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Abstract. We present semi-implicit (IMEX) formulations of the compressible Navier-Stokes equations (NSE) for
applications in nonhydrostatic atmospheric modeling. The compressible NSE in nonhydrostatic atmospheric modeling
include buoyancy terms that require special handling if one wishes to extract the Schur complement form of the linear
implicit problem. We present results for five different forms of the compressible NSE and describe in detail how
to formulate the semi-implicit time-integration method for these equations. Finally, we compare all five equations
and compare the semi-implicit formulations of these equations both using the Schur and No Schur forms against an
explicit Runge-Kutta method. Our simulations show that, if efficiency is the main criterion, it matters which form of
the governing equations you choose. Furthermore, the semi-implicit formulations are faster than the explicit Runge-
Kutta method for all the tests studied especially if the Schur form is used. While we have used the spectral element
method for discretizing the spatial operators, the semi-implicit formulations that we derive are directly applicable to
all other numerical methods. We show results for our five semi-implicit models for a variety of problems of interest in
nonhydrostatic atmospheric modeling, including: inertia gravity waves, rising thermal bubbles (i.e., Rayleigh-Taylor
instabilities), density current (i.e., Kelvin-Helmholtz instabilities), and mountain test cases; the latter test case requires
the implementation of non-reflecting boundary conditions. Therefore, we show results for all five semi-implicit models
using the appropriate boundary conditions required in nonhydrostatic atmospheric modeling: no-flux (reflecting) and
non-reflecting boundary conditions. It is shown that the non-reflecting boundary conditions exert a strong impact on
the accuracy and efficiency of the models.
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1. Introduction. It can be argued that the single most important property of an operational
nonhydrostatic mesoscale atmospheric is efficiency. Clearly, this efficiency should not come at the
cost of accuracy but if a weather center has the choice between a very accurate model and one
that is efficient, they will probably pick the efficient one; however, as numerical analysts, we would
like to build models that are both accurate and efficient. One way to achieve this goal is to con-
struct numerical models based on high-order methods: this class of methods offers exponential
(spectral) convergence for smooth problems and achieves excellent scalability on modern multi-core
systems if they are used in an element-based approach (i.e., if the approximating polynomials have
compact/local support). This is the idea behind element-based Galerkin methods such as spectral
element (SE) and discontinuous Galerkin (DG) methods (see [14] and [27] for nonhydrostatic models
based on these methods) and in this work we use the SE method to approximate spatial derivatives.
Almost all nonhydrostatic mesoscale models currently in existence are based on the finite difference
(FD) method. The only nonhydrostatic atmospheric models not based on the FD method are the
finite volume (FV) models found in [4], [2], and [1], and our SE and DG models found in [14] and
[27]. One of the biggest advantages that finite element (FE), SE, and DG methods have over the FD
method is that no terrain following coordinates of the type introduced in [10] need to be included in
the governing equations. Of course, the orography (e.g., mountains) has to be accounted for in some
manner but element-based Galerkin (EBG) methods, such as FE, SE, FV, and DG, incorporate the
orography via the definition of the grid. EBG methods do not require either orthogonal grids (see
[13, 17, 25, 15]) or grids with specific directions (such as the I and J indices in FD models); EBG
models are inherently unstructured and, while requiring additional data structures for bookkeeping,
completely liberate the method from the grid. This freedom from the grid has major repercussions in
the implementation of these methods on distributed-memory computers in that no halo is required
which translates to truly local algorithms that require very little communication across processors;
instead, the communication stencil consists of the perimeter values of each processor (see [16] and
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[12]). Another advantage that FE, SE, and DG methods have over the FD and FV methods is
that high-order solutions (greater than fourth order) can be constructed quite naturally within the
framework - such high-order properties are desirable because they reduce the dispersion errors asso-
ciated with the discrete spatial operators [11]. In fact, the SE formulation used in this paper allows
for arbitrarily high-order spatial operators to be constructed by an input parameter; all the results
presented in Sec. 4 use either 8th or 10th order polynomials per element.

Once the spatial discretization method has been selected, one is then faced with choosing a
method for evolving time-dependent partial differential equations forward in time. The simplest
choice is to use explicit time-integrators (e.g., Runge-Kutta methods) but these may not be the most
efficient methods to use especially taking the following two points into consideration: 1) methods
that are high-order in space require a much smaller time-step than low-order methods because the
time-step is proportional to the polynomial order and 2) the fastest waves in the compressible Navier-
Stokes equations are the acoustic waves that have little or no effect on the large-scale processes in
the linear regime. The fact that the acoustic waves are so fast but have little significance in the
accuracy of the simulations means that if one uses explicit methods, then one must adhere to a
very small time-step restriction caused by a physical phenomenon that is essentially inconsequential.
To overcome these issues almost all operational nonhydrostatic weather models use split-explicit
methods [23] where the fast acoustic waves use a smaller time-step while the slower waves use a
larger time-step, typically using a time-integration strategy based on explicit Runge-Kutta methods.
Examples of models that use this approach include the operational models of the U.S. Navy [19],
the National Center for Atmospheric Research [22], Penn State/NCAR [29], U.S. National Center
for Environmental Prediction [20], German Weather Service [30], and the Japanese Meteorological
Agency [28], to name only a few. Some centers have experimented with semi-implicit approaches
but have found them lacking with respect to the currently used explicit approach [37].

To construct semi-implicit formulations (i.e., IMEX) that are competitive with the explicit ap-
proach currently used by all operational models requires the development of state-of-the-art iterative
solvers and preconditioners. Our current work is a step towards building such models and, here, we
show that the semi-implicit formulations are indeed more efficient than explicit Runge-Kutta meth-
ods, at least for our spatial discretization methods (high-order spectral element methods); however,
our results should hold for all other spatial discretization methods, the construction of the Schur
complement form for Godunov-type methods requires special treatment (see [27] for issues facing
these methods); we will extend these results to Godunov-type methods shortly. The next step will
be to show that semi-implicit formulations in all directions (as we have done here) are more efficient
than semi-implicit formulations along the vertical; this we shall do in a future paper.

The remainder of the paper is organized as follows. Section 2 describes the five forms of the
equations that we study. In Sec. 3 we describe the semi-implicit method used to march the equations
in time. In this section, we discuss in detail the construction of the semi-implicit operators for all
five equation sets and describe how to extract the Schur complement that is necessary in order to
further increase the efficiency of the semi-implicit models. In Sec. 4 we present the results for all
five semi-implicit models using four test cases. In addition, we compare the efficiency of an explicit
method with the semi-implicit methods both with the Schur and No Schur forms. Finally, in Sec. 5
we summarize the key findings of this research and propose future directions.

2. Governing Equations. In this paper we study five different forms of the equations that
govern the dynamics of nonhydrostatic atmospheric processes, namely the compressible Euler equa-
tions including the gravitational force and a diffusion-like term. Depending on the form of the
diffusion term, the complete compressible Navier-Stokes equations can be recovered. Specifically, we
study the following equation sets:

1. (set 1) the non-conservative form using Exner pressure, velocity, and potential temperature,
2. (set 2NC) the non-conservative form using density, velocity, and potential temperature,
3. (set 2C) the conservative form using density, momentum, and potential temperature density,
4. (set 3) the conservative form using density, momentum, and total energy, and
5. (set 4) the non-conservative form using density, velocity, and pressure.
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For the purposes of this study we restrict ourselves to two dimensions (x-z) and omit the Coriolis
terms. These two assumptions place no restrictions on the analysis of this paper but they do simplify
the discussion considerably. Compared to standard problems considered in computational fluid
dynamics, a distinctive feature of atmospheric flows is the important role played by the gravitational
force, resulting in a vertically stratified fluid. In fact, the vertical profiles of pressure, density, and
temperature are determined to first order by the hydrostatic balance, and nonhydrostatic effects
typically represent perturbations from this equilibrium condition. This fact poses some challenges to
prospective numerical methods and is usually dealt with by introducing a fixed hydrostatic state and
using as prognostic variables the nonhydrostatic deviations from this state. We use this approach
in the present work and describe it in more detail in the following summary of the considered
equation sets. The fixed hydrostatic reference state will also prove useful in the construction of the
semi-implicit time integrator. Let us now describe each of the five equations that we compare.

2.1. Equation Set 1 (SE1). Since none of the prognostic variables used in the SE1 equation
set represents a conserved quantity, it is natural to state the problem in non-conservation form. We
thus consider the system

∂π

∂t
+ u · ∇π + (γ − 1)π∇ · u = 0

∂u

∂t
+ u · ∇u + cpθ∇π + gk = µ∇2u

∂θ

∂t
+ u · ∇θ = µ∇2θ (2.1)

where the solution vector is (π, uT , θ)T , π =
(

P
PA

)R/cp

is the Exner pressure, u = (u, w)T is the

velocity field, θ = T
π is the potential temperature, and T denotes the transpose operator. In these

equations P is the pressure, PA is a constant reference pressure at the surface (PA = 1×105 Pa) and
T is the temperature. Other variables and symbols requiring definition are the gradient operator

∇ =
(

∂
∂x , ∂

∂z

)T
, the gravitational constant g, the gas constant R = cp − cv, the specific heats for

constant pressure and volume, cp and cv, the specific heat ratio γ = cp/cv, and the directional vector
along the vertical (z) direction k = (0, 1)T .

Introducing the following splitting of the Exner pressure π(x, t) = π0(z)+π′(x, t) and potential
temperature θ(x, t) = θ0(z) + θ′(x, t) where the reference values are in hydrostatic balance, i.e.,
cpθ0

dπ0

dz = −g, allows us to rewrite Eq. (2.1) as

∂π′

∂t
+ u · ∇π′ + w

dπ0

dz
+ (γ − 1) (π′ + π0)∇ · u = 0

∂u

∂t
+ u · ∇u + cpθ∇π′ − g

θ′

θ0

k = µ∇2u

∂θ′

∂t
+ u · ∇θ′ + w

dθ0

dz
= µ∇2θ (2.2)

that has been expanded and simplified in order to enforce hydrostasis for zero initial perturbation
fields. It should be noted that the viscous terms on the right-hand-side of the momentum and energy
equations are not the true Navier-Stokes viscous stresses but rather are ad hoc terms used to satisfy
one of the test cases (i.e., the density current). We shall use a similar diffusion operator for all
equation sets except for set 3 where it is natural to use the true viscous stresses.

2.2. Equation Set 2NC (SE2NC). These equations are written as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂u

∂t
+ u · ∇u +

1

ρ
∇P + gk = µ∇2u

∂θ

∂t
+ u · ∇θ = µ∇2θ (2.3)
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where the prognostic variables are (ρ, uT , θ)T and ρ is the density. The pressure P that appears in
the momentum equation is obtained from the equation of state

P = PA

(
ρRθ

PA

)γ

.

Introducing the following splitting of the density ρ(x, t) = ρ0(z)+ρ′(x, t) and potential tempera-
ture θ(x, t) = θ0(z)+θ′(x, t) where the reference values are in hydrostatic balance, i.e., dP0

dz = −ρ0g,
allows us to rewrite Eq. (2.3) as

∂ρ′

∂t
+ u · ∇ρ′ + w

dρ0

dz
+ (ρ′ + ρ0)∇ · u = 0

∂u

∂t
+ u · ∇u +

1

ρ′ + ρ0

∇P ′ +
ρ′

ρ′ + ρ0

gk = µ∇2u

∂θ′

∂t
+ u · ∇θ′ + w

dθ0

dz
= µ∇2θ

2.3. Equation Set 2C (SE2C). These equations are written as follows:

∂ρ

∂t
+ ∇ · U = 0

∂U

∂t
+ ∇ ·

(
U ⊗ U

ρ
+ PI2

)
+ ρgk = ∇ ·

(
µρ∇

U

ρ

)

∂Θ

∂t
+ ∇ ·

(
ΘU

ρ

)
= ∇ ·

(
µρ∇

Θ

ρ

)
(2.4)

where the conserved, prognostic variables are (ρ, UT , Θ)T , U = (ρu, ρw)T is the momentum, Θ = ρθ
is the potential temperature density, and I2 is a rank-2 identity matrix. The pressure P that appears
in the momentum equation is obtained from the equation of state

P = PA

(
RΘ

PA

)γ

.

Introducing the following splitting of the density ρ(x, t) = ρ0(z)+ρ′(x, t) and potential temper-
ature density Θ(x, t) = Θ0(z) + Θ′(x, t) where the reference values are in hydrostatic balance, i.e.,
dP0

dz = −ρ0g, allows us to rewrite Eq. (2.4) as

∂ρ′

∂t
+ ∇ · U = 0

∂U

∂t
+ ∇ ·

(
U ⊗ U

ρ
+ P ′

I2

)
+ ρ′gk = ∇ ·

(
µρ∇

U

ρ

)

∂Θ′

∂t
+ ∇ ·

(
ΘU

ρ

)
= ∇ ·

(
µρ∇

Θ

ρ

)

2.4. Equation Set 3 (SE3). Since these equations, when written in non-conservation form,
are quite unwieldy, they are only discussed here in conservation form. We thus consider the system

∂ρ

∂t
+ ∇ · U = 0

∂U

∂t
+ ∇ ·

(
U ⊗ U

ρ
+ PI2

)
+ ρgk = ∇ · F visc

u

∂E

∂t
+ ∇ ·

[
(E + P )U

ρ

]
= ∇ · F visc

e (2.5)

where the conserved, prognostic variables are (ρ, UT , E)T , E = ρcvT + 1
2
U ·U

ρ + ρφ is the total
energy, and φ = gz is the geopotential. The pressure P is obtained from the equation of state that,
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in terms of the solution variables, reads

P = (γ − 1)

(
E − U · U

2ρ
− ρφ

)
.

The viscous fluxes F visc are defined as follows:

F visc
u = µ

[
∇u + (∇u)

T
+ λ (∇ · u)I2

]

and

F visc
e = u · F visc

u +
µcp

Pr
∇T

where λ = − 2
3

comes from the Stokes hypothesis, Pr is the Prandtl number, and µ is the dynamic
viscosity.

Introducing the following splitting of the density ρ(x, t) = ρ0(z) + ρ′(x, t) and total energy
E(x, t) = E0(z) + E′(x, t), where ρ0 and E0 are in hydrostatic balance, allows us to rewrite Eq.
(2.5) as

∂ρ′

∂t
+ ∇ · U = 0

∂U

∂t
+ ∇ ·

(
U ⊗ U

ρ
+ P ′

I2

)
+ ρ′gk = ∇ · F visc

u

∂E′

∂t
+ ∇ ·

[
(E + P )U

ρ

]
= ∇ · F visc

e

where the system satisfies hydrostasis for zero initial perturbation fields.

2.5. Equation Set 4 (SE4). As for SE1, it is natural to consider this equation set in the
non-conservation form

∂ρ

∂t
+ ∇ · (ρu) = 0

∂u

∂t
+ u · ∇u +

1

ρ
∇P + gk = µ∇2u

∂P

∂t
+ u · ∇P + γP∇ · u = µγ

P

θ
∇2θ (2.6)

where the prognostic variables are (ρ, uT , P )T .
Introducing the following splitting of the density ρ(x, t) = ρ0(z)+ρ′(x, t) and pressure P (x, t) =

P0(z)+P ′(x, t) where the reference values are in hydrostatic balance, i.e., dP0

dz = −ρ0g, allows us to
rewrite Eq. (2.6) as

∂ρ′

∂t
+ u · ∇ρ′ + w

dρ0

dz
+ (ρ′ + ρ0)∇ · u = 0

∂u

∂t
+ u · ∇u +

1

ρ′ + ρ0

∇P ′ +
ρ′

ρ′ + ρ0

gk = µ∇2u

∂P ′

∂t
+ u · ∇P ′ + w

dP0

dz
= µγ

P

θ
∇2θ.

Before describing the semi-implicit time-integration for all five equation sets, let us say a few
words about the spatial discretization method. Although we have chosen to use the spectral element
method, the semi-implicit method for all five equation sets does not change for other discretization
methods as long as the resulting mass matrix is diagonal as is the case for finite difference and spectral
element methods. For the construction of semi-implicit methods for Godunov-type methods, such
as finite volumes and discontinuous Galerkin methods, see Restelli and Giraldo (2009) [27] where
the method is described only for equation set 3. In a forthcoming paper, we will perform a similar
analysis of the semi-implicit method on various forms of the equation sets with the DG discretization;
this analysis will then be applicable to all other Godunov-type methods. For further details on the
spectral element discretization for the equations described herein see [14]. Let us now describe the
semi-implicit formulation of the five equation sets.
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3. Semi-Implicit Time-Integration. The governing equations can be written in the compact
vector form

∂q

∂t
= S(q) (3.1)

where, e.g., for set 3 q = (ρ′, UT , E′)T and the right-hand side S(q) represents the remaining
terms in the equations apart from the time derivatives. In order to obtain the semi-implicit time
discretization of (3.1), we introduce a linear operator L(q) which approximates S(q) and contains
the terms responsible for the acoustic and gravity waves (the precise form of which will be defined
in Sect. 3.2), rewrite (3.1) as

∂q

∂t
= {S(q) − δL(q)} + [δL(q)] (3.2)

and discretize explicitly in time the terms in curly brackets and implicitly those in square brackets.
The parameter δ is introduced in Eq.̃(3.2) to obtain a unified formalism for semi-implicit discretiza-
tions, for δ = 1, and fully explicit ones, for δ = 0.

As was done in [12, 18] we now consider a generic K step discretization of (3.2) of the form

qn+1 =

K−1∑

k=0

αkqn−k + χ∆t

K−1∑

k=0

βk[S(qn−k) − δL(qn−k)] + χ∆tδL(qn+1), (3.3)

where ∆t is the time step, assumed to be constant for simplicity, and qn denotes the solution at
time level n∆t, for n = 0, 1, . . . To simplify the discussion of the semi-implicit formulation, let us
now introduce the following variables

qtt = qn+1 −
K−1∑

k=0

βkqn−k, q̂ = qE −
K−1∑

k=0

βkqn−k, qE =

K−1∑

k=0

αkqn−k + χ∆t

K−1∑

k=0

βkS(qn−k)

that then allows us to write Eq. (3.2) as

qtt = q̂ + λL(qtt) (3.4)

where λ = χ∆tδ. For example, the coefficients for the BDF2 method are α0 = 4/3, α1 = −1/3,
χ = 2/3, β0 = 2, and β1 = −1 (see [15] for BDF methods of orders one through six).

The crux of the semi-implicit method, as is evident in Eq. (3.2), is the derivation of the linear
operator L. The success of the SI method depends on this operator because it must be chosen
such that the fastest waves in the system are retained, albeit in their linearized form. If the correct
operator L is not obtained, the SI method will not work. Fortunately, deriving the linear operator is
rather straightforward. We follow a similar approach used to split the variables into a hydrostatically-
balanced reference state and the perturbation from this state; in other words, we define the variables
as q = q0(z) + q(x, t).

3.1. Boundary Conditions. In this paper, we only consider two types of boundary conditions:
no-flux (i.e., reflecting) and non-reflecting boundary conditions. For the no-flux boundary conditions,
we apply the condition nΓ ·u = 0 where nΓ is the outward pointing normal vector of the boundary Γ.

Since u and nΓ both live in R2 then we can define an augmented normal vector n̂Γ =
(
0, nT

Γ , 0
)T ∈

R4 that then allows us to satisfy no-flux boundary conditions as follows: n̂Γ · q = 0. For explicit
time-integration methods, one can apply all boundary conditions in an a posteriori fashion but this
is not correct for an implicit method; for such methods, all boundary conditions need to be applied
differently. We apply the boundary conditions through Lagrange multipliers as follows:

∂q

∂t
= S(q) + τnf n̂Γ + τnr(q − qb) (3.5)

where τnf and τnr are the Lagrange multipliers for the no-flux and non-reflecting boundary condi-
tions, respectively, and qb is the free-stream (boundary) values of the state variable q.
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It turns out that to impose the non-reflecting boundary conditions given above in a strong sense,
one can write the semi-discrete (in time) equations as follows

qtt = α (q̂ + λL(qtt)) + βq̂b

where α and β are Newtonian relaxation coefficients that drive the solution towards the boundary
reference value such that α → 1, β → 0 in the interior and α → 0, β → 1 as the non-reflecting bound-
aries are approached; this boundary condition is applied to the entire solution vector q. Specifically,
we define

β =

(
z − zs

zt − zs

)4

and α = 1 − β

with zs = 12km, zt is the top of the model, and z ∈ [zs, zt], otherwise β = 0. A similar approach is
used for the lateral boundaries where for the left boundary we define xleft

s = 20km and xleft
t = xmin

and for the right xright
s = xmax − 20km and xright

t = xmax; these boundary conditions are only used
for the mountain test (case 4).

In contrast, for the no-flux boundaries, the boundary condition need only be applied to the
velocity field u. In this case, we rewrite the momentum equations as

U tt = α
(
Û + λL(qtt)

)
+ βU b + τnfnΓ.

Taking the scalar product of this equation with nΓ and rearranging results in the following equivalent
system

U tt = P
[
α

(
Û + λL(qtt)

)
+ βU b

]

where P is the projection matrix

P =

(
1 − n2

x −nxnz

−nxnz 1 − n2
z

)
(3.6)

that imposes the no-flux boundary condition; note that we have dropped the subscript Γ from the
normal vector nΓ for convenience. It should be understood that P is only defined on Γ, in the
interior domain, i.e., Ω - Γ, P simplifies to the identity matrix.

3.2. Definition of the Implicit Linear Problem. In this section, we address the precise
definition, in the case of the various considered forms of the governing equations, of the linear
operator L that has been introduced in Eq. (3.2) for the case of an abstract problem. In order
to ensure stability, it is important that this operator includes the terms responsible for the fastest
waves in the system, albeit in their linearized from. Once the operator L as been defined, the linear
system to be solved at each time step is given by Eq. (3.4) in terms of the unknown qtt, from which
the updated solution qn+1 can be readily obtained. For the 2D Euler equations, this requires the
inversion of a 4Np × 4Np matrix, where Np denotes the total number of degrees of freedom for each
scalar unknown in the problem. Such a system can be solved with a monolithic approach; however,
a better strategy is often reformulating it into a smaller one with a technique known in the literature
by many names, including block LU decomposition, collapsing the equations to a pseudo-Helmholtz
operator form, or solving the Schur complement of the system. In the remainder of this section
we construct the pseudo-Helmholtz operators for all the equation sets one at a time and shall refer
to the full system as the No Schur form and the other as the Schur form. We will see that the
Schur form invariably leads to an equation for a single pressure-like variable, requiring the inversion
of an Np × Np matrix, considerably smaller compared to the matrix inverted in the monolithic
approach. Since our discussion is independent from the chosen spatial discretization, we refer here
to the time semi-discretized problem; the fully discrete problem is readily obtained by substitution
of the continuous differential operator with the discrete ones. One final note is in order: for all of
our simulations we use GMRES as our nonsymmetric iterative solver with Jacobi preconditioning
(see [8] for a description). In future work, we will explore the effects of various preconditioners, e.g.,
overlapping Schwarz [7].
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3.2.1. SE1. For the equation set SE1 we follow [24, 3, 36, 5, 35] and define the linear operator

L(q) = −





w dπ0

dz + (γ − 1)π0∇ · u

cpθ0∇π′ − g θ′

θ0

k

w dθ0

dz




. (3.7)

Note that in Eq.̃(3.7) we rely on the same reference state π0, θ0 introduced in Sect. 2. This is
convenient, since it avoids introducing additional reference profiles, but it is not necessary, and in
principle any known profile could be used in Eq. (3.7). Substituting Eq.̃(3.7) into Eq. (3.4), yields

πtt = α

(
π̂ − λwtt

dπ0

dz
− λ(γ − 1)π0∇ · utt

)
+ βπ̂b (3.8)

utt = α

(
û − λcpθ0∇πtt + λg

θtt

θ0

k

)
+ βûb (3.9)

θtt = α

(
θ̂ − λwtt

dθ0

dz

)
+ βθ̂b (3.10)

where q̂b = qb −
∑K−1

k=0 αkqn−k, with qb being the reference values of the non-reflecting boundary
conditions (NRBC). Equations (3.8)-(3.10) represent the full system (i.e., the No Schur form) of
SE1 of dimension 4Np × 4Np. However, let us now construct the Schur form of this system.

We can now substitute Eq. (3.10) into Eq. (3.9) to get

utt = C1

[
α

(
û − λcpθ0∇πtt + λ

g

θ0

θ̂k

)
+ βûb

]
(3.11)

where

C1 =

(
1 0
0 1

c1

)
(3.12)

with

c1 = 1 + (αλ)2
g

θ0

dθ0

dz
. (3.13)

Let us rewrite Eq. (3.11) as follows

utt = C1

[
α

(
û − λcpθ0∇πtt + λ

g

θ0

θ̂k

)
+ βûb

]
+ τnfn (3.14)

To satisfy the no-flux boundary conditions, we simply replace C1 with P1 such that Eq. (3.14) with
n and rearranging gives

utt = P 1

[
α

(
û − λcpθ0∇πtt + λ

g

θ0

θ̂k

)
+ βûb

]
(3.15)

where P 1 = PC1 with P defined in Eq. (3.6). We can now substitute Eq. (3.15) into Eq. (3.8) to
get

πtt − (αλ)2
dπ0

dz
k · (P 1cpθ0∇πtt) − (αλ)2(γ − 1)π0∇ · (P 1cpθ0∇πtt) = απ̂ + βπ̂b

− αλ
dπ0

dz
k ·

[
P 1α

(
û + λ

g

θ0

k
(
αθ̂ + βθ̂b

))
+ P 1βûb

]

− αλ(γ − 1)π0∇ ·
[
P 1α

(
û + λ

g

θ0

k
(
αθ̂ + βθ̂b

))
+ P 1βûb

]
(3.16)
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which is the Schur form of SE1 and is of dimension Np ×Np. Note that this is a pseudo-Helmholtz
equation for πtt and can be solved quite readily by any nonsymmetric iterative solver. Note further
that the solution of this linear problem satisfies both non-reflecting and no-flux boundary conditions.
Upon getting a solution for πtt from Eq. (3.16) we can then solve for utt using Eq. (3.15). To solve
for θtt we next solve Eq. (3.10). Once qtt is known, we then extract the solution qn+1 using Eq.
(3.4).

3.2.2. SE2NC. The linear operator for SE2NC is

L(q) = −





w dρ0

dz + ρ0∇ · u

1
ρ0

∇P ′ + g ρ′

ρ0

k

w dθ0

dz





with the pressure defined as

P ′ =
γP0

ρ0

ρ′ +
γP0

θ0

θ′.

Applying the semi-implicit method to SE2NC yields

ρtt = α

(
ρ̂ − λwtt

dρ0

dz
− λρ0∇ · utt

)
+ βρ̂b (3.17)

utt = α

(
û − λ

1

ρ0

∇Ptt − λg
ρtt

ρ0

k

)
+ βûb (3.18)

θtt = α

(
θ̂ − λwtt

dθ0

dz

)
+ βθ̂b (3.19)

Ptt = G0ρtt + H0θtt. (3.20)

where G0 = γP0

ρ0
and H0 = γP0

θ0
; the system represented by Eqs. (3.17)-(3.20) is the No Schur form

of SE2NC. Substituting Eq. (3.19) into Eq. (3.20) yields

ρtt =
1

G0

[
Ptt − H0α

(
θ̂ − λwtt

dθ0

dz

)
− H0βθ̂b

]
. (3.21)

We can now substitute Eq. (3.21) into Eq. (3.18) in order to express the momentum as a function
of pressure only. Upon applying this substitution, we get

utt = P 2NC

[
(αû + βûb) + αλ

gH0

ρ0G0

(
αθ̂ + βθ̂b

)
k − αλ

1

ρ0

∇Ptt − αλ
g

ρ0G0

Pttk

]
(3.22)

where

C2NC =

(
1 0
0 1

c2NC

)
(3.23)

with

c2NC = 1 + (αλ)2
g

θ0

dθ0

dz
, (3.24)

and P 2NC = PC2NC , where we have included the no-flux boundary conditions through the projec-
tion matrix P .

Substituting Eqs. (3.17) and (3.19) into Eq. (3.20) yields

Ptt = G0 (αρ̂ + βρ̂b) + H0

(
αθ̂ + βθ̂b

)
− αλF0wtt − αλρ0G0∇ · utt (3.25)
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where F0 = G0
dρ0

dz + H0
dθ0

dz . The last step is to substitute Eq. (3.22) into Eq. (3.25) that yields

Ptt − (αλ)2F0k ·
[
P 2NC

(
1

ρ0

∇Ptt +
g

ρ0G0

Pttk

)]

− (αλ)2G0ρ0∇ ·
[
P 2NC

(
1

ρ0

∇Ptt +
g

ρ0G0

Pttk

)]

= G0 (αρ̂ + βρ̂b) + H0

(
αθ̂ + βθ̂b

)

− αλF0k ·
[
P 2NC

(
(αû + βûb) + αλ

gH0

ρ0G0

(
αθ̂ + βθ̂b

)
k

)]

− αλG0ρ0∇ ·
[
P 2NC

(
(αû + βûb) + αλ

gH0

ρ0G0

(
αθ̂ + βθ̂b

)
k

)]
. (3.26)

and is the Schur form of SE2NC and is of dimension Np × Np.

3.2.3. SE2C. The linear operator for SE2C is

L(q) = −





∇ · U

∇P ′ + gρ′k

∇ ·
(

Θ0

ρ0

U
)





with the pressure linearized as follows

P ′ =
γP0

Θ0

Θ′.

Upon applying the semi-implicit method to SE2C and letting F0 = γP0

Θ0
and G0 = Θ0

ρ0
we get

ρtt = α (ρ̂ − λ∇ · U tt) + βρ̂b (3.27)

U tt = α
(
Û − λ∇Ptt − λgρttk

)
+ βÛ b (3.28)

Θtt = α
(
Θ̂ − λ∇ · (G0U tt)

)
+ βΘ̂b (3.29)

Ptt = F0Θtt. (3.30)

Equations (3.27)-(3.30) represent the full system of SE2C (i.e., the No Schur form). Let us now
derive the Schur form.

Let us first substitute Eq. (3.29) into Eq. (3.30) to get

Ptt = F0α
(
Θ̂ − λ∇ · (G0U tt)

)
+ F0βΘ̂b. (3.31)

Multiplying Eq. (3.27) by G0 and subtracting from Eq. (3.29) to eliminate the term G0∇ ·U tt yields

Θtt − G0ρtt =
(
αΘ̂ + βΘ̂b

)
− G0 (αρ̂ + βρ̂b) − αλWtt

dG0

dz
. (3.32)

Substituting Eq. (3.30) into Eq. (3.32), to eliminate Θtt, gives

ρtt =
1

F0G0

Ptt + αλWtt
1

G0

dG0

dz
− 1

G0

(
αΘ̂ + βΘ̂b

)
+ (αρ̂ + βρ̂b) . (3.33)

Note that plugging Eq. (3.33) into Eq. (3.28) allows us to solve for U tt as a function of Ptt such as

U tt = P 2C

[(
αÛ + βÛ b

)
− αλ∇Ptt − αλ

g

F0G0

Pttk − αλgk

(
(αρ̂ + βρ̂b) −

1

G0

(
αΘ̂ + βΘ̂b

))]

(3.34)
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where P 2C = PC2C with

C2C =

(
1 0
0 1

c2C

)
(3.35)

and c2 = 1 + (αλ)2 g
G0

dG0

dz where 1
G0

dG0

dz =
(

1
Θ0

dΘ0

dz − 1
ρ0

dρ0

dz

)
. Finally, substituting Eq. (3.34) into

Eq. (3.31) yields

Ptt − (αλ)2F0∇ ·
[
G0P 2C

(
∇Ptt +

g

F0G0

Pttk

)]
= F0

(
αΘ̂ + βΘ̂b

)

− αλF0∇ ·
[
G0P 2C

((
αÛ + βÛ b

)
− αλgk (αρ̂ + βρ̂b) + αλ

g

G0

k
(
αΘ̂ + βΘ̂b

))]

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE2C.

3.2.4. SE3. The linear operator for SE3 is

L(q) = −





∇ · U

∇P ′ + ρ′gk

∇ · (h0U)





with the pressure defined as

P ′ = (γ − 1) (E′ − ρ′φ)

and h0 = E0+P0

ρ0

is the reference enthalpy where E0, P0, and ρ0 are the hydrostatically-balanced
reference total energy, pressure, and density. Upon applying the semi-implicit method to SE3 we
arrive at the following semi-discrete problem

ρtt = α (ρ̂ − λ∇ · U tt) + βρ̂b (3.36)

U tt = α
(
Û − λ∇Ptt − λρttgk

)
+ βÛ b (3.37)

Ett = α
(
Ê − λ∇ · (h0U tt)

)
+ βÊb (3.38)

Ptt = (γ − 1) (Ett − φρtt) . (3.39)

The system represented by Eqs. (3.36)-(3.39) is the No Schur form of SE3. Let us now derive the
Schur form.

Substituting Eqs. (3.36) and (3.38) into Eq. (3.39) yields

Ptt = (γ − 1)
[
(αÊ + βÊb) − αλh0∇ · U tt − αλ∇h0 · U tt

]
− φ(γ − 1) [(αρ̂ + βρ̂b) − αλ∇ · U tt] .

(3.40)
Multiplying Eq. (3.36) by h0 and subtracting from Eq. (3.38) to eliminate the term h0∇ ·U tt yields

Ett − h0ρtt = (αÊ + βÊb) − h0(αρ̂ + βρ̂b) − αλWtt
dh0

dz
. (3.41)

Next, substituting Eq. (3.41) into Eq. (3.39), to eliminate Ett, and rearranging gives

ρtt =
1

h0 − φ

[
1

(γ − 1)
Ptt + αλWtt

dh0

dz
− (αÊ + βÊb) + h0(αρ̂ + βρ̂b)

]
(3.42)

which can now be substituted into Eq. (3.37) and solved for U tt to yield

U tt = P 3

[
(αÛ + βÛ b) − αλ∇Ptt − αλ

g

(γ − 1)(h0 − φ)
Pttk − αλ

g

h0 − φ

(
h0(αρ̂ + βρ̂b) − (αÊ + βÊb)

)
k

]

(3.43)
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where

C3 =

(
1 0
0 1

c3

)
(3.44)

with

c3 = 1 + (αλ)2
g

h0 − φ

dh0

dz
. (3.45)

Finally, substituting Eq. (3.43) into Eq. (3.40) yields

Ptt − (αλ)2(γ − 1)(h0 − φ)∇ ·
[
P 3

(
∇Ptt +

g

(γ − 1)(h0 − φ)
Pttk

)]

− (αλ)2(γ − 1)∇h0 ·
[
P 3

(
∇Ptt +

g

(γ − 1)(h0 − φ)
Pttk

)]

= (γ − 1)
[
(αÊ + βÊb) − φ(αρ̂ + βρ̂b)

]

− αλ(γ − 1)(h0 − φ)∇ ·
[
P 3

(
(αÛ + βÛ b) − αλ

gh0

h0 − φ
(αρ̂ + βρ̂b)k + αλ

g

h0 − φ
(αÊ + βÊb)k

)]

− αλ(γ − 1)∇h0 ·
[
P 3

(
(αÛ + βÛ b) − αλ

gh0

h0 − φ
(αρ̂ + βρ̂b)k + αλ

g

h0 − φ
(αÊ + βÊb)k

)]

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE3.

3.2.5. SE4. The linear operator for SE4 is

L(q) = −





w dρ0

dz + ρ0∇ · u

1
ρ0

∇P ′ + g ρ′

ρ0

k

w dP0

dz + γP0∇ · u




.

Upon applying the semi-implicit method to SE4 we arrive at the following semi-discrete problem

ρtt = α

(
ρ̂ − λwtt

dρ0

dz
− λρ0∇ · utt

)
+ βρ̂b (3.46)

utt = α

(
û − λ

1

ρ0

∇Ptt − λg
ρtt

ρ0

k

)
+ βûb (3.47)

Ptt = α

(
P̂ − λwtt

dP0

dz
− λγP0∇ · utt

)
+ βP̂b. (3.48)

The system described by Eqs. (3.46)-(3.48) is the No Schur form of SE4. Let us now derive the
Schur form.

Multiplying Eq. (3.46) by γP0 and subtracting Eq. (3.48) multiplied by ρ0 and rearranging yields

ρtt =
1

γP0

[
ρ0Ptt − ρ0

(
αP̂ + βP̂b

)
+ γP0 (αρ̂ + βρ̂b) + αλwtt

(
ρ0

dP0

dz
− γP0

dρ0

dz

)]
. (3.49)

Substituting Eq. (3.49) into Eq. (3.47) yields

utt = P 4

[
(αû + βûb) + αλgk

(
1

γP0

(αP̂ + βP̂b) −
1

ρ0

(αρ̂ + βρ̂b)

)
− αλ

1

ρ0

∇Ptt − αλ
g

γP0

Pttk

]

(3.50)
where P 4 = P C4 and

C4 =

(
1 0
0 1

c4

)
(3.51)
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with

c4 = 1 + (αλ)2g

(
1

γP0

dP0

dz
− 1

ρ0

dρ0

dz

)
(3.52)

Plugging Eq. (3.50) into Eq. (3.48) yields

Ptt − (αλ)2
dP0

dz
k ·

[
P 4

(
1

ρ0

∇Ptt +
g

γP0

Pttk

)]
− (αλ)2γP0∇ ·

[
P 4

(
1

ρ0

∇Ptt +
g

γP0

Pttk

)]

= (αP̂ + βP̂b) − αλ
dP0

dz
k ·

[
P 4

(
(αû + βûb) + αλgk

(
1

γP0

(αP̂ + βP̂b) −
1

ρ0

(αρ̂ + βρ̂b)

))]

− αλγP0∇ ·
[
P 4

(
(αû + βûb) + αλgk

(
1

γP0

(αP̂ + βP̂b) −
1

ρ0

(αρ̂ + βρ̂b)

))]

which is a pseudo-Helmholtz equation for Ptt and is the Schur form of SE4.

4. Results. In this section we validate the five semi-implicit models on a test case suite of four
problems using, for the spatial discretization, the spectral element method. For the definitions of
the test cases as well as for the details of the spatial discretization we refer the reader to [14].

For our comparisons, we identify the following three criteria: discrete conservation properties,
accuracy, and efficiency. Since each of these criteria can be expressed in more than one metric, we
need first of all to clarify what we mean by each of them. With the term discrete conservation

properties we mean the ability of the numerical method to reproduce the integral balance equations
of the continuous problem, which in the case of an isolated system reduce to conservation of flow
integrals and in the case of a system with mass or energy exchange with the environment takes
the form of a balance between boundary fluxes and variation of the system mass or energy. In
analyzing our results, we have to distinguish two classes of numerical models: those for which discrete
conservation properties can be shown by construction, and those for which this is not possible. In
the first case, the experimental datum concerning conservation serves as a confirmation that the
expected balance is satisfied up to machine precision; in the second case, it provides a fundamental
error indicator because it is a quantitative measure of the deviation of the numerical solution from
the analytic one. In practice, we will thus provide the mass and energy losses as follows. We define
mass loss as

Mass Loss =
M(t) −M(0)

M(0)
where M(t) =

∫

Ω
ρ(x, t)dΩ.

Similarly, we define the energy loss as

Energy Loss =
E(t) − E(0)

E(0)
where E(t) =

∫

Ω
E(x, t)dΩ,

E is the density total energy of the system.
Concerning accuracy, we should mention that a significant difficulty in testing mesoscale models

is the lack of nontrivial analytic solutions, so that we assess the accuracy of our results by comparing
the results of various equation sets, both qualitatively and quantitatively against each other and with
reference solutions published in the literature.

Providing a reliable assessment of the efficiency of our five implementations of the Navier-
Stokes equations is not obvious, since it can be implementation and problem dependent. To solve
this difficulty we compare the effort required by the solution of the semi-implicit system and the
wallclock time of our experiments using comparable stopping criteria for the iterative solvers for all
our codes and by making sure that the five Fortran 90 implementations are as similar as possible.
We use wallclock time in seconds where all simulations are performed on an Apple Xserve with a
clock speed of 2.8GHz on Intel Xeon Processors. In addition, we use the Courant number as a
measure of the size of the time-steps that can be achieved with the semi-implicit method. We define
the Courant number as

Courant number = max

(
C∆t

∆s

)
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where C = |U +
√

a| is the characteristic speed, U = n ·u is the velocity in the direction n, a is the
sound speed, ∆s =

√
∆x2 + ∆z2 is the grid spacing.

A separate note is finally required for the last of our test cases, namely the hydrostatic mountain
flow. This case differs from the others because of the presence of NRBCs, the availability of a semi-
analytic solution and the use of additional diagnostics. The presence of NRBCs, in particular, poses
some problems in determining the conservation properties and accuracy of the numerical solution.
Since the problem is posed on an open domain, we should expect conservation of mass and energy in
the form of an integral flux balance; the NRBCs, however, mathematically represent a source/sink
term artificially introduced into the computational domain, that inevitably destroys the integral
balance. The solution that we choose here is to restrict the integral flux balance to the inner domain
where the sponge term vanishes.

Clearly, this notion of conservation can be satisfactory for processes that are entirely contained
in the inner domain, but can be unsatisfactory for processes significantly affected by flows through
the boundaries of the domain. In particular, the sponge layer makes it impossible to build a model
that is conservative with respect to fluxes prescribed on the boundary. To overcome this problem,
we have begun work on the construction of high-order NRBCs that can be used with high-order
spatial and temporal discretizations (see [6] and [26]) but we are still far away from implementing
such methods into Navier-Stokes models. Unfortunately, sponge-based NRBCs are those typically
used today in industrial-type nonhydrostatic atmospheric models.

The fact that the analytic solution is known for the problem defined in an infinite domain while
the numerical method solves the problem in a limited domain with the addition of the sponge terms
(or, in other words, the fact that the NRBCs are not exact in modeling the infinite domain and not
even high-order) prevents the model from converging to the analytic solution with the theoretical
order of accuracy. In fact, as is shown in Sec. 4.1.4, all our simulations converge to a solution that
is close but distinct from the analytic one which we can interpret as the solution of the modified
problem “Navier-Stokes equations with NRBCs” defined by Eq. (3.5). In order to quantify this
deviation and to compare with other results in the literature, we define the root-mean-square error
as

‖q‖RMS =

√√√√
Np∑

i=1

(qnumerical − qanalytic)
2
/Np

where Np = 40, 000. The semi-analytic solutions are computed via Matlab routines that are available
upon request. Finally, in addition to the diagnostics used for the other test cases, we will also consider
the momentum flux as [32]

m(z) =

∫ +∞

−∞

ρ0(z)u(x, z)w(x, z)dx

where ρ0(z) is the reference density as a function of height. From linear theory, the analytic hydro-
static momentum flux is given as [32]

mH(z) = −πc

4
ρ̄sūsNh2

c

where the superscript H signifies hydrostatic, ρ̄s and ūs are the reference density and horizontal
velocity values at the surface, N is the Brunt-Väisälä frequency, and hc is the height of the mountain.
We shall use the normalized momentum flux, m(z)/mH(z), as a metric to test for convergence to
steady-state.

4.1. Comparison of All Five Semi-Implicit Models. In this section we summarize the
results of the five semi-implicit models using the Schur form for each of the four test cases. We
begin with the inertia-gravity waves followed by the rising thermal bubble, the density current, and,
finally, the linear hydrostatic mountain wave. Although each of the five semi-implicit models are
derived from different equations (using different prognostic variables) it should be mentioned that the
Schur form of all five models are very similar since they all reduce to a scalar second-order equation
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for the pressure. In fact, the eigenvalue spectrum (spectral radius) and condition number (with
respect to the 2-norm) of the linear matrix arising from the semi-implicit implementation are, for
all intents and purposes, identical for all five equation sets. We mention this here only to emphasize
that the difference in the number of GMRES iterations per time-step for each of the models is not a
function of the condition number nor the spectral radius but of some other mechanism that we try
to identify below.

One final note about the results below: while we show results for very specific resolutions
(in this case, the flow is well-resolved) we have also analyzed under-resolved simulations and the
comparisons that we now report are representative of differences of the five models in both the well
and under-resolved regimes; here we refer mostly to the conservation measures which do not change
with varying resolutions.
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Figure 4.1. Case 1: Inertia-Gravity Waves. Potential temperature perturbation after 3000 seconds for 250
meter resolution and 10th order polynomials. Figure a) shows the total domain using contour values between -0.0015
and 0.003 with a contour interval of 0.0005 and Figure b) shows the profiles along 5,000 meter height for all five
models.

4.1.1. Case 1: Inertia-Gravity Waves. Figure 4.1a shows the potential temperature per-
turbation contours after 3000 seconds and Fig. 4.1b shows the one-dimensional profile along z=5,000
meters for all five models. Figure 4.1b shows that all five models yield identical solutions; this is
especially of interest since the models use different equation sets. The second result worth noting is
that the profiles are perfectly symmetric about the position x=160,000 meters. Note that there is a
mean horizontal flow in this problem, which tests the ability of the algorithm to preserve the proper
phase speeds.

SE1 SE2NC SE2C SE3 SE4
π′

max 1.06 × 10−6 1.06 × 10−6 1.10 × 10−6 1.05 × 10−6 1.04 × 10−6

π′
min −8.25 × 10−7 −8.25× 10−7 −8.56 × 10−7 −8.27 × 10−7 −8.16 × 10−7

umax 1.07 × 10−2 1.07 × 10−2 1.07 × 10−2 1.06 × 10−2 1.07 × 10−2

umin −1.06 × 10−2 −1.06× 10−2 −1.06 × 10−2 −1.06 × 10−2 −1.06 × 10−2

wmax 2.85 × 10−3 2.85 × 10−3 2.84 × 10−3 2.84 × 10−3 2.85 × 10−3

wmin −2.42 × 10−3 −2.42× 10−3 −2.42 × 10−3 −2.42 × 10−3 −2.42 × 10−3

θ′max 2.80 × 10−3 2.80 × 10−3 2.80 × 10−3 2.80 × 10−3 2.80 × 10−3

θ′min −1.51 × 10−3 −1.51× 10−3 −1.51 × 10−3 −1.51 × 10−3 −1.51 × 10−3

Mass Loss 3.09 × 10−11 9.38 × 10−13 1.85 × 10−12 1.45 × 10−12 2.11 × 10−12

Energy Loss 2.45 × 10−8 9.53 × 10−14 6.12 × 10−14 1.71 × 10−13 8.89 × 10−7

GMRES Iterations 5 5 5 5 5
WallClock Time 397 480 514 500 454

Table I

Case 1: Inertia-Gravity Wave. Comparison of the five models studied for 250 meter resolution and 10th order
polynomials after 3000 seconds using ∆t = 1 second (Courant Number = 3.15).
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Skamarock and Klemp [31] give an analytic solution for this test but, unfortunately, it is only
valid for the linearized problem, that while useful for qualitative comparisons, cannot be used to
compute error norms since we use the fully nonlinear equations. We use the same contouring
interval used in [31] and our results match very well. Specifically, their values are in the range
2.82× 10−3 ≤ θ′ ≤ −1.49× 10−3 whereas ours are 2.80× 10−3 ≤ θ′ ≤ −1.51× 10−3, which we show
in Table I. In addition, comparing our semi-implicit results to the results in [14] for the explicit
version of our models we find that they match almost exactly, in spite of the fact that here we now
use much larger time-steps.

Table I shows that the five models give exactly the same results; the only outlier is SE2C
that gives slightly different results. Note, however, that these differences are in the eighth decimal
place. The main differences of interest are in the mass and energy conservation measures and in the
efficiency (i.e., wallclock time) of the models. In terms of mass conservation, all models perform quite
well except for SE1; this equation set is not expected to formally conserve mass. In terms of energy
conservation, sets SE2NC, SE2C, and SE3 perform very well; sets SE1 and SE4 do not perform very
well. It is not surprising that SE3 and SE2C achieve good energy conservation measures since they
are in complete conservation form; however, SE2NC performs surprising well given the fact that it is
not in strict conservation form. On the other hand, sets SE1 and SE4 are not expected to conserve
energy at all and they exhibit this weakness quite strongly here. In terms of efficiency from best to
worst the order is: SE1, SE4, SE2NC, SE3, and SE2C; the average number of GMRES iterations per
step is the same for all five models thus the efficiency differences are due to differences in number of
operations required by the equations themselves. SE1 and SE4 do not have an equation of state and
therefore require fewer operations per time-step. The fully conservative models SE2C and SE3 have
a larger operation count than the other models. This is the case because for the conservation forms,
taking the divergence of the flux tensor requires more operations than merely taking the derivatives
of the non-conservation form.
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Figure 4.2. Case 2: Rising Thermal Bubble. Potential temperature perturbation after 700 seconds for 5 meter
resolution and 10th order polynomials. Figure a) shows the total domain using contour values between 0 to 0.525
with an interval of 0.025. Figure b) shows the profiles along x=500 meters for all five models.

4.1.2. Case 2: Rising Thermal Bubble. Figure 4.2a shows the potential temperature per-
turbation contours after 700 seconds and Fig. 4.2b shows the one-dimensional profile along x=500
meters for all five models. This case has no analytic solution but the resulting dynamics are suffi-
ciently simple to be able to predict its proper evolution. The initial condition consists of a warm
bubble perturbation. Because of the effects of gravity, it begins to rise and shears along the way up.
Since the maximum initial value of the bubble is θ′ = 0.5 then one expects to see a value of 0.5 as
the maximum perturbation. Figure 4.2b shows that the maximum peak of the bubble is near 0.5,
and on the leeward side (950 < z < 1000), the values fall slightly below 0 (see Table II).

Figure 4.2b shows a profile of the thermal waves along x = 500 for z values from 850 to 1000.
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This figure shows that all five simulations yield nearly identical results and Fig. 4.2a shows that they
are all symmetric about x=500 meters.

SE1 SE2NC SE2C SE3 SE4
π′

max 5.67 × 10−6 5.64 × 10−6 5.67 × 10−6 5.65 × 10−6 5.80 × 10−6

π′
min −1.32 × 10−5 −1.32× 10−5 −1.32 × 10−5 −1.32 × 10−5 −1.32 × 10−5

umax 2.01 2.01 2.01 2.01 2.02
umin −2.01 −2.01 −2.01 −2.01 −2.02
wmax 2.55 2.55 2.55 2.55 2.56
wmin −1.95 −1.95 −1.95 −1.95 −1.96
θ′max 0.54 0.54 0.54 0.54 0.54
θ′min −0.09 −0.09 −0.09 −0.09 −0.08

Mass Loss 3.51 × 10−9 8.50 × 10−13 1.20 × 10−13 9.90 × 10−13 3.80 × 10−12

Energy Loss 4.10 × 10−6 1.20 × 10−9 3.50 × 10−9 2.60 × 10−11 1.10 × 10−5

GMRES Iterations 33 34 33 34 33
WallClock Time 3454 3597 3590 3738 3511

Table II

Case 2: Rising Thermal Bubble. Comparison of the five models studied for 5 meter resolution and 10th order
polynomials after 700 seconds using ∆t = 0.125 seconds (Courant Number = 18.61).

Table II shows the maximum and minimum values for the four variables for all five models. The
models give virtually identical results for all the variables; the outlier is SE4 which gives slightly
different values, most notably in the second decimal place of the velocity fields. In terms of mass
conservation, SE1 is by far the worst. However, the fact that SE1 does not conserve mass is expected
since this equation set cannot formally conserve either mass or energy. In terms of energy conserva-
tion, SE1 and SE4 are the worst, the other three models do very well in both conservation of mass
and energy, especially SE3. In terms of efficiency (wallclock time), from best to worst are: SE1,
SE4, SE2C, SE2NC, and SE3. Since the conservation forms require a larger operation count, we
would expect SE2NC to be faster than SE2C but we see that for this test case SE2NC averaged 34
GMRES iterations per time-step while SE2C averaged 33; this is the reason why SE2C is faster than
SE2NC. The difference in wallclock time between SE2NC and SE2C is minimal but the difference
between SE1 and SE3 is almost 300 seconds!
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Figure 4.3. Case 3: Density Current. Potential temperature perturbations after 900 seconds with 25 meter
resolution and 8th order polynomials. Figure a) shows the total domain using contour values between -9 to 0 with a
contour interval of 0.25. Figure b) shows the profiles along z=1200 meters for all five models.

4.1.3. Case 3: Density Current. In Fig. 4.3a we plot the contours of potential temperature
perturbation and in Fig. 4.3b the one-dimensional profile of the potential temperature perturbation
along z = 1200 meters for all five models. The three negative wells in Fig. 4.3b correspond to the
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three distinct Kelvin-Helmholtz instability waves (or rotors) clearly visible in Fig. 4.3a. It is not
very clear from Figure 4.3b that there are differences between the five models. Instead, this figure
shows that the models agree very well. In order to discern the differences between the five models,
let us now review Table III.

SE1 SE2NC SE2C SE3 SE4
π′

max 7.74 × 10−4 7.78 × 10−4 7.78 × 10−4 7.74 × 10−4 7.76 × 10−4

π′
min −1.67 × 10−3 −1.61× 10−3 −1.66 × 10−3 −1.69 × 10−3 −1.66 × 10−3

umax 33.50 33.39 33.36 33.32 33.45
umin −14.76 −14.47 −14.78 −15.04 −14.79
wmax 12.15 12.04 12.25 12.40 12.16
wmin −15.56 −15.32 −15.61 −15.85 −15.57
θ′max 1.47 × 10−4 1.67 × 10−5 9.50 × 10−5 3.30 × 10−3 7.33 × 10−3

θ′min −8.84 −8.70 −8.90 −9.09 −8.89
Mass Loss 2.33 × 10−5 4.58 × 10−12 1.95 × 10−13 3.13 × 10−13 5.41 × 10−12

Energy Loss 2.34 × 10−4 1.05 × 10−6 1.92 × 10−5 5.49 × 10−12 7.64 × 10−4

GMRES Iterations 3 3 3 4 3
WallClock Time 11073 12252 12665 12757 11991

Table III

Case 3: Density Current. Comparison of the five models studied for 25 meter resolution and 8th order polyno-
mials after 900 seconds using ∆t = 0.08 seconds (Courant Number = 2.14).

While Table III shows that there is close agreement between all five models, it does show that
the maximum and minimum values for all four variables do vary. Recall that this is the only case
with viscosity and that only SE3 uses the true viscous stresses whereas the remaining four models
use slightly modified diffusion operators in order to agree with the formulations presented in the
Straka et al. paper [34]; in other words, each equation set uses a slightly different viscous operator
and thereby each simulation represents the solution of a different governing equation, therefore, one
should not expect to arrive at the same results for all the models. We present this test case because
it exhibits a classical wave found in atmospheric modeling applications, namely, Kelvin-Helmholtz
instabilities. Furthermore, diffusion operators of the type that we use here are representative of the
kinds of diffusion mechanisms used today in industrial-type atmospheric models.

In terms of mass conservation, once again we see that SE1 is the worst with the other four
models performing well and the two conservation forms (SE2C and SE3) performing best. In terms
of energy conservation, only SE3 performs superbly; since SE3 uses the true Navier-Stokes equations
along with the proper viscous stresses, this set is able to conserve both mass and energy even with
the presence of viscosity. This is one big advantage of this equation set. In terms of efficiency we
see that once again the ordering from best to worst is: SE1, SE4, SE2NC, SE2C, and SE3. This
ordering conforms to the number of operation counts because the number of GMRES iterations is
identical for four of the models (at 3) with one being different (4 for SE3).

4.1.4. Case 4: Linear Hydrostatic Mountain. This case is different from the previous
three in that: i) it has a steady-state analytic solution and ii) it requires the implementation of
non-reflecting boundary conditions. The previous three test cases used either no-flux (reflecting) or
periodic boundary conditions. Figure 4.4 shows that the numerical (solid) and analytic (dashed)
values for both horizontal and vertical velocities compare very well. Note that the actual compu-
tational domain is much larger than that shown in the figure. We show the domain that we used
to compute the root-mean-square errors; the portion of the domain not shown is in fact where the
sponge layer is non-zero (β > 0).

In Table IV we show the maximum and minimum values for all four variables for the five models
after 30 hours. The values for all five models are identical, clearly illustrating that all five models
have converged to the identical steady-state solution. Furthermore, Table V shows that indeed the
RMS errors for all five models are virtually identical for the four variables; this is true at the three
times reported (after 10, 20, and 30 hours). If we only showed the results after 30 hours, then one
could argue that the reason why all the models agree so closely is because they all converge to the
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Figure 4.4. Case 4: Linear Hydrostatic Mountain. The numerical solution (solid line) and analytic solution
(dashed line) after 30 hours for 1200 meter (in x) and 240 meter (in z) resolution and 10th order polynomials. For
the horizontal velocity (figure a) the contour values are between -0.025 to +0.025 with a contour interval of 0.005.
For the vertical velocity (figure b) the contour values are between -0.005 to +0.005 with a contour interval of 0.0005.

SE1 SE2NC SE2C SE3 SE4
π′

max 2.05 × 10−6 2.05 × 10−6 2.05 × 10−6 2.05 × 10−6 2.05 × 10−6

π′
min −2.17 × 10−6 −2.16× 10−6 −2.17 × 10−6 −2.17 × 10−6 −2.16 × 10−6

umax 4.72 × 10−2 4.72 × 10−2 4.72 × 10−2 4.72 × 10−2 4.72 × 10−2

umin −4.01 × 10−2 −4.01× 10−2 −4.01 × 10−2 −4.01 × 10−2 −4.01 × 10−2

wmax 4.28 × 10−3 4.28 × 10−3 4.28 × 10−3 4.28 × 10−3 4.28 × 10−3

wmin −5.28 × 10−3 −5.28× 10−3 −5.28 × 10−3 −5.28 × 10−3 −5.28 × 10−3

θ′max 2.68 × 10−2 2.68 × 10−2 2.68 × 10−2 2.68 × 10−2 2.68 × 10−2

θ′min −3.73 × 10−2 −3.73× 10−2 −3.73 × 10−2 −3.73 × 10−2 −3.73 × 10−2

Mass Loss 1.23 × 10−8 1.22 × 10−8 1.20 × 10−8 1.21 × 10−8 1.22 × 10−8

Energy Loss 3.29 × 10−8 9.05 × 10−8 9.06 × 10−8 9.05 × 10−8 2.03 × 10−7

GMRES Iterations 11 10 12 12 12
WallClock Time 5954 5801 6861 6667 6543

Table IV

Case 4: Linear Hydrostatic Mountain. Comparison of the five models studied for 1200 meter (in x) and 240
meter (in z) resolution and 10th order polynomials after 30 hours using ∆t = 1.5 seconds (Courant Number = 1.25).

same solution. However, the results in Table V show that there is more to it than that. For instance,
the fact that all the models agree at all three times reported indicates that the models are being
forced to yield this identical solution state. The only difference between this test case and all the
others is the use of non-reflecting boundary conditions (NRBC). This result clearly indicates that
it is the use of these NRBCs that is forcing the solution state regardless of the equation set being
used. Revisiting Table IV once more and looking specifically at the mass and energy conservation it
becomes immediately obvious that all five models are behaving identically even with respect to their
conservation measures. Therefore, the NRBCs are not only imposing the solution state but are also
affecting the conservation measures of the models and preventing the formally conservative SE3 from
conserving to machine precision. This test case emphasizes the need for better NRBCs that are high
order accurate and conservative; unfortunately, NRBCs such as the ones we use here are used today
in all industrial-type nonhydrostatic atmospheric models. To overcome the first problem (accuracy),
we have begun work on the construction of high-order NRBCs that can be used with high-order
spatial and temporal discretizations (see [6] and [26]) but we are still far away from implementing
such methods into Navier-Stokes models. The second problem is more complicated to overcome.
While in the present work we describe nonhydrostatic mesoscale (limited area) models, these models
will eventually also be used for global nonhydrostatic models (i.e., three-dimensional models on the
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sphere, see [16] and [12] for a hydrostatic version of such a model). In global mode, the NRBCs
along the lateral boundaries are eliminated by the periodicity of the sphere and, if the top NRBCs
are replaced by reflecting boundary conditions then the conservation properties of the model will
be retained; conservation of both mass and energy are vital for accurately modeling atmospheric
processes at very long time-scales such as those typically run for climate change predictions.

In terms of efficiency, the ordering from best to worst is: SE2NC, SE1, SE4, SE3, and SE2C.
For an equal number of GMRES iterations, SE2NC requires more floating point operations than
both SE1 and SE4 due to the fact that an equation of state has to be solved (and this equation
is exponential). However, for this test case, SE2NC needs an average of 10 GMRES iterations per
time-step compared to 11 for SE1 and 12 for SE4 that then allows SE2NC to run faster.

Time Variable SE1 SE2NC SE2C SE3 SE4
10 hours π′ 1.56 × 10−7 1.56 × 10−7 1.56 × 10−7 1.56 × 10−7 1.56 × 10−7

u 2.99 × 10−3 2.99 × 10−3 2.99 × 10−3 2.99 × 10−3 3.00 × 10−3

w 1.90 × 10−4 1.90 × 10−4 1.90 × 10−4 1.90 × 10−4 1.91 × 10−4

θ′ 2.46 × 10−3 2.46 × 10−3 2.46 × 10−3 2.46 × 10−3 2.46 × 10−3

20 hours π′ 8.87 × 10−8 8.86 × 10−8 8.84 × 10−8 8.85 × 10−8 8.90 × 10−8

u 1.68 × 10−3 1.68 × 10−3 1.68 × 10−3 1.68 × 10−3 1.69 × 10−3

w 1.88 × 10−4 1.88 × 10−4 1.88 × 10−4 1.88 × 10−4 1.89 × 10−4

θ′ 1.32 × 10−3 1.32 × 10−3 1.32 × 10−3 1.32 × 10−3 1.32 × 10−3

30 hours π′ 6.74 × 10−8 6.74 × 10−8 6.72 × 10−8 6.73 × 10−8 6.79 × 10−8

u 1.27 × 10−3 1.27 × 10−3 1.27 × 10−3 1.27 × 10−3 1.28 × 10−3

w 1.88 × 10−4 1.88 × 10−4 1.87 × 10−4 1.87 × 10−4 1.89 × 10−4

θ′ 8.99 × 10−4 8.99 × 10−4 8.99 × 10−4 8.99 × 10−4 8.98 × 10−4

Table V

Case 4: Linear Hydrostatic Mountain. Root-Mean-Square errors for the four variables for 1200 meter (in x)
and 240 meter (in z) resolution and 10th order polynomials for all five models using ∆t = 1.5 seconds (Courant
Number = 1.25).
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Figure 4.5. Case 6: Linear Hydrostatic Mountain. Normalized momentum flux for 1200 meter (in x) and 240
meter (in z) resolution and 10th order polynomials for a) SE2NC at times 10, 20, and 30 hours, and b) for all five
models at 30 hours.

In Figure 4.5a we plot the normalized momentum flux at various times in the integration and
in Fig. 4.5b we show the normalized momentum flux for all five models after 30 hours. Figure 4.5a
shows that the simulations have reached steady-state after 30 hours; the RMS errors continue to
change beyond this time but they change very little and we thereby assume this to be steady-state.
Figure 4.5b shows that the normalized momentum flux values are essentially identical for all five
models and are very good, that is, the values are almost equal to 1 everywhere which is the correct



Semi-Implicit Nonhydrostatic Atmospheric Models 21

theoretical result based on linear theory (see [32]).

4.2. Efficiency of the Semi-Implicit Time-Integrator. In this section we study the effi-
ciency of the semi-implicit time-integrator compared to a fast explicit time-integrator, namely, the
RK35 method [33] that we used previously with our explicit Navier-Stokes models [14]. In addition,
we compare the semi-implicit method both with and without the Schur complement to see how much
of an efficiency gain one gets. For this study we use SE2NC only since it represents the median of
all the models in terms of efficiency and conservation measures.

In Figs. 4.7, 4.8, 4.9, and 4.10 the left panel (a) shows the wallclock time as a function of
Courant number and the right panel (b) shows the average number of GMRES iterations required
per time-step as a function of Courant number. Even though we list RK35 in this figure as well, the
number of GMRES iterations per time-step is zero for this method since it is a fully explicit method.
In all of these efficiency tests, the maximum Courant number reported for RK35 is the maximum
Courant number allowed by this method.

Before discussing the four test cases in detail it is important to point out once again the differ-
ences between the Schur and No Schur systems. For set SE2NC, the No Schur form is the system
defined by Eqs. (3.17)-(3.20) which, assuming NP grid points, represents a 16N2

p matrix problem.
In contrast, the Schur form is defined by Eq. (3.26) and represents a N2

p matrix problem. The
differences between these two systems go further: for the No Schur form, the differential operators
are all first order whereas for the Schur form they are second order; this means that the two systems
will have very different eigenspectra. To get a sense of this difference, we show the eigenspectra
for the No Schur and Schur forms in Fig. 4.6 with Np = 289 for case 2 (which happens to be the
worst case scenario in terms of matrix conditioning). The condition number for the No Schur form is
κ (ANS) = 2.6×106 whereas for the Schur form it is κ (AS) = 2.1×102. Note that the eigenvalues for
the No Schur form are all imaginary whereas for the Schur form they are all real; this is consistent
with the eigenvalues of first order (imaginary) and second order (real) differentiation operators.
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Figure 4.6. The eigenspectra of SE2NC for case 2 with Np = 289 for the Schur (red crosses) and No Schur
(blue circles) forms of the semi-implicit method. The condition number for the Schur form is κ (AS) = 2.1× 102 and
for the No Schur form κ (ANS) = 2.6× 106.

4.2.1. Case 1: Inertia-Gravity Waves. Figure 4.7 shows that the efficiency (left panel) is
linear for RK35 since doubling the Courant number yields a simulation that is twice as fast. In
contrast, we see that the semi-implicit results are not linear due to the iterative solvers that may
require a nonlinear increase in GMRES iterations with increased Courant number. In Fig. 4.7a
we see that the Schur form semi-implicit method increases its efficiency with increasing Courant
number. In contrast, the No Schur form semi-implicit method does not. In fact, the No Schur form
reaches an optimal Courant number near 3 and increases in cost beyond this value. The difference
in efficiency between the Schur and No Schur forms is partly due to the difference in the sizes of the
matrix problem being solved (N2

p for Schur and 16N2
p for No Schur) but also due to the difference in
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Figure 4.7. Case 1: Inertia-Gravity Waves. The a) wallclock time and b) number of GMRES iterations as
functions of the Courant number for 250 meter resolution with 10th order polynomials after 3000 seconds. The explicit
Runge-Kutta method (RK35) is compared with the semi-implicit methods with and without the Schur complements
(Schur and No Schur, respectively).

the average number of GMRES iterations required per time-step. Figure 4.7b shows this difference
and it is striking. Without a Schur complement (i.e., the No Schur form), the number of GMRES
iterations increases linearly with increasing Courant number (i.e., time-step size).
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Figure 4.8. Case 2: Rising Thermal Bubble. The a) wallclock time and b) number of GMRES iterations as
functions of the Courant number for 5 meter resolution with 10th order polynomials after 700 seconds. The explicit
Runge-Kutta method (RK35) is compared with the semi-implicit methods with and without the Schur complements
(Schur and No Schur, respectively).

4.2.2. Case 2: Rising Thermal Bubble. In Fig. 4.8a (left panel) the curve for RK35 is not
visible because the maximum Courant number allowed by this method is less than one while the
semi-implicit methods (Schur and No Schur) allow Courant numbers of 30. For Courant numbers
approaching the maximum allowed by the RK35 method, both semi-implicit methods give better
efficiency than the RK35 method.

The No Schur form yields an optimal efficiency near a Courant number of 15. For values larger
than 15, the efficiency decreases. The Schur form, on the other hand, continues to increase in
efficiency with increasing Courant number but it begins to plateau near Courant numbers of 15.

Figure 4.8b (right panel) shows that the number of GMRES iterations increases linearly with
increasing Courant number for both the Schur and No Schur forms but that this rate is much larger
for the No Schur form. At a Courant number of 30, the Schur and No Schur forms are approaching
60 and 80 GMRES iterations, respectively; both of these values are unacceptable and work continues
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on developing preconditioners that will require far fewer GMRES iterations.
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Figure 4.9. Case 3: Density Current. The a) wallclock time and b) number of GMRES iterations as functions
of the Courant number for 25 meter resolution with 8th order polynomials after 900 seconds. The explicit Runge-
Kutta method (RK35) is compared with the semi-implicit methods with and without the Schur complements (Schur
and No Schur, respectively).

4.2.3. Case 3: Density Current. In Fig. 4.9a (left panel) we see that for Courant numbers
less than one, the efficiency of the Schur form is competitive with that of RK35 but that the No

Schur form is not. For all the Courant numbers shown, the efficiency of the No Schur form continues
to increase with increasing Courant number; this is always true for the Schur form. In the previous
tests we saw that the No Schur form reached an optimal Courant number value whereas here it has
not. So the question is: what accounts for this difference? Recall that this is the only test with
viscosity (i.e., diffusion). In the current semi-implicit formulation we do not include the viscous
operators in the linear implicit operators so that we must adhere to the explicit stability limit for
diffusion. This is the reason why the maximum Courant numbers are smaller for this test than for
the previous two. It should be pointed out that including the diffusion operator into the semi-implicit
method is not at all problematic for the No Schur form but it is for the Schur form (for the Schur

form one would have to invert a Helmholtz-type operator for both momentum and energy in order
to construct the Schur form in terms of pressure). Thus, for the No Schur form we could include
viscosity in the semi-implicit operators and perhaps see an increase in efficiency beyond Courant
numbers of 3.

Figure 4.9b (right panel) shows that the number of GMRES iterations increases at an accelerated
rate for the No Schur form but only increases linearly for the Schur form. The reason why both
the Schur and No Schur forms yield comparable results is due to the small number of GMRES
iterations required - these values are less than 10 iterations per time-step.

4.2.4. Case 4: Linear Hydrostatic Mountain. In Fig. 4.10a (left panel) we see that for
Courant numbers less than one, the efficiency of the Schur form is competitive with that of RK35
but that the No Schur form is not. In fact, the No Schur form is not competitive at all (for any
Courant number) with the explicit RK35. On the other hand, the Schur form is more efficient than
the RK35 and this efficiency continues to increase as the Courant number is increased.

Figure 4.10b (right panel) tells us the reason for the No Schur form not being competitive,
namely, the excessively large number of GMRES iterations. For the No Schur form, for Courant
numbers beyond 1.5, the number of GMRES iterations have already climbed to 20 and continue to
increase up to 50 for a Courant number of 3. Therefore, for the No Schur form, any efficiency gains
offered by a larger time-step is offset by a larger implicit solver iteration count. In contrast, the Schur

form exhibits efficiency gains for increasing Courant number. The number of GMRES iterations per
time-step is much larger than for the other tests when we take into account the modest Courant
numbers being used (case 2 requires much larger iteration counts but they correspond to Courant
numbers near 30). The difference between this test and all the others is that non-reflecting boundary
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Figure 4.10. Case 4: Linear Hydrostatic Mountain. The a) wallclock time and b) number of GMRES iterations
as functions of the Courant number for 1200 meter (in x) and 240 meter (in z) resolution with 10th order polynomials
after 30 hours. The explicit Runge-Kutta method (RK35) is compared with the semi-implicit methods with and without
the Schur complements (Schur and No Schur, respectively).

conditions (NRBCs) are employed. It should be noted that this test is very much indicative of the
class of problems that must be run efficiently in nonhydrostatic mesoscale atmospheric modeling
since almost all simulations require the use of NRBCs; efforts are currently underway to develop
preconditioners that specifically target this class of boundary conditions.

4.3. Stability of the Semi-Implicit Method. To prove stability for the semi-implicit form
of all five equation sets requires going back to the original time-integration statement of the problem
which is

∂q

∂t
= {N(q)} + [L(q)].

Recall that here, we treat the nonlinear terms N(q) explicitly and the linear terms L(q) implicitly
in an IMEX approach. At this point we assume a system of ordinary differential equations where
the right-hand-side operators have already been discretized in space in a method of lines approach.
Recall that we chose the linear operator to contain the fastest waves in the system, namely the
acoustic and gravity (i.e., buoyancy) waves. Furthermore, recall that the nonlinear operator does
not contain these waves any more since they have been subtracted. Thereby the nonlinear operator
only contains the advective waves that are far slower than the acoustic or gravity waves.

Thus in order to maintain stability, we require that the Courant number associated with the
advective waves satisfy the Courant-Friedrichs-Lewy (CFL) condition of standard explicit time-
integrators (in this case we are using the explicit BDF2, see [21]). Since the linear operator is
implicit, then the Courant number with respect to the acoustic and gravity waves is unlimited. In
fact, we are using BDF2 for the implicit part that is both A-stable (stable for all values of z in the
left-hand plane) and L-stable (the amplification function goes to zero for z → −∞). This means that
as long as we adhere to the explicit CFL condition for the advective waves then we are guaranteed
stability, this is certainly true for the full system, i.e., the No Schur form (see , e.g., [9]). For the
Schur form we have to perform further analysis.

Assuming that we are adhering to the explicit CFL limit of the slow-moving waves, the only
possibility of instabilities stems from the conversion of the full system (i.e., No Schur) to the reduced
or Schur form. For example, for SE1, to extract the Schur complement requires the construction
of the matrix C1 given in Eq. (3.12). This is also true for SE2NC (see Eq. (3.23)), SE2C (see Eq.
(3.35)), SE3 (see Eq. (3.44)), and SE4 (see Eq. (3.51)). The only possibility for instabilities to occur
is if these matrices become singular at any point (z).
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4.3.1. SE1. For SE1, we see that this can only occur if and only if

c1 ≡ 1 + (αλ)2
g

θ0

dθ0

dz
= 0.

Using the definition of the Brunt-Väisälä frequency

N 2 = g
d

dz
(ln θ0(z))

the stability condition can be rewritten in the form

1 + (αλ)2N 2 = 0 ↔ N 2 = − 1

(αλ)2
.

With the assumption of a stable stratified reference atmosphere dθ0

dz > 0, this condition always fails.

4.3.2. SE2NC. The analysis for SE2NC is identical since c2NC = c1.

4.3.3. SE2C. For SE2C, instabilities can occur if and only if

c2C ≡ 1 + (αλ)2
g

G0

dG0

dz
= 0.

Since G0 = Θ0

ρ0
= θ0 then we see that c2C can never be zero because it is the same expression as for

SE1 and SE2NC.

4.3.4. SE3. For SE3 we need to show that for instabilities to arise, the following statement
must be true

c3 ≡ 1 + (αλ)2
g

h0 − φ

dh0

dz
= 0.

Since h0 = cpT0 + φ then this expression becomes

c3 = 1 + (αλ)2
g

cpT0

(
cp

dT0

dz
+ g

)
.

Using the definition of potential temperature T0 = θ0π0, expanding, and using the definition of
hydrostatic balance dπ0

dz = − g
cpθ0

allows us to write

c3 = 1 + (αλ)2
g

cpθ0

dθ0

dz

thereby proving that c3 is in fact equal to the terms for SE1, SE2NC, and SE2C.

4.3.5. SE4. For SE4 it is not clear that the same analysis holds since the expression that we
have to analyze is

c4 ≡ 1 + (αλ)2
(

1

γP0

dP0

dz
− 1

ρ0

dρ0

dz

)
. (4.1)

However, writing the pressure as follows:

P0(z) = PA

(
ρ0(z)Rθ0(z)

PA

)γ

and differentiating and rearranging yields

1

γP0

dP0

dz
=

1

θ0

dθ0

dz
+

1

ρ0

dρ0

dz
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that, when substituted into Eq. (4.1) yields

c4 = 1 + (αλ)2
g

θ0

dθ0

dz

that is identical to the expression for SE1, SE2NC, and SE2C and so c4 can never be zero. Therefore,
as one would expect, the stability condition for all the models are identical - one would expect this
because although the five equation sets are written differently, they represent the same dynamical
system and must have the same stability condition.

This brief analysis proves stability of the semi-implicit method using the Schur form, at least
when a hydrostatically-balanced reference state q0 is used in the semi-implicit formulation. Other
reference states can also be used as long as the matrix C remains non-singular but the proof of
stability is more complicated.

5. Conclusions. We have presented semi-implicit formulations of five different forms of the
compressible Navier-Stokes equations (NSE) used in nonhydrostatic atmospheric modeling. These
equations have typically been solved either explicitly or semi-implicitly along the vertical direction
only; the common reason given for not solving the equations semi-implicitly in all directions, as
we have done here, is that this approach is not competitive with explicit forms. Our experiences
have shown otherwise and in this work we show that this is in fact the case for all the equations
being used today especially if the Schur complement is extracted. If the full system (i.e., the No
Schur form) is solved instead, then it is still faster than fast explicit methods but only by a small
margin; this, however, we were only able to show in the special case when either reflecting (no-flux)
or periodic boundary conditions were used. The true advantage of the semi-implicit formulation
can only be realized if the Schur complement is used; this we were able to show for all types of
boundary conditions including the more realistic (in mesoscale nonhydrostatic atmospheric model-
ing) non-reflecting boundary conditions (NRBCs). In addition, we show that choosing one form of
the NSE over another can be quite advantageous if the most efficient form of the equations is sought.
Specifically, we found that the equation sets in conservation (flux-form) form are not as efficient as
those that are in non-conservation form. While it is important to conserve as many variables as
possible, we have found that those sets that use density as the mass variable conserve mass quite
well; only set 3, which uses total energy, was able to conserve both mass and energy up to machine
precision. Furthermore, the currently used NRBCs adversely affect both accuracy and conservation
which motivates the need for better non-reflecting boundary conditions that are, at the very least,
high-order. Set 1, which does not use density as its mass variable, was the worst in terms of mass
conservation, regardless of the type of boundary conditions used.

Comparing the Schur and No Schur semi-implicit forms, we see that the Schur form is far more
efficient than explicit methods and this efficiency increases with increasing Courant number (i.e.,
time-step). However, the No Schur form reaches an optimal time-step (Courant number) with the
cost then increasing with increasing time-step. The reason that the Schur form beats the explicit
method so easily whereas the No Schur form struggles is partly due to the different dimension sizes
of the linear matrix problem that both methods solve. In the case of the Schur form this system
is N2

p whereas for the No Schur form it is 16N2
p where Np denotes the number of gridpoints in the

domain. The other reason is due to the difference in the number of GMRES iterations required
by the two semi-implicit forms; the number of iterations vary from test case but the general trend
observed is that, on average, the No Schur form requires almost twice as many GMRES iterations per
time-step as the Schur form. This result shows that one must always seek the Schur complement
form and we are currently working on generalizing this study to include semi-implicit (additive)
Runge-Kutta methods into this framework. Furthermore, in the future we shall study the impact
of various preconditioners to see if we can decrease the number of GMRES iterations for both the
Schur and No Schur forms.
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