planning standard that
is worth trying to preserve.
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Persistence means “continuing steadily in some
course of action.” This is exactly what we do
with long-term optimization-based decision-support
engagements. We must successively meld our spon-
sor’s expert judgment with our model’s optimal
advice.

It is easy to add model features that limit need-
less revisions. To do this, you need to make a published
legacy solution a required input, and then add model
features to retain attractive features or limit need-
less revisions of this legacy. These persistent features
might include the following (Brown et al. 1997):

• Do not change this legacy resource consumption
by more than 2 percent,

• Between this legacy solution and any revision,
add (or delete or change) no more than three of the
binary options in this set,

• Do not change X unless you also change Y.
We give our students a handout showing them

how to state integer linear constraints that express the
ubiquitous logical relationships required in decision
support (for example, for binary options A and B,
“A only if B,” “A and B, or neither,” “A or B, but not
both,” or “A or B, or both”). We also show them how
to state persistent guidance for revisions (because this
information rarely appears in textbooks). For exam-
ple, the Hamming distance between a legacy vector
of binary decisions and a revision counts only the
bit-wise number of changes. To solve a sequence of
revisions, you can use constraints either to limit the
number of revisions; in cases in which you are looking
for a set of alternative courses of action to present to
your sponsor for subjective evaluation, you can force
diversity of each revision from any legacy solution
(Brown and Dell 2007).

The literature suggests widely that in a facility loca-
tion, for example, one should use a binary variable to
represent each close-open decision with a fixed cost
inflicted when we choose open. We rarely get to apply
this in the real world because each facility might be in
one of several states (e.g., open, open but idle, moth-
balled, closed, or disposed); the real problem is to
decide which state transitions are best for the client.
In even the simplest case, we have preexisting legacy
facilities and their states and we choose revisions of
those states; in these revisions, each before-after state

pair has its own distinct, fixed transition cost. Mul-
tiperiod planning requires a binary variable for each
state transition and a constraint to force choice of only
one transition per decision.

Solution cascades (Brown et al. 1987, p. 341) solve
a window of active constraints and variables moved
over, e.g., time, fixing the values of each variable as
the value determined when it was last in a window,
for several reasons. For example, omniscient long-
term optimization models sometimes are too clever
about anticipating the distant future; we prefer more
realistic time-myopic planning. We can also use per-
sistent cascades to incrementally revise a plan locally
while preserving its overall scheme. Sometimes, the
cascade subproblems are much easier and faster to
solve in large numbers than the seminal, monolithic
model.

We also wonder why our literature pays scant
attention to end effects. When we plan on using peri-
odic state reviews over a finite number of planning
periods, how do we plan to leave our system at the
end of this planning horizon? There may be indus-
try rules of thumb or policies on the admissible state
of your enterprise (e.g., always have sufficient sup-
ply on hand to satisfy the next 90 days of demand).
Lacking such guidance, we often plan further into the
future than the planning horizon requires because we
want to get some realistic representation of the actions
up to exactly the end of the planning horizon (and
discarding the further future results) (Brown et al.
2004).

Pay Attention to Your Dual
A conventional linear program equality constraint has
an unrestricted dual variable that we can interpret as
“this is how much it would be worth to relax this
constraint by one unit.”

An elastic linear program equality constraint uses a
linear penalty per unit of violation below (or above)
its minimal (or maximal) range. Allowing this con-
straint to be violated below (or above) either range at
some finite penalty cost-per-unit violation bounds its
dual variable (i.e., “this is the most it is worth to me
to satisfy this constraint; otherwise I’ll violate it, pay
this penalty, and deal with the consequences”). There
is no such thing as an infinitely valuable constraint.
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Decision makers get paid to deal with infeasibilities
and cannot rule them out in the real world.

When you convince your sponsor to work with you
to state each constraint with a well-planned penalty
for its violation, you have enormously enhanced your
control and understanding of your decision-support
model. Remember that a phone call beats a clever
planning method every time. That phone call could be
between you and your sponsor, or between the spon-
sor and a supplier, superior, or even the IRS. A written
problem description or model statement could never
have the level of impact that relaxing exasperating
restrictions does. Managers are paid to make these
calls and deal with infeasibilities.

Elastic constraints provide another surprise bonus:
integer linear programming is much easier to deal
with when you know a priori that every candidate
integer solution in an enumeration is, by definition,
admissible (i.e., satisfies the constraints, albeit per-
haps with some penalties). In addition, if you set your
elastic penalties carefully, you will be rewarded with
remarkable improvements in linear-integer solution
quality and solver responsiveness.

If you have a linear program, or can relax to one,
state its dual. If you cannot write an abstract of
the meaning of this dual, if you cannot interpret
your dual at all, or if your dual is nonsense (e.g.,
unbounded or infeasible), your primal problem is
ridiculous. OK, this is strong language. Amend this
to read “your primal problem needs more attention
before you are ready to use it.”

Consider this example of a simple maximum-flow
model that we have used for military planning and,
since 9/11, for planning homeland defense. It includes
a source node, a destination node, and a capacitated,
directed network through which we wish to push the
maximum-flow volume from source to destination.
Write this primal linear program and solve it. Now,
recover the dual solution. Admire these dual values
and note that each arc on a minimum cut is distin-
guished by two incident dual values that differ. If you
want to attack this maximum-flow network and can cut
these arcs, you have decapitated it.

Interpreting linear programming duals is the foun-
dation of decomposition (Brown et al. 1987) and the
bilevel defender-attacker or attacker-defender models
(Brown et al. 2006).

Spreadsheets (and Algebraic Modeling
Languages) Are Easy, Addictive,
and Limiting
OK, we have a new problem; we need a quick answer;
we need database support for model development
and cataloging solutions; and we need a graphi-
cal user interface that supports ad-hoc analysis and
graphical output. Thus, we must either spend a long
time and a small fortune developing a purpose-built
graphical user interface or use our off-the-shelf office
software suite.

Spreadsheets with embedded optimization solvers
are inviting. Even executive sponsors likely know
how to bring up a spreadsheet; therefore, you will
gain immediate acceptance by adopting this familiar
“look and feel” standard. In addition, you will be able
to catalog and display a spreadsheet solution imme-
diately by using the tools you use in your integrated
office software suite daily.

However, spreadsheets support only two-dimen-
sional views (and pivot tables) of many-dimensional
models; they exhibit “dimensional arthritis”—they
can support a many-dimensional model; however,
they do not do it easily or naturally (Geoffrion 1997).

We get many calls from spreadsheet users who
wonder why their optimization results either take for-
ever or generate incorrect results. One of the first
questions that we ask is, “how much did you pay
for the solver you used?” Consider spending a few
thousand dollars per seat on a well-known, off-
the-shelf, supported, and documented, commercial-
quality optimization package. In addition, before you
commit to using any solver, check the credentials of
the optimization software provider and verify how
you will get help if you have problems.

Modeling languages are crafted to accommodate
multidimensional models; they feature interface links
to all contemporary database, spreadsheet, and pre-
sentation managers, and make great prototypes.
However, even if a prototype works and gains accep-
tance, the modeling language used for prototypic
implementation might not make a good decision-
support tool. Some modeling languages isolate mod-
els from off-the-shelf commercial solvers. They do
not provide good support for large-scale, indirect-
solution methods (for example, column generation or
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decomposition). If you are working on an important
problem, why would you jettison 40 years of expe-
rience in solving it well, and, instead, simplify and
aggregate away essential details merely to be able to
mechanically generate and solve problem instances?

The transition from hasty prototype to production-
model generator and interface is not easy. However,
in our experience, the results always justify the invest-
ment. The use of a commercial-quality optimization
package could reduce your model-generation and
solution times from hours to just seconds (Brown and
Washburn 2007).

Heuristics Can Be Hazardous
A heuristic—whether a simple rule of thumb or
a well-known local search method—is so easy to
explain and implement that we are often tempted to
use one in lieu of more formal methods. Heuristics
might not require optimization software and might
offer a tantalizing first choice to quickly assess a
“common sense” solution. However, heuristics should
rarely be your first (or only) choice. Geoffrion and Van
Roy (1979) offer some simple, exquisite examples that
they have used with executives to show how blind
adoption of common-sense heuristics can bring you
grief.

We can also develop bounds on the best solution
possible, although this is not as much fun to do as
building a solution-seeking method. Without some
similar bound, our advice is of unknown quality. This
quality certification is important: a bound on the value
of the best possible solution is just as important as the best
solution you have.

A mathematical optimization model takes longer
than a heuristic to develop, and perhaps to solve;
however, it can provide a bound. We develop mod-
els of relaxations of very hard problems merely to
recover the bounds that they provide. Lacking a trust-
worthy assessment of the quality of your advice, you
are betting your reputation that nobody else is more
scrupulous or just plain luckier than you are.

While publishing a bound with your solution is
the right thing to do, there is a risk. We have been
told: “Hey, you’re leaving money on the table!” Well,
maybe we are and maybe we are not. At least, we are
honest about the possibility.

The interval of uncertainty is what we call the inter-
val between the value of a solution and a bound
on the value of the best-possible solution (various
sources exist, including integrality gap, decomposi-
tion gap, Lagrangean gap, and duality gap). When
you compare two alternative scenarios, you can be
absolutely sure about the winner if the two intervals
of uncertainty are disjoint, no matter how large each
of these intervals is. Realizing this, you can work only
hard enough to find a distinguishing difference—and
no harder.

We have also been in a private-sector competition
in which our heuristic competitors wrote the sponsor
and said, “these guys admit their solutions may not
be right.” Boy, they thought they got us there, didn’t
they? To this, they responded “but, our method gets
better solutions the longer you run it.” This reminds
us of the difference between “known unknowns” and
“unknown unknowns.” We can work with the former;
we get nightmares from the latter. While a heuristic
might suggest a provably better plan than the plan
the enterprise is using currently, you will never know
how much more you might have discovered. Would
we implement a solution with no quality assessment?
No, thanks.

We have also been told (sigh, and have read in
the literature) that “this ILP is NP-hard, so we use
a heuristic.” Please. Even if (ahem) you prove that
your ILP is NP-hard (an essential reduction proof that
is still absent from our literature too frequently), this
only means it is as hard as many other problems that
are routinely and reliably solved to good tolerance.
How much better is a heuristic with polynomial run
time than a bounded ILP enumeration, which benefits
from hundreds of years of research and experience by
our optimizers? In addition, is the heuristic really any
faster?

The simplex method has been criticized for its expo-
nential worst-case run time on polynomially complex
linear programs. Given its excellent average perfor-
mance on an immense diversity of real-world linear
programs, the worst-case run time limit is a poor
excuse to adopt an alternative solution method. We
have a good idea of the classes of problems for which
the simplex method works well.

We prefer to solve any model that we can, even
approximately, using conventional mathematical opti-
mization and the best software we have. If we
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convince our client that our suggested planning tool
is worthy, software that costs a few thousand dollars
per seat should not be a problem.

In cases in which the cost per seat would be too
high to distribute the best software we have, or the
number of seats required is necessarily high, and the
model admits a heuristic solution, we try to develop a
heuristic. Using our best software, we test empirically
to assess performance. If we distribute the heuristic,
we maintain a backup with our more-expensive soft-
ware to objectively assess any curious performance
in the field. At the Naval Postgraduate School, this
means that we must maintain computers and soft-
ware at various classification levels in appropriately
secured facilities. While this requires a significant
investment in hardware and software, it is essential
to providing a safety net for fielded heuristic solvers.

We have encountered other obstacles both in the
government and in the private sector with “enterprise
standard” computers that are not allowed to run “for-
eign” executables and “exotic” applications, such as
our optimization models. For example, Navy Marine
Corps Intranet (NMCI), which governs 351,000 com-
puters, is the largest standardized internal computer
network worldwide (Electronic Data Systems 2006).
Presumably this standardization has had benefits for
“one size fits all” IT support. However, it has been a
continuing headache to us. We cannot afford to have
each of our models “vetted” and “approved” (a pro-
cess that takes many months and many thousands of
dollars) for NMCI. Accordingly, we have developed
heuristics that can run, for example, with Visual Basic
within Microsoft Excel on a standard NMCI com-
puter. We have also developed applications that run
exclusively on a universal serial bus (USB) drive that
can be connected to a NMCI computer.

We have also had to purchase computers, install our
applications, and ship these to our clients. We refuse
to confirm or deny where these clients serve, or if they
also have their own private computers to do mission-
essential work outside of NMCI. We do whatever is
necessary to complete our missions.

Perversely, one of the most influential arguments
for heuristics, and against excellent, off-the-shelf com-
mercial optimization solvers, is the Draconian license
managers of these solvers, which treat paying clients
like criminals. We have seen many cases, in academe

and in industry, where a good solver would have
helped; however, it was rejected because of the
sheer IT burden it would cause—that of struggling
with optimization-provider sales persons, computer-
specific, immobile license keys, and license-manager
hassles.

Modeling Components
Models usually exhibit a variety of functional com-
ponents that express different aspects of the modeled
enterprise. Observe how this enterprise is organized
and mimic this with your model. For example, when
production plans influence financial plans, link these
components with “passenger variables” (a passen-
ger variable does not change the degrees of freedom
in your model because it is defined by an equa-
tion) that isolate and highlight this communication
between components. Choosing passenger variables
deserves some care; you are trying to capture how the
connected enterprise components communicate with
each other.

You might think that cluttering your model with
superfluous passenger variables and defining equa-
tions makes the resulting, larger model harder to
solve. Fortunately, solvers employ “presolve” features
that quickly identify “rank-one” algebraic redundan-
cies (e.g., those that are identifiable without substitut-
ing more than one variable for its defining equation);
remove them from the model before you solve it; then
substitute them back in when you have completed the
solution.

Incremental development of components offers an
added benefit. During this phase of development, you
need only work with representatives of the enterprise
component that you are currently modeling; thus, you
can focus without distraction on the lexicon, opera-
tion, fidelity, and key issues to capture. Better yet, you
can arrange each component to be optimized in isola-
tion during development and testing. Fix or constrain
the passenger variables linking to other components,
run the component alone, and unwind any mischief
that appears in this localized exercise.

Designing Model Reports
Design model reports to match those that planners are
already using.
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It is not unusual to spend as much time in report-
ing as in modeling. For example, if you find that a
Gantt chart is a key display that manual planners
use, mimic it. If your model has significance for the
enterprise, i.e., if your optimized plans can materially
change profitability, plan on producing a set of oper-
ating statements. Such statements might contain a
cash flow report, income statement, and balance sheet,
including the most important gauge—return on own-
ers’ equity. This is difficult work because preparing
such statements requires much enterprise operating
data that you would not otherwise need. The pay-
back for doing this foundation work is two-fold: you
gain a deeper appreciation for where and how your
model can influence the enterprise, and these syn-
thetic reports will get the attention of your sponsor.

For example, if your advice might require raising
significant amounts of funding (e.g., by borrowing,
selling stock, issuing bonds, or diverting funds from
other uses), the sources, methods, and forecast conse-
quences of such fundraising are essential features of
your model. If your objective is earnings per share,
and both earnings and number of shares are discre-
tionary, you have a ratio of decision variables that
you might (or might not) be able to back out alge-
braically into a linear (sic) integer program. While this
greatly complicates your modeling, it is essential to
your reporting.

To our knowledge, the earliest example of such
operating-statement reporting appears in paired
papers by Bradley (1986) and Geoffrion (1986), who
advised the board of directors of General Telephone
and Electric (GTE) Corporation how to commit huge
capital improvements with substantial impact on cor-
porate results. Contributions by their GTE cohorts
in this modeling project accompanied these papers.
These authors generously provided us with all their
historical client notes and model source code; we have
dissected these and reapplied their methods.

We have had the distinct pleasure of working with
both closely held companies and sole proprietorships.
These owners quickly grasped optimization and its
nuances, including integrality gaps, duality gaps,
model fidelity, and uncertainty. Because their own
money is at stake, they really engaged with the details
and valued these operating statements. We have also
had experience with scrupulously run, publicly held

corporations; they also valued operating-statement
outputs, but with not with the level of intensity of
private entrepreneurs.

An added advantage accrues from reporting in
terms of operating statements. The managers of vari-
ous “stovepipes” (i.e., enterprise components that are
strongly intraconnected, but weakly interconnected)
in the enterprise can see their business component
and its interaction with others. This provides a level
playing field among these managers, and encourages
them to plan, negotiate, and speak in a common lan-
guage. We have seen cases where, for example, mar-
keting wants to make its quarterly “numbers” for
incentive bonuses, finance seeks goals that are stated
in terms of float, accounts receivable currency, and
cash-versus-debt positions, and manufacturing strives
to meet production-standard goals. This is akin to the
fable of blind men each touching one part of an ele-
phant’s anatomy, and guessing what the animal looks
like. If you gather these managers in the same room
and ask them to look at the same integrated operating
reports, wondrous insights will follow.

Optimization also enables the generation of reports
that management might not have known were possi-
ble. For example, it is easy to embellish a customary
demand-fill rate report with an estimate of the total
landed profit (or loss) accruing from those sales. Wow,
this gets attention!

Design model outputs that are directly useable as
model inputs. In practice, we frequently repeat model
applications to iteratively revise our advice with small
changes.

Conclusion
You may ask “why aren’t these simple topics part of
basic optimization course work?” We have been asked
this before, and respond: “where were you when
these pages were blank?” These ideas may be simple;
however, we know of no other source of instructional
materials that addresses these real-world concerns.

While many analysts have successfully applied
optimization to real-world problems, few will admit
the failures and false starts that too frequently delay
a planning project. For example, INFORMS Edelman
presentations include some very impressive results;
understandably, however, they rarely discuss the fail-
ures that occur on the path to completion. You might
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seek out these authors to learn, as we have, that the
topics we report here are ubiquitous.

We have invested heavily to incorporate these prin-
ciples into our graduate courses. In our program,
each student is part of a group; the students attend
a tightly coordinated, lengthy sequence of optimiza-
tion core classes as a cohort. Thus, we have the luxury
of getting to know and teach them individually and
as a group over an extended period. While we have
had some success in helping them to understand the
material, it is not at a sufficiently high level. We have
concluded that the only way students will appreciate
the value of some of our advice, which might admit-
tedly be tedious to implement, is through experience.

Accordingly, we try to convey these ideas to our
military-officer students using both humorous, self-
deprecating case studies of our past peccadilloes and
homework exercises. However, we also realize that
this will not make much of an impression until the
student has had some seasoning. We include a con-
tinuing, evolving copy of this document in our course
materials; we also give each graduate a “lifetime
money-back guarantee” to call us later, admonishing
them to have this document in hand when they do
(Rosenthal 2007).

Suffice to say we have seen the same problems arise
scores of times, even for very experienced operations
researchers; we have cataloged some in this paper,
along with our prescriptive cures.

We wish you the best of luck in helping us to extend
our reach with prescriptive optimization-based deci-
sion support to make our world better and more
secure.
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