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"Tell me, Muse, of the man of many resources who wandered far and wide,"
Homer (The Iliad)

We introduce a real-time decision support system which uses optimization methods,
simulation, and the judgement of the decision maker for operational assignment of units to
tasks and for tactical allocation of units to task requirements. The system, named ARES
for the Greek god of war, accommodates a high degree of detail in the logistics of unit
movements during operations, yet separates the assignment and allocation activities in a
fashion which naturally accommodates human intervention and judgement-ARES is
designed to assist the decision maker, not to replace him. ARES is demonstrated with a
hypothetical scenario constructed for 14 Engineering Battalions of the Hellenic Army
which are assigned 20 tasks employing 25 resource types in repairing major damage to
public works following a great earthquake. (This hypothetical data was prepared prior to
the earthquake in Kalamata near Athens on 13 September, 1986, and exhibits uncanny, but
coincidental, resemblance to that real situation.) ARES is designed for use in real time, and
quick data preparation is aided by the provision from published sources of standard data
for many foreseeable tasks; this data can be quickly accessed via visual icons on a
computer screen and customized for the actual work at hand. @ 1993 John Wiley & Sons, Inc.

INTRODUCTION

We introduce ARES, a prototypic system for real-time operational and tactical
decision support. ARES is designed to quickly and effectively help respond to complex
emergent problems in disaster relief, our approach may also be applicable to the
operational art and tactics of warfare, and to related multiperiod, large-scale
employment of heterogeneous, substitutable resources restricted in availability and
demand over time, over geography, and by organizationallimitations.
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Although a great deal of work has been done in strategic modeling in many
contexts, there is relatively little available modeling help beyvond simple thumb
rules for the time-pressed (operational or tactical) decision maker to translate
strategic goals into logistically constrained operational and tactical plans (and
the issues are different). The luxuries of hypothetical additional resources and
the time to analyze their employment are just not available in the operational
and tactical domains: Operational and tactical decisions must be made quickly,
and usually involve employing only resources actually available to perform what-
ever mission is at hand.

As an example of the kind of problem we are interested in, we develop a
scenario following an earthquake. Based on early damage reports some con-
struction battalions are to be mobilized to repair damage to roads, bridges,
drinking water systems, hospitals, and so forth. Each battalion is designed to
operate independently, but each has different equipment, skilled manpower.
initial location, mobility. etc. Some repair efforts may start almost immediately
if at least an advance party can be moved to the damage area, and the tempo
of work will increase as the battalion relocates to and gets settled in the damage
area. However, complete repair may take weeks and the work required depends
upon the damage and the stage of repair. Any particular battalion may be well
suited for bridge repair. but ill suited for repairing water mains. A battalion
might be moved more than once during repairs, but at some disruption cost.

For this scenario, the immediate operational issues are:

® Where should each battalion be sent?
& Each repair should be the responsibility of which battalion?

We want to give each battalion exclusive responsibility for repairing its portion
of the damage, and we want to consider how hard and far the battalion move-
ments will be and how well matched the battalions are to the work they are
assigned.

The tactical issues are:

® [f a battalion allocates its resources well to the repairs for which it is responsible.
how fast will work be completed?
®  Can substitution be made among resources to get the work done?

Some work must be completed before other work can start, some damage is
more urgent to repair than other damage, and if a battalion is bivouacked some
distance from the scene work is necessarily slowed by commuting equipment
and manpower. If a battalion lacks a heavy grader, substitution of shovels may
eventually do the job.

After initial mobilization, operational and tactical decisions are reviewed as
more accurate damage assessments become available and the progress of repair
efforts is reported. Changes in battalion responsibilities. even additional relo-
cations, may become desirable. The goal is to complete repairs as quickly as
possible.

The history of assignment and allocation models for planning emergency lo-
gistics extends back to some of the earliest work in linear programming, game
theory, and their economic interpretation. We cite only a few of the references
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in this large body of literature. The seminal works by Dantzig and by Koopmans
{both found in Koopmans [21]) are explicitly motivated by large-scale logistics
problems. Karchere and Hoeber [19] give early direction on the use of newly
developed optimization technology in weapon system planning and allocation,
discussing substitutability of resources, and choice of suitable objective functions.
Geisler [16] reports RAND's first use of man-machine simulation of logistics
support activities. Pritsker, Watters, and Wolfe [22] report another RAND effort
proposing discrete linear optimization for multiproject scheduling with con-
straints on multiple, substitutable resources. Chaiken and Larson [8] state some
basic issues in logistic location and task assignment for emergency service ve-
hicles: How many units should there be. where should they be located, whom
should they serve; and how can they be relocated to substitute for units not
available? Kaplan [18] redeploys divisible resources with linear programming.
Fitzsimmons [15] states a nonlinear response-time model and uses pattern search
to locate units well and allocate workload equitably. Swoveland, Uyeno, Ver-
tinsky, and Vickson [23] employ simulation and human interaction to set up a
unit location problem as a quadratic assignment model which is solved with an
elegant heuristic. Bracken and McGill [3] formulate strategic force planning
models as two-sided games solved with nonlinear programming. Bracken, Falk,
and Karr [2] apply multiperiod, two-person zero-sum games formulated to de-
velop strategies for unit sortie allocations. Finally, Kolesar and Walker [20]
develop a multistage solution approach to unit and task assignment using set
covering and transportation-like integer linear programs which are used in real
time by applying heuristics.

Named for the Greek god of war, ARES is a proof prototype of a real-time
decision support system. It employs optimization and simulation to capture and
exploit a high degree of realism without demanding unreasonable amounts of
data, or locking the decision maker out of the decision process. The intent is to
provide quick credible advice with good global perspective at a cost no greater
than the relatively myopic decision methods now widely used.

ARES accommodates enough detail to support realistic decisions, but not so
much as to render the process useless. For the intended applications, the par-
ticular missions to be performed will not likely be known much in advance, but
the generic types of missions are known and can be planned. ARES uses a
taxonomy of prepared data describing possible standardized missions. This faith-
fully follows standard practice in military planning and in disaster planning. The
idea is to help the decision maker quickly assemble a data scenario closely
resembling the proximate situation from a computer-screen menu of icons rep-
resenting each of these foreseeable mission types.

We characterize the mission at hand as a set of geographically dispersed tasks,
each composed of partially ordered subtasks requiring over time varying amounts
of different resources. Organizational units, also geographically dispersed and
each possessing a different endowment of resources, are to be assigned respon-
sibility for the tasks. Following standard doctrine, responsibility for each task
rests with only one unit at any given time.

ARES is coordinated by a time-interval decision support simulator which scales
and manipulates scenario data in a fashion transparent to the decision maker
and employs a georeference system, a mobility system, a decision-maker sim-
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ulator, and extensive user interface and user override and control facilities. Two
integer linear programs and a linear program complement the prototypic model
suite. The models in ARES all use a standard data interface visible to the decision
maker; this invites expansion with new models and features.

A scenario starts with the determination of tasks and task attributes derived
In large part from standard cataloged data for similar tasks. Next. units are
identified which might perform the tasks and unit attributes are established. A
georeference system is used to generate distance costs and estimate delays in
relocating and operating units. The decision maker may preview and modify
data or manually preassign tasks and units as he sees fit.

The decision support simulator acts as a coordinating program between the
user and various system and data components, enabling the user to quickly
specify a decision scenario for some given time horizon, and ensuring that the
user can understand the advice rendered, accept all or any part of it, and apply
his own judgment,

Operational assignment of tasks to units uses one of two integer programming
models (IP ) or (IP): these two embedded models render good assignments and
serve as examples of other tools which may be developed as needed to expand
ARES. Each unit will be given exclusive responsibility for each of a set of tasks.
Good task aggregations for the unit assigned reduce unit relocation costs and
match unit resource endowments with aggregated task resource requirements.
Logistical considerations are paramount at this stage.

The decision maker can review the operational assignments, modify them
manually, or reject them outright and restate the conditions for the original
operational assignment scenario. An acceptable set of operational assignments
is passed forward to a tactical analysis.

Tactical allocation of the resources of each unit to the requirements of its
assigned tasks uses a linear programming model (GN). Substitutions among
resources are permitted, although at reduced efficiencies in completing the tasks.
Allocations recognize task priorities and the logistical effects of geographic prox-
imity. In addition, unit efficiency in performing a particular task improves over
time. and the sequence within tasks of resource requirements is considered. The
result is a complete plan for each unit, showing what resources are to be used
to fulfill each task requirement, and the efficiency with which operations are
expected to be carried out. The allocation also determines which requirements
will not be met in situations which overtax units.

Finally, the decision maker is presented with a complete immediate opera-
tional and tactical plan, which he can accept, or modify. or reject outright and
reconstruct. The decision maker may even use ARES to simulate his decisions
and their effects into the far future to forecast eventual outcomes as a conse-
quence of current actions. Regardless of the course of action, ARES is designed
to lend quick insight. The decision maker can use his own judgment, especially
concerning nonquantified factors. and should gain a better grasp of the overall
situation from ARES.

1. DECISION SUPPORT SIMULATOR

The decision support simulator serves primarily to give the user means to
quickly create a scenario, to evaluate alternate action plans, and to keep up
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with developments as time progresses. It also exploits prior planning efforts by
use of standardized task data, unit descriptions, a georeference system, a mobility
system, and a decision simulator.

The decision support simulator acts as a coordinating program between the
user and various model and data components. Its key role is to enable the user
to quickly build a decision scenario for some specified time horizon, and to
ensure that the user can understand the advice rendered, accept all or any part
of it. and apply his own judgment.

To be used, a decision support system must be understood and accepted by
the decision maker. In this vein, we follow common practice of decision makers
by simplifying our complex problem by temporal and functional decomposition.
That is, we concentrate on near-term requirements first, and suggest overall
operational assignment of tasks to units before predicting in detail just how each
unit will fare with the work it is assigned. This decoupling renders problem
fragments that are easier to grasp, and decisions that are easier to evaluate.

Our decisions bear heavily on some view of the situation in the near future.
However, some consideration of farther future outcomes is also necessary. The
decision support simulator manipulates a scenario script which shows current
location and status of units and tasks. For the proximate time interval, a view
of the resources available to units and needed by tasks is generated:; these
estimates can consider sequence dependencies among subtasks, prioritization of
tasks. logistics of unit movements, learning effects on unit efficiency. and so
forth. The details are tedious but the intent is clear:

® Given the situation as we now understand it, what resources can be brought to bear,
and what work should be done?

In the following discussion of embedded models. very simple nonlinear functions
illustrate our view mechanism without resorting to excessive detail.

A simple georeference system divides the area of operations into contiguous
zones. Each zone is small enough that locations within it can be treated as if
they are collocated. Arcs connect local pairs of zones to represent feasible direct
point-to-point transportation and bear costs for available modes; the arcs here
represent road and rail connections and the costs are transit times for categories
of units. Damage to a transportation system is quickly expressed by modifying
costs for those arcs affected. This scheme is easily adopted by planners, and can
be modified to use standard point location codes (SPLCs), or other georeferent
keys.

Mobility can be modeled by path finding in the georeference network for
modes feasible for the units to be moved. One would expect each unit to suffer
some initial delays in marshalling resources. and some subsequent delays in
arrival and resettlement in a new location. For construction battalions. heavy
equipment is a major impediment. We omit excessive logistic details: The key
idea here is to help planners develop a sufficiently detailed model of mobility
before the fact, and to be able to quickly modify and use it after the fact.

A decision simulator is provided so that scenarios can be automatically eval-
uated to an ultimate conclusion. That is, given some scenario warranting such
analysis, the decision simulator can perform operational assignment of tasks of
units and tactical allocation of unit resources period by period without human
intervention. Between decision iterations for each future time period, units are
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advanced if necessary, task descriptions are modified by the work forecast to be
completed, and the scenario script is automatically updated. Interpretation of
narrative performance reports for complete decision simulations helps improve
local decision rules and lends insight to the overall review and decision process.

The following sections introduce two operational assignment models and then
a tactical allocation model. After some discussion, an application of the decision
simulator is used to motivate its design.

II. OPERATIONAL ASSIGNMENT MODEL (IP)

This integer program finds good aggregate assignments of tasks to units without
explicit consideration of unit relocation.

Index Use
i Tasks
j  Resources
k  Units
Given Data

d, Distance cost from unit & to task {
ry. ¥ Minimum, maximum resource f requirements of task i
a5, 8y Minimum, maximum resource j employable by unit &
zi. Tx  Penaltics for violating minimum, maximum resource limits
i Priarity of task § (=0)
& u; Penalties for not assigning or double assigning task i
f;  Substitution efficiency of resource j (=0)
fiy  Consumption by task ¢ of resource § from unit &

Decision Variables

xy Binary variable for assigning task i to unit &

min 2 di X
ik

(1, 1): (. 7). foralli, (1) (GUB)

5.t z Xk
k
D X 2 (@ @) (2o Zy),  forallj k, (2)

xy = {0, 1}, foralli, k. (3) (IP)

The notation = (r, F); (z, Z) indicates lower and upper ranges (r, ) on row
functional values with corresponding respective linear penalties per unit of vi-
olation (z, Z); i.e., this is a goal program with linear penalties, an elastic integer
program (Brown and Graves [5]).
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Consirainis

{1} Encourage assignment of each task to exactly onc unit and form a generalized upper
bound (GUB) row set (Dantzig and Van Slyke [9])

{2) express the goodness of fit of task assignments with employable unit resources; this
goodness of fit is discussed shortly, and

(3) preclude fractional assignment of tasks of units.

For the proximate time interval, a view of the consumption by task i of resource
j from unit k is defined:

Ir'h_l'k = ﬁfe_lﬂ §1'+[F‘_I']".m_d"-:ﬂ”iz. “.}

where o, is the speed of advance of a unit and ¢ is the number of periods that
unit k has already been assigned task i. The rationale for the particular con-
sumption function (1) amplifies the resource requirement r; to account for the
state of resource readiness f;. the task priority p; (making less important tasks
appear more expensive), the logistic proximity of unit k and task i, di/ o, and
learning curve effect as a function of time since assignment, #;. The data are
scaled so that (1) is in conformity with policy guidance or the judgment of the
decision maker. Alternate consumption functions may appeal in other situations.

The distance costs d; and penalties u;, &, and z;, I are expressed in com-
mensurate units and deserve some thought by the modeler. For instance, I
may be interpreted as how much additional distance cost should be incurred
before considering overtaxing maximum resource employment @, for unit &; this
is a direct expression of logistical efficiency. For simplicity in our tests, distance
costs dy, are scaled by a policy parameter, z;, and %, are part of the input script,
u; is defined as 100/p;, and &; equals 100.

(IP) is intended to quickly assemble aggregate sets of tasks which seem from
our current problem view to make good cohorts for particular units. The good-
ness of fit of such aggregations for particular units can be developed in ways
other than ours, and the actual formation of assignments can be carried out by
applying alternate models or heuristics. Based on our experience competing this
model against unaided decision makers, and reconciling differences between
outcomes, (IP) renders advice similar to human decisions.

(IP) is provided as an embedded function within the decision support simu-
lator.

IIl. OPERATIONAL ASSIGNMENT MODEL (IP)

The purpose of this integer program is to find good movements of units to
locations from which they will be assigned good aggregate groups of tasks to
perform.

Index Use

Tasks

Fesources

Lnits

Locations (assumed here to be collocated with tasks)

N
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Given Data
Distance cost [rom unit & to location [
Distance cost from task i to location [

Gross resource requirement j of task § performed from location [
Met resource availability j of unit k located at !

Decision Variables

Binary variable for assigning task i to location /
Binary variable for moving unit k to location /

Formulation

min z;: 8yZy t+ Zk‘, 2:: iy X
(]

ll=

), foralli, (1) (GUB)

=l

le: it

le

(1.1); (m.m), forallk., (2) (GUB)

Z X
!

(0, 1); (m, m),  foralll, (3)

2 Ko
k&

l=

—zg+ 2 xp 2 (0,1); (m, m), foralli,l, (4)
k

aZi + 2 dgxy = (0, 0); (b, B), foralll,j, (5)
k

zy = {0, 1}, foralli, I, (6)

Xy = {0, 1}, forallf, k. (7) (IP.)

(IP;) uses the notation of (IP). Constraints

(1)
(2]

(3)

(4)
(3)

()

encourage assignment of each task to some location,

allow movement of each unit to some location [a GUB row set is formed by
constraints (1) and (2)],

attempt 0 restrict assignments so al most one unit is moved to any particular
location,

require that a unit be moved to any location to which a task is assigned, and
attempt to match for each location and cach resource an aggregate assignment of
tasks which have gross resource requirements about equal to the net resource
availability of the unit moved to that location to perform the tasks (i.e., a good
fit), and

and (7) preclude fractional location of tasks and units.
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For the proximate time interval, a view of the gross resource requirement
F.y Tepresents the resource j estimated to be required at location [ in order that
task / actually receive r;:

fn = e~ 0, @
where p expresses the logistic radius of influence from any location; we have
used p = 100. The gross resource requirement (2) amplifies the resource re-
quirement r; in the same fashion as (1).

Net resource availability dy, represents the amount of resource j which unit
k can deliver from its endowment &, forward to location [. Unit K may be moving
toward location ! while supplying this net resource:

d = Tufjlon + (1 — ayle n'=), (3)

where ay, is the fraction of time which the unit will spend at its destination
location and o, is the speed of advance. =

The distance costs dy; and gy, and the penalties u;, &, m, b, and b all render
the same objective function units. In our work, m = 100, and u; and %; are
defined as in (IP). The penalties for assigning too little (or too much) resource
j to location [ are b (or b). We have used b = 0.1 and b = 0.01.

(IP,) can relocate units, unlike (IP). Each aggregate set of tasks is to be
performed by a unit relocated for that purpose. The goodness of fit of such
aggregations depends upon task locations, unit locations, and our view of how
well such movements can be carried out and assigned work performed.

The decision support simulator provides (IP.) as an embedded function. In
our experience, the decision maker may prefer (IP, ) in early stages of a scenario,
and (IP) later.

IV. TACTICAL ALLOCATION MODEL (GNy)

This linear program allocates resources to the tasks assigned to unit k.

Index Use

i Tasks
| Respurces
w  Work (resources required by tasks assigned to unit &)

Given Data

Fis P Minimum, maximum work requirements w of assigned task [
Qiver T Penaltics for violating minimum ., maximum work requirements
. @y Minimum, maximum resource j employable by unit &
2. Iy Penalties for violating minimum, maximum resource limits
g Priority of task §
fi» Substitution efficiency of resource § for work requirement w (0]
5w Sequence of work requirement w in task ¢ (=0)
¢, Efficiency of resource j used for work w on task «
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Decision Variables

Vor Allocation of resource [ to task ¢ resulting in work w

I'I;I?X 2 E Z 'el'wj'yj'wji
s 1

Piow

> Vi A BT T, horalti,w, (1) (GURB)
-
2_ Z iV = (@i T3 (Zjs ) for all j, (2)

g =4, forall i, w, j. (3) (GN)

(GN,) uses the notation of (IP). However, the dimensions of (GN,) discrim-
inate between resources consumed [ and the work completed w, explicitly rep-
resenting substitutability of resources. Constraints

(1) encourage allocation of sufficient work resources, while
{2) indicate the desired mix of employable unit resources, and
{3) require nonnegative resource allocations.

(GN,) is an elastic generalized network (traditional generalized networks are
discussed by Brown and McBride [7]; the elastic extension is subsequent. un-
published work by Brown).

For the proximate time interval, a view of the efficiency of resource j used
for work w on task i is defined

Chuf = E'Fﬂfn.-'ir‘r-|r-'I”ﬂ.«}-’l”ﬂ_f.-x-'w__ {4}

where 53, = max{0, s,, — ¢}, ¢ is the last time period of this allocation. and o
is the speed of advance of unit k. The efficiency (4) employs the readiness and
substitutability of resources via f,. s;, reduces efficiency if the work w should
not be started until period s,.

If model (IP) has been used for operational assignment,

dI'R = n]ax{ﬂ. dr'_,;- o !Tk-'IZ}.- Ei}

If unit k is to be advanced toward, or to, location / by model (IP, ),

dl'k = mﬂx{[], d;k = CI}I'IE} + ghl, Eﬁ}

These distance costs dy in (5) or (6) and penalties g,,. i, 2. and I, are all
intended to vield the same objective function units. For our tests g, =
100/ p;s5., and g, = 100.

The decision support simulator provides (GNy) as an embedded function.
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V. CONSIDERATION OF LOGISTICS

The efficiency with which a unit completes a task depends heavily upon lo-
gistical considerations. If a unit is remote from a task, or must be moved, its
cfficiency suffers. Figure 1 shows an idealized situation with unit k. task i, and
location [.

Model (IP) assigns tasks to units relving exclusively upon d;. (IP) moves
units to new locations and assigns tasks to be performed from these new unit
locations. (IP,) recognizes dy and g,. The distances d; and d,; are surrogates
for logistical costs of assignment during the ensuing time period. Clearly, (IP;)
is more appropriate for situations in which unit movements are expected, (IP)
when they are not. (IP,) provides the decision maker with a better opening
gambit than does (IP) if the scenario involves significant initial redeployment of
units.

Tactical allocation models (GN) are given unit and task assignments and
planned unit movements. Therefore, (GN) can allocate resources using any
logistic efficiency function of assigned distances, and of other attributes induced
only from assignment such as weather effects, speed of unit movement, etc.
(GN) can also substitute resources at somewhat reduced efficiency as well as
prioritizing their immediate application. Given a fairly reasonable operational
assignment. (GN) provides a high-resolution work plan with rich logistic detail
and good face validity.

VI. AN EXAMPLE SCENARIO

We demonstrate ARES with an example constructed for Engineering Battal-
ions of the Hellenic Army. The mission scenario involves 20 tasks repairing
major damage to public works following an earthquake. For our purposes, there
are 14 units, each endowed with some of 25 resources. Figure 2 shows the units
and tasks from the ARES input script. In the United States, the Department
of the Army defines unit types in [14] and task standards in [11].

For each unit, a speed of advance (SOA) o is given; if a relocation of a unit
has been ordered. the new location index (LL) and the time period (PP) of its

r :
: : dfk /k\umt
oot I'IEW_. T ;,

s sl f

1

[

unit ’
location g /

F
i
dy

/

i
task

Figure 1. Idealized gpeographic logistical scenario.
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UNIT LABELS. LOCATIOMS: AMD PRIOR ASSIGHMMENTS [IPL]
1] ILABEL I I¥-CO0RD |¥=-COORD |S0A LL PP
1 IST COMBAT BN §5=15 20.30 20.30 150
2 ZHD COMBAT BN 5=15 04.50 95.50 150
3 IRD COMBAT BN 5-155 o7. 00 17.25 150
] 4TH COMBAT BM 5=-155 04. %0 08.70 150
5 15T COMSTR BM S=118 05.20 14.50 Loo
§ ZHND CONMSTR BN §=115 13.30 18.75 o0
7 3RD CONSTR BN 5=115 11.058 I15.60 100
] 4TH COMSTR BN 5=115 08.50 15.25 100
L] 1ST AIRBOR BM 5=19% 15.00 05.20 200
10 2N0 AIRBOR BM 5=1%%8 20.%0 20.%0 200
11 IST LIGH.EQUI.CO  5-58 Q0.40 12.85 150
12 L3T ENG ARM BT §=145 13.20 J8.60 120
13 ZND ENG ARM BT =145 09.28 gz.%0 120
14 IRD ENG ARM BT 5-145 08.50 15.25 120
TASK LABELS, LOCATIONS, PRIORITIES. aND PRIOR ASSIGHMENTS (IPICIPL)
™ ILABEL 1 I¥=COORD 1¥=-COORD PRI UU LL PP
1 ADMIN BUILDING  AA&l051 09.55 05.9%0 1
2 ADMIN BUILDING  AAlQSL 09,60 11.60 1
3 ADMIN BUILDING  AAll0l 01.90 06.95 1
L] HOSPITAL log BED GHOLILL 10.75 07 .45 1
5 HOSPITAL 200 BED GHO21L 09.50 11.s80 1
] HOSPITAL lO0° BED GHAL3IL 99.55 05.%0 1
7 HOSPITAL 100 BED GHOL3L a1.%0 06.95 1
3 RAILROAD BRIDGE 861643 ga9.70 05.%0 1
L] RAILROAD BRIDGE 861512 a7.90 09,48 1
12 ROAD BRIDGE 50" @&54101 10.70 a7.20 2
11 ROAD BERIDGE 100' 884109 08.70 05.89 1
12 ROAD BRIDGE 70' 854104 03.30 39.30 2
12 ROAD 3.5 MILES a5Ill0 10.80 06,15 2
14 ROAD 4.7 MILES 88Il22 l10.7& a7.50 2
15 ROAD 5.5 MILES 853l28 09.60 0e.Zo 2
16 ROAD &.8 MILES 853124 02.38 07.25 2
17 ROAD 4.0 MILES 853120 10.89 06,95 2
] HWATER TAMK=DIST=SUP HOL 10.85 0&.9%0 1
13 WATER TAMK=-DIST=3UP NO2 09.45 06.I5 1
20 HWATER TAMK-DIST-SUP WOZ 99.10 10.85 1

Figure 2. Units and tasks of example.

selection are shown. For each task, a priority (PRI) p; is shown: if an assignment
has been made, the unit index (UU), location index (LL), and time period (PP)
of the last assignment is shown.

The georeference coordinates of units and tasks are given in Figure 2 for the
situation depicted in Figures 3, 4, and 3.

A georeference system is used to generate coordinate-to-coordinate distance
costs, which appear in the ARES input script.

The resource requirements for Task 1 (“ADMIN. BUILDING AA10517), a
disaster relief facility, appear in Figure 6, a segment of the input script. Resource
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BULGARILA
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Figure 3. Initial geographic locations of units. {Coordinates displayed are a georeference
in common with the following figures.)

requirements such as these are available in standard engineering reference man-
uals for a wide variety of task types (for instance, see unclassified sources from
the United States Department of the Army [11-13]). We envision a taxonomy
of standardized task data from which a particular set of requirements can be
very quickly extracted and assembled for a scenario. The size of our resource
requirements data base is modest, but the resulting accuracy and level of detail
are quite good. Better vet, data mobilization from a menu of such icons can be
completed in minutes.

The resources employable by Unit 1 (18T COMBAT BN"), a combat en-
gineering battalion, are shown in Figure 7, another segment of the input script.
These resource endowments are in line with those given by the United States
Department of the Army [11] with conversion to man hours from [10]. Penalties
for under- or overutilization of resources are also shown.

The input script also includes for each task the sequence of resource require-
ments expressed as the first period when the resource is best applied. and for
each resource its substitution efficiency for other resources.

The scenario data constitutes about 1,000 records. However, these records
derive from the unit, task, and resource definitions which are modest in number.
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RESOURCE LABELS AND TASK 1 REQUIREMENTS

MAaMN
RR ILABEL I HOURS
i EMGIMN-P [OM-APREN-HLPER 6648
2 SURVEYOR 7o
3 CARPENTER 7557
4 ELECTRICIAM 940
5 PLUMBER 1740
L] MAZON 1600
T STRUCTURE SPECIAL. ]
i HEAT=-VENTILAT SPECIAL. oo
L] WELDER o
1a PIFELINE ]
i1 CRANE=-SHOVEL OPER. oo
12 LOADER OPER. I50
13 DOZER OPER. 00
1s COMPRESSOR OPER. L]
15 DUMP TRUCK OPER. 400
1é CCONCRETE MACHIME QJPER. L]
17 GRADER QPER. 129
132 CRUSHER OPER. ]
19 DITCH MACHIME QPER. oo
20 ASPHALT SPECIAL. ]
21 POMER ROLLER OPER. [}
22 WATER DISTRIBUT. QPER. L]
=3 POWER BOAT OPER. a
o4 ROTARY TILLER QPER. a
=5 SCRAPER OPER. a

Figure 6. Resource requirements of Task 1.

VII. DESIGN AND IMPLEMENTATION

ARES is intended to help the decision maker. not to replace him. Figures 8
and 9 show the functional structure of ARES. The design is biased toward
interactive use with review and intervention options at each stage of operational
assignment and tactical allocation.

ARES is implemented in FORTRAN and runs on many computers. The
results reported here employ IBM VS-FORTRAN 77/2 on an AMDAHL 5995-
700 computer using the VM/CMS operating system. (Software copyrights IBM
Corporation.) ARES also runs on a microcomputer (e.g.. Intel 386 or 486,
Microsoft MS/DOS 5.0, using SVS Language System 386 DOS Extended En-
vironment, software copyright Silicon Valley Software). Input scripts may be
viewed and edited by a full-screen editor, or imported from spreadsheet or data-
base hosts (e.g.. Microsoft's EXCEL). An interactive graphical interface has
been designed for ARES using XVT (copyright XVT Corporation); however,
based on our experience with similar applications, several more months would
be required to implement this system and custom tailor it to suit a given user
of a particular host computer.

ARES uses the X-5YSTEM (Brown and Graves [5]) to solve (IP,), (IP), and
(GN,) in real time. For each problem instance, problem generators directly
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RESOURCE LABELS AMD UMIT 1 AVAILABILITIES

RR |LABEL | IMIN THAX IMIN PEN |MAX PEN
2 SURVEYOR 405 450 19 1d
- CARPENTER 1215 1350 1o |
4 ELECTRICIAMN 203 225 10 i
5 FLUMBER 1418 1575 19 1g
] MASON 1215 1350 10 10
T STRUCTURE SPECIAL. a a 1a 10
B HEAT-VENTILAT SPECIAL. ] a a9 1o
¥ WELDER 187 208 1a 10

19 PIPELINE Q ] L] 10
11 CRAME=-SHOVEL OPER. 1215 1250 ] la
12 LOADER OQPER. 6165 6850 10 19
13 DOZER OPER. 4050 4500 Lo 12
14 COMPRESSOR OPER. 1012 1IZS 1o lg
15 DUMP TRUCK OPER. 10935 12150 10 19

L] CONCRETE MACHIME OPER. 203 22 10 13
17 GRADER OPER. leZao lgoa Lo 12

18 CRUSHER OQPER. ] g 1o 1q

19 DITCH MACHIME QPER. ] ] 10 1a

2 ASPFHALT SPECIAL. ] ] 10 1g

21 POMWER ROLLER OPER. 0 Q 10 10

2 WATER DISTRIBUT. QPER. ] ] 10 10

23 POMER S0AT OPER. a g 10 ia

24 ROTARY TILLER OFER. ] 1 19 la

25 SCRAPER OFER. a 1 10 4]

Figure 7. Resource Endowment of Unit 1,

convert input script data into an internal representation, the solver is invoked,
and the solution is provided to a report writing program. ARES consists of a
set of open subroutines and is executed with whatever preview, review, or other
external interference is deemed desirable.

We envision cyclic use and review at varying levels of detail as a mission
progresses over time. Accordingly, input scripts include the beginning period
and number of periods in the ensuing time interval. which intrinsically scales
time-dependent input data to the desired level of aggregation. We have tested
ARES manually and by replacing the decision maker with the decision simulator
which performs “judgment review™ of successive solutions over time. This per-
mits totally automatic evaluation of complete mission scenarios, and avoids
tedious manual effort in our research. (A single time interval may generate 15
ot 20 thousand lines of solution detail at the scale of our example scenario.)

The decision simulator update of unit coordinate locations and distance costs
is a simple surrogate for a more realistic and complicated georeference and
mobility system. ARES estimates the direction and speed of advance of each
unit during the time interval and relocates the unit. Then the distance costs are
adjusted. If operating areas are known sufficiently in advance to permit prep-
aration of detailed georeference and mobility systems, ARES can accommodate
the increased level of detail in real time (e.g., Brown, Ellis, Graves, and Ronen
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INITIALIZE: Define NEW_SCRIPT
NEXT_PERIOD: Redefine NEW_SCRIPT as OLD_SCRIPT
OP_ASSIGN: Select Model (IPL) ar (IP}

Read OLD_SCRIPT

Generate and Solve (IPL) or (IP)

Record task and unit assignments on ASSIGN_FILE
REVIEW_IP: Option to review assignments in ASSIGN_FILE

either stop,

or edit OLD_SCRIPT and GOTO OP_ASSIGN,

or edit OLD SCRIPT and/or ASSIGN_FILE and continue

TAC_ALLOC: Read OLD_SCRIFT and store as SCRIFT
Read ASSIGN_FILE and update SCRIPT assignments
UNIT-K: Select (CNyJ), Generate and Solve

Update SCRIPT resource requirements for work completed
For next unit k EEPEAT UNIT-K
NEW_SCRIPT: Update SCRIPT unit locations and distance costs
Write SCRIPT as NEW_SCRIPT
REVIEW_PERIOD: Option to review results
either stop,
ar edit OLD_SCRIPT and/or ASSICN_FILE

and GOTO OP_ASSICH
ar edit NEW_SCRIPT and CO TO NEXT_PERIOD

Figure 8. ARES functional specification of decision support simulator.

[4]). The update can also be used to degrade, or to amplify unit resource en-
dowments and effectiveness to modify task resource requirements, or to change
any other data artifact. providing a rich modeling arena.

VIII. SCENARIO RESULTS

ARES has been used in simulation mode to completely plan mission scenarios
from start to finish. For the earthquake scenario, Figure 10 shows the initial
operational assignments of (IP). Figure 11 depicts the arrival of units to their
initially assigned locations.

Without intervention by the decision maker. the decision simulator completed
the scenario in seven weekly intervals, requiring less than 2 minutes in a 1.2-
megabyte memory region.

Face validity of the decision simulator solution has been judged by reviewers
who are experienced Army engineers. Manual intervention does not seem to
improve solution quality significantly. In fact, many manual attempts to coerce
better assignments resulted in startling degradations.

The application of available resources, with allowable substitutions, is shown
in Figure 12 for the seven single-period time intervals to complete the earthquake
SCenario.
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allocation estimates the current period progress unit by unit. This process may be allowed
to continue forecasting into future periods, with or without optional manual intervention
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Figure 10. Initial operational assignments of units. (Directional vectors show the
straight-line path and relative speed of advance .

IX. COMPUTATIONAL EXPERIENCE

Extensive computational experience reveals that the operational assignment
models (IP) and especially (IP,) are most difficult to solve at the beginning of
a scenario, and get progressively easy in later time intervals. The size of these
models varies with the number of mandated assignments, impossible assign-
ments. and the nonzero density of resource availabilities and remaining require-
ments. (IP) typically has about 340 constraints, 268 binary variables, and 6200
nonzero consumption coefficients. The linear program continuous relaxation can
be generated and solved in about a second, and an optimal binary solution is
achieved in another second. or so.

(IP_) has about 1000 constraints, 545 binary variables, and 8000 rather un-
wieldly nonzero gross resource requirement and net resource availability coef-
ficients.
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Figure 12. Resource requirements and work completed. (Each row represents a resource
requirement over time-interval columns. The white bars depict resource requirements
by time interval; the black bars show the relative fulfillment of the requirements. Broken
bars are out of scale. From each time interval to the next the requirements are reduced
by the work completed and amplified by new sequence-dependent requirements. In this
scenano, seven weekly time intervals are required to complete all tasks,
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The linear program continuous relaxation of (IP;) proved impossible to solve
by direct assult. Prior work by Brown and Graves for Bausch [1] on large-scale
set-partitioning problems and later refinements by Brown, Graves and Ronen
[6] suggested an alternate means of attack: a problem cascade.

Briefly, the rows of constraints and columns of variables are lexicographically
sorted to place short rows first accompanied by other rows and columns with
intersection nonzero coefficients, and longer rows later with their own inter-
secting rows and columns.

The problem cascade proceeds by activating a set of constraints, relaxing all
other constraints, and activating a set of variables, fixing all other variables to
their last-known values. This problem is solved, the new values of the active
variables recorded. and another problem specified in the building problem cas-
cade. The last problem in the cascade activates all constraints and variables
(precisely the problem found intractable above) and solves it by starting with
an advanced solution recorded from the last-known values of variables solving
previous problems in the cascade.

(IP, ) resisted even the problem cascade until a new heuristic cascade strategy
was adopted which activates the shortest 3 of constraints and their associated
variables, then the shortest . then . and so forth until the last constraint is
added and the problem is solved. Remarkably. this approach has been absolutely
reliable and robust, while most others fail or prove unruly.

Generation and complete problem cascade solution of the continuous relax-
ation of (IP) now requires about 2 seconds. An acceptable binary solution to
(IP; ) is achieved in another second or two.

We do not routinely seek optimal binary solutions to (IP.), which we refer
to as “perfect misfits.”” The gross resource requirements and net resource avail-
abilities in (IP, ) are rough logistic estimates, calibrated by actual field experience
but ultimately just approximate target performance levels. For interesting op-
erational assignments (i.e.. early in the scenario) there are simply no feasible
solutions; the goal is to guess where to send units so that they can peremptorily
cope with their mission with maximal effectiveness. Accordingly, we accept in
practice binary solutions which may be as much as 25% greater than an optimal
lower bound in total value, including constraint violation penalties. Experimen-
tally, we have determined at additional computational cost that these binary
solutions are actually almost always within a few percent of the true optimum.

A decision maker can help ARES with its operational assignments or com-
pletely specify a solution with manual assignment features. Our experience sug-
gests that the decision maker can express some nonguantifiable guidance in this
fashion, but cannot hope to apply a remotely competitive global perspective.
Manual competition with ARES reveals that model computation effort is amply
justified by the quality of operational assignments achieved. The operational
assignment models, especially (IP,). produce solutions no decision maker is
likely to discover. Some of these solutions have yielded remarkable insights.
The initial operational commitment of units is arduous and crucial to mission
success. (IP,) is worth the computational investment.

By contrast, the tactical allocation models (GN) are easy to solve even in the
cases where heroic substitution of resources are required. The size of each (GN,)
varies with the number of tasks assigned to the unit. and the nonzero densities
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of resource availabilities, remaining requirements, and allowable substitutions.
For our scenario, a typical instance of (GN,) has about 70 constraints and 1190
variables, and is generated and solved in less than (.04 second. Stress tests with
525 constraints and 12,500 variables require less than a second.

X. DISCUSSION AND CONCLUSION

The subtlety of operational assignment has surprised us, as has the ease of
detailed tactical allocation. Operational assignments are delicate decisions, and
the success of entire missions appear to be very sensitive to minute details—
precisely the considerations a hard-pressed decision maker would likely overlook
in haste.

Extensive mechanisms have been provided in ARES to encourage manual
review and experimentation with solutions. However, there have been very few
cases in which such guidance improved solutions and many instances in which
minor manual adjustments of operational assignments inflicted great disruption.
For example, some operational assignments of (IPy) “cross-locate™ units in the
sense that a pair of units will each be collocated with a task assigned to the
other. This superficial blemish can easily be masked by manual intervention or
by automated solution editing. Surprisingly, the removal of cross-locations fre-
quently increases the logistic cost of the solution: There is a very delicate balance
of logistic support of task cohorts assigned to specialized units. Cross-location
can actually make a great deal of sense in practice.

Manual intervention can work well in cases inviting human judgment. For
instance, nearly completed tasks or tasks which have been in progress for long
intervals can enjoy efficiencies not apparent to our models. The decision maker
can casily declare tasks completed when minor requirements remain, or when
it is clear that the models are unduly influenced by a minor requirement.

Operational assignments can be restricted so that units are not moved from
their initial new locations until the work in their logistic influence has been
completed. Surprisingly, this restriction is rarely needed in practice, and in those
cases in which multiple relocations are indicated great efficiencies accrue to the
mission as a whole. We view this insight as a strong validation of the modeling
philosophy underlying ARES.

Fortuitous design decisions to separate operational assignment and tactical
allocation models, to decompose time intervals, and to couple the resulting
restricted components with decision simulation and human intervention options
have vielded more than the intended benefits. Our original motives were to
capture as much reality as possible while still rendering models capable of quick,
responsive solution.

The decomposed design also naturally accommodates features which are oth-
erwise difficult to provide. For instance, partial orderings within tasks can be
introduced. Also, discussions with Professor Wayne Hughes have suggested the
technical feasibility of campaign analysis, two-sided gaming, and force-on-force
applications of ARES (e.g., Hughes [17]). In these contexts, the coupling with
simulation enhances our capabilities enormously.
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