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High-order semi-implicit time-integration of a triangular
discontinuous Galerkin oceanic shallow water model

F.X. Giraldo†∗and M. Restelli‡

†Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943
‡Max-Planck Institute, Hamburg Germany

SUMMARY

We extend the explicit in time high-order triangular discontinuous Galerkin (DG) method to semi-
implicit and then apply the algorithm to the two-dimensional oceanic shallow water equations; we
implement high-order semi-implicit time-integrators using the backward difference formulas from
orders one through six. The reason for changing the time-integration method from explicit to semi-
implicit is that the explicit method requires a very small time-step in order to maintain stability,
especially for high-order DG methods. Changing the time-integration method to be semi-implicit
allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water
applications are the fastest waves in the system (the exception being supercritical flow where the
Froude number is greater than one). The challenge of constructing a semi-implicit method for a DG
model is that the DG machinery requires not only the standard finite element-type (FE) area integrals
but finite volume-type (FV) boundary integrals as well. These boundary integrals pose the biggest
challenge in a semi-implicit discretization because they require the construction of a Riemann solver
that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied
then the resulting numerical method will not be consistent with the continuous equations. In this paper
we present semi-implicit time-integrators for the DG method that maintain most of the usual attributes
associated with DG methods such as: high-order accuracy (in both space and time), parallel efficiency,
excellent stability, and conservation. The only property lost is that of a compact communication stencil
typical of time-explicit DG methods; implicit methods will always require a much larger communication
stencil. We apply the new high-order semi-implicit discontinuous Galerkin method to the shallow water
equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin
and Rossby soliton waves, and the Stommel problem. The results show that the new high-order semi-
implicit DG model, that has already been shown to yield exponentially convergent solutions for smooth
problems, results in a more efficient model than its explicit counterpart. Furthermore, the capacity
to use high-order time-integrators offers a big advantage in accuracy when simulating time-dependent
problems especially when using high-order DG methods; without high-order time-integration it makes
little sense to use high-order spatial discretizations. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

The discontinuous Galerkin (DG) method has come into prominence in the last decade in all
areas of numerical modeling; however, it has only been in the last few years that this method has
received attention in geophysical fluid dynamics. The high-order accuracy, geometric flexibility
to use unstructured grids, conservation, and monotonicity properties of the DG method makes
it a prime candidate for the construction of future ocean and shallow water models. The
advantages offered by the DG method will benefit all areas of ocean modeling but, specifically,
it will improve coastal ocean models where proper coastline representation, and the ability to
handle steep gradients should translate into better modeling of tsunamis, storm surges, and
hurricanes. Let us now review the literature concerning the application of the DG method to
the oceanic shallow water equations.

Schwaneberg and Köngeter (2000) [32] first used the DG method for the planar shallow water
equations, followed by the work of Li and Liu (2001) [26], and Aizinger and Dawson (2002)
[2]. Dupont and Lin (2004) [12], Eskilsson and Sherwin (2004) [13], Remacle et al. (2006) [28],
and Kubatko et al. (2006) [25] constructed shallow water models on triangles using a collapsed
local coordinate discontinuous Galerkin method. Giraldo and Warburton (2008) [20] developed
a high-order DG oceanic shallow water model on unstructured adaptive triangular grids. In
that paper, we showed that the model yields exponentially convergent solutions (for smooth
problems). However, we used explicit time-integration methods which, while easy to implement,
require small time-steps in order to maintain stability. To ameliorate this deficiency found in
all DG shallow water models, we extend the explicit time-integrators to semi-implicit. To
date, there has been no work on the development of semi-implicit time-integrators for shallow
water DG models; all of the DG shallow water models found in the literature use explicit
time-stepping, including those discussed above. Furthermore, the only work on DG and semi-
implicit methods found in the literature are the papers by Dolejsi, Feistauer, and co-authors on
the compressible Navier-Stokes equations (see [11], [10], [14], [15], [9]). Their semi-implicit DG
formulation is based on low-order polynomial spaces (third order or less) and their approach is
fundamentally different from ours in that they rely on a linearization of the nonlinear operators
in conjunction with a special flux function that facilitates this linearization. Our approach [29]
relies on extracting the linear operators containing the fastest wave speeds in the system
and then discretizing them implicitly in time. While both approaches are very effective, our
approach is more similar to the classical semi-implicit method first proposed by Robert et al.
(1972) [31]. The advantage of this approach is that, once the numerical machinery is developed,
it can be applied to any equation set with minimal modifications. Moreover, the semi-implicit
DG approach is easily extendable to generalized families of linear multi-step time-integration
methods as we show here.

The remainder of the paper is organized as follows. Section 2 describes the governing
equations of motion used to test our numerical method. In Sec. 3 we describe the spatial
discretization of the governing equations and in Sec. 4 the time-integrators used. Finally, in
Sec. 5 we present comparisons between the explicit and semi-implicit versions of the model.
This then leads to a summary on the direction of future work.
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HIGH-ORDER SEMI-IMPLICIT TRIANGULAR DG OCEANIC SHALLOW WATER MODEL 3

2. Continuous Equations

The oceanic shallow water equations are a system of nonlinear partial differential equations
which govern the motion of a viscous incompressible fluid in a shallow depth. The predominant
feature of this type of fluid is that the characteristic length of the fluid is far greater than its
depth, this is analogous to ocean flow problems and is the reason these equations are typically
used as a first step toward the construction of ocean models.

The shallow water equations in conservation form are

∂q

∂t
+ ∇ · F (q) = S(q) (1)

where q = (φ,UT )T are the conservation variables,

F (q) =

(
U

U⊗U
φ

+ 1
2 (φ2 − φ2

B)I2

)
(2)

is the flux tensor and

S(q) = −
(

0
f (k × U) − φS∇φB − τ

ρH
+ γU

)
(3)

is the source function where the nabla operator is defined as ∇ = (∂x, ∂y)
T , ⊗ denotes the

tensor product operator, φ = g(hS+hB) is the geopotential height where g is the gravitational
constant, hS is the free surface height of the fluid, φB = ghB is the bathymetry (e.g., bottom
of the ocean) which we assume constant, U = φu is the momentum, u = (u, v)T is the velocity
vector, f = f0 + β(y − ym) is the Coriolis parameter, k = (0, 0, 1)T is the unit normal vector
of the x-y plane, and the term I2 is a rank-2 identity matrix. The vector τ is the wind stress,
ρ is the density, H is a mean height, and the constant γ is the bottom friction.

2.1. Linearized Continuous Equations

Let us now decompose Eqs. (1) - (3) into their linear and nonlinear components. Splitting the
geopotential height φ into the depth from mean sea level to the ocean bottom φB and the
height from mean sea level to the water surface φS we then have φ(x, t) = φS(x, t) + φB(x)
which we can now use to substitute into the equations to get

∂φS
∂t

+ ∇ · U = 0 (4)

∂U

∂t
+ ∇ ·

[
δNL

(
U ⊗ U

φ
+ +

1

2
φ2
SI2

)
+ φSφBI2

]
= −f(k × U) + φS∇φB (5)

+
τ

ρH
− γU

where δNL is a switch which retains the nonlinear terms when δNL = 1 and turns them off for
δNL = 0.

In the next few sections, we describe the semi-implicit (SI) method for the oceanic shallow
water equations in the particular case that the discontinuous Galerkin method is used to
represent spatial derivatives. As the reader will see, a pivotal component of the SI method is
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4 F.X. GIRALDO AND M. RESTELLI

the construction of a linearized form of the continuous equations. Linearizing Eqs. (1) - (3)
yields

∂φS
∂t

+ ∇ · U = 0

∂U

∂t
+ ∇ · (φSφBI2) = −f(k × U) + φS∇φB +

τ

ρH
− γU (6)

which are obtained by setting δNL = 0 in Eqs. (4) and (5). The maximum eigenvalue of the
linear system given in Eq. (6) is λL =

√
φB which is in fact the linearized eigenvalue of λNL

obtained for the nonlinear system given in Eqs. (1) - (3). From Eq. (6) we can define the
linear operator as follows

L = −
(

∇ · U
∇ · (φSφBI2) + f(k × U) − φS∇φB + γU

)
. (7)

We will return to this linear operator in Sec. 4. Let us now describe the approximation of
the spatial derivatives by the DG method. We need to know this information before we can
construct the semi-implicit solution.

3. Triangular Discontinuous Galerkin Method

In this section we describe the approximation of the spatial derivatives of the shallow water
equations using the discontinuous Galerkin method on triangles. This includes: the choice of
basis functions, integration, construction of the semi-discrete problem and its corresponding
matrix form.

3.1. Basis Functions

To define the discrete local operators we begin by decomposing the domain Ω into Ne

conforming non-overlapping triangular elements Ωe such that

Ω =

Ne⋃

e=1

Ωe.

The condition on grid conformity, however, is not required by the DG method; we only impose
this condition to simplify the discussion.

To perform differentiation and integration operations, we introduce the nonsingular mapping
x = Ψ(ξ) which defines a transformation from the physical Cartesian coordinate system
x = (x, y)T to the local reference coordinate system ξ = (ξ, η)T defined on the reference
triangle Ωe = {(ξ, η), −1 ≤ ξ, η ≤ 1, ξ + η ≤ 0, }.

Let us now represent the local element-wise solution q by an Nth order polynomial in ξ as

qN (ξ) =

MN∑

i=1

ψi(ξ)qN (ξi) (8)

where ξi represents MN = 1
2 (N + 1)(N + 2) interpolation points and ψi(ξ) are the associated

multivariate Lagrange polynomials. For the interpolation points ξi we choose the nodal sets
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HIGH-ORDER SEMI-IMPLICIT TRIANGULAR DG OCEANIC SHALLOW WATER MODEL 5

based on the electrostatics [21] and Fekete [36] points; for simplicity we shall refer to these
nodal sets collectively as Fekete points. We have already described the construction of the
nodal basis functions in [18], [20] and, for the sake of brevity, omit this discussion here.

3.2. Integration

3.2.1. Area Integrals In order to complete the discussion of the local element-wise operations
required to construct discrete spatial operators we must describe the integration procedure
required by the integral formulation of all Galerkin methods. For any two functions f and g
the 2D (area) integration IA proceeds as follows

IA[f, g] =

∫

Ωe

f(x) g(x)dx =

MQ∑

i=1

wei | Je(ξi) | f(ξi) g(ξi)

where MQ is a function of Q which represents the order of the cubature approximation. For
wi and ξi we use the high-order cubature rules for the triangle given in [35, 6, 27, 7]; because
we use order 2N integration, which is exact for this equation set, then neither spatial filters
nor smoothing diffusion operators are used. Furthermore, we omit the use of slope limiters.

3.2.2. Boundary Integrals The DG method also requires the evaluation of boundary integrals
which is the mechanism by which the fluxes across element edges are evaluated and allows the
discontinuous elements to communicate. For any two functions f and g the 1D (boundary)
integration IB proceeds as follows

IB [f, g] =

∫

Γe

f(x) g(x)dx =

Q∑

i=0

wsi | Js(ξi) | f(ξi) g(ξi)

where Q represents the order of the quadrature approximation. Using Legendre-Gauss
quadrature we can use Q = N to achieve order 2N accuracy.

3.3. Tangent and Normal Vectors of the Element Edges

Below it will become evident that in order to construct a discontinuous Galerkin discretization
requires knowing a bit about the element geometry. In continuous Galerkin methods, such as
the finite element method, the only required information is the basis functions, metric terms,
and cubature rules. The DG method requires all of this finite element-type information plus
some finite volume-type information regarding the element edges and the element neighbors
sharing these edges. However, the good news for the DG method is that regardless of the order
of the basis function, N , each element only has three edge neighbors (this is true only for
conforming grids). This is the process by which a DG element shares its local information with
its neighbors.

3.4. Semi-Discrete Equations

Applying the discontinuous Galerkin discretization to Eq. (1), and using Green’s theorem
yields the classical DG which we refer to as the weak form

∫

Ωe

(
∂q

(e)
N

∂t
− F

(e)
N · ∇ − S

(e)
N

)
ψi(x)dx = −

3∑

l=1

∫

Γe

ψi(x) n(e,l) · F (∗,l)
N dx (9)
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6 F.X. GIRALDO AND M. RESTELLI

where FN = F (qN ) and SN = S(qN ) with F and S given by Eqs. (2) and (3), respectively.
Note that Eq. (9) states that qN satisfies the equation on each element Ωe for all ψ ∈ S where
S is the finite-dimensional space

S = {ψ ∈ L2(Ω) : ψ|Ωe
∈ PN (Ωe)∀Ωe} ,

PN is the polynomial space defined on Ωe and the union of these elements defines the entire
global domain - that is, Ω =

⋃Ne

e=1 Ωe with Ne representing the total number of triangular
elements. It should be mentioned that in DG methods, the space PN−PN can be used without
violating the inf-sup (Ladyzhenskaya-Babuska-Brezzi) condition which must be observed by
continuous Galerkin methods (such as the finite element method) in order to avoid the effects
of spurious pressure modes.

In the boundary integral of Eq. (9) n is the outward pointing unit normal vector of the
element edge Γe and F ∗

N is the Rusanov numerical flux (although other fluxes are also possible)

F
(∗,l)
N =

1

2

[
FN

(
q

(e)
N

)
+ FN

(
q

(l)
N

)
− |λ(l)|

(
q

(l)
N − q

(l)
N

)
n(e,l)

]
(10)

where λ(l) = max
(
|U (e)| +

√
φ(e), |U (l)| +

√
φ(l)
)

with U (e,l) = u(e,l) · n(l) being the normal

component of velocity with respect to the edge Γe, and the superscripts e and l represent
the element e and its three edge neighbors l. The normal vector n(e,l) is defined as pointing
outward from the element e to its edge neighbor l.

Integrating Eq. (9) by parts once more yields the strong form

∫

Ωe

ψi(x)

(
∂q

(e)
N

∂t
+ ∇ · F (e)

N − S
(e)
N

)
dx =

3∑

l=1

∫

Γe

ψi(x) n(e,l) ·
(
F

(e)
N − F

(∗,l)
N

)
dx (11)

which, although mathematically equivalent to the weak form, yields different numerical
solutions. Based on previous studies (see Giraldo [18] and Kopriva [24]) we use the strong
form exclusively in this paper.

3.5. Matrix Form of the Semi-Discrete Equations

Substituting the polynomial approximation

qN =

MN∑

i=1

ψiqi

into Eq. (11) we can now write the semi-discrete system as

∫

Ωe

ψiψj dx
∂q

(e)
j

∂t
+

∫

Ωe

ψi∇ψj dx ·F (e)
j −

∫

Ωe

ψiψj dxS
(e)
j =

3∑

l=1

∫

Γe

ψiψjn
(e,l) dx ·

(
F (e) − F (∗,l)

)

j
.

(12)
Next, note that by defining the following element matrices

M
(e)
ij =

∫

Ωe

ψiψj dx, M
(e,l)
ij =

∫

Γe

ψiψjn
(e,l) dx, D

(e)
ij =

∫

Ωe

ψi∇ψj dx

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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allows us to write Eq. (12) in the following matrix form

M
(e)
ij

∂q
(e)
j

∂t
+
(
D

(e)
ij

)T
F

(e)
j −M

(e)
ij S

(e)
j =

3∑

l=1

(
M

(e,l)
ij

)T (
F (e) − F (∗,l)

)

j
(13)

where the superscript e denotes an element-based evaluation and l denotes edge-based
evaluations. Next, using the approach described in [20] for eliminating the mass matrix, we
write

D̂
(e)

=
(
M (e)

)−1

D(e), M̂
(e,l)

=
(
M (e)

)−1

M (e,l)

which then allows us to write Eq. (13) as follows

∂q
(e)
i

∂t
+

(
D̂

(e)

ij

)T

F
(e)
j − S

(e)
i =

3∑

l=1

(
M̂

(e,l)

ij

)T (
F (e) − F (∗,l)

)

j
. (14)

Equation (14) is the form we shall use in the construction of the explicit and semi-implicit
discretizations.

3.6. Boundary Conditions

In all the test cases we only consider no-flux boundary conditions; we will extend our model
to more general boundary conditions in future work. The no-flux boundary conditions are
enforced by virtue of the statement

n · u = 0 (15)

at the boundaries. Thus, we seek to eliminate the normal component of the velocity to the no-
flux boundary without altering the tangential component. The tangent vector to a boundary
is obtained by t = k × n which is equal to t = −nyi + nxj. Thus we solve the following 2x2
system: (

nx ny
−ny nx

)(
u
v

)
=

(
0

uT

)
(16)

where uT = t ·u is the tangential component of velocity. This boundary condition is imposed
only weakly through the boundary integrals in Eq. (14); that is, it only comes in through the
Rusanov flux.

4. Time-Integrator

In Sec. 3 we described the approximation of the spatial derivatives using the DG method. We
are now in a position to describe the approximation of the time derivatives. Let us begin with
the description of the explicit time-integration followed by the semi-implicit time-integration
methods. We use a method of lines approach for both methods.

4.1. Explicit Method

In order to advance the solution in time while retaining some level of high-order accuracy
we use third order strong stability preserving (SSP) Runge-Kutta methods (see [5] and [33]).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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8 F.X. GIRALDO AND M. RESTELLI

For completeness we define them now. Let us write the semi-discrete (in space) equations as
follows

∂q

∂t
= R(q)

where

R(q) = −
(

D̂
(e)

ij

)T

F
(e)
j (q) + S

(e)
i +

3∑

l=1

(
M̂

(e,l)

ij

)T (
F (e)(q) − F (∗,l)(q)

)

j
(17)

and q is in fact q(e), that is, the solution within each element e.

The SSP temporal discretization of this semi-discrete equation is

for k = 1, ..., S :

qk = αk0qn + αk1qk−1 + αk2qk−3 + βk∆tR(qk−1)

where q0 = qn, qS = qn+1, S denotes the number of RK stages, and the coefficients α and β
are given in Table I.

Method k α0 α1 α2 β
RK3 1 1 0 0 1

2 3/4 1/4 0 1/4
3 1/3 2/3 0 2/3

RK34 1 1 0 0 1
2 0 1 0 1/2
3 2/3 1/3 0 1/6
4 0 1 0 1/2

RK35 1 1 0 0 0.377268915331368
2 0 1 0 0.377268915331368
3 0.355909775063327 0.644090224936674 0 0.242995220537396
4 0.367933791638137 0.632066208361863 0 0.238458932846290
5 0 0.762406163401431 0.237593836598569 0.287632146308408

Table I. Coefficients for the explicit strong stability preserving third order Runge-Kutta methods.

In Fig. 1, we show the stability regions of these methods for the equation

dq

dt
= λq

which is a proxy for an advection-dominated equation; a reasonable approximation for the
shallow water equations. Figure 1 shows that the stability region of RK35 is larger than those
for RK34 and RK3. We are interested specifically in the region along the imaginary axis
because this is the region most important to advection-dominated problems. In [8] all three
RK methods were studied for the Navier-Stokes equations and it was determined that RK35
is indeed the most efficient of the third order methods. We have found similar results here
for the shallow water equations. Based on the results of these studies, we use RK35 for the
comparisons with the semi-implicit methods which we now describe.
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RK3RK34RK35

Figure 1. The stability regions for the explicit strongly stability preserving third order Runge-Kutta
methods, RK3 (three stage), RK34 (four stage), and RK35 (five stage).

4.2. Semi-Implicit Method

To extend the size of the time-step we use a generalized semi-implicit method of order K. Let
us write Eqs. (1)-(3) in the following compact vector form

∂q

∂t
= R(q) (18)

where q = (φs,U
T )T and R(q) is defined in Eq. (17). This system can be represented by the

equivalent form

∂q

∂t
= {R(q) − δSIL(q)} + [δSIL(q)] (19)

where L(q) is the linear approximation to R given in Eq. (7) and contains the gravity wave
terms (i.e., the fastest waves in this system, at least for subcritical flow). In Eq. (19) the
curly brackets denote explicit time-integration while the square brackets denote implicit time-
integration. Note that the variable δSI is a switch that yields a fully explicit method for δSI = 0
and the semi-implicit method for δSI = 1.

As was done in [17, 19] we now write the time-discretization in the general form:

qn+1 =

K∑

k=0

αkq
n−k + γ∆t

K∑

k=0

βk[R(qn−k) − δSIL(qn−k)] + γ∆tδSIL(qn+1) (20)

whereK denotes the order of the time-integrator. To simplify the discussion of the semi-implicit

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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10 F.X. GIRALDO AND M. RESTELLI

formulation, let us now introduce the following auxiliary variables

qtt = qn+1 −
K∑

k=0

βkq
n−k, (21)

qE =
K∑

k=0

αkq
n−k + γ∆t

K∑

k=0

βkR(qn−k), (22)

q̂ = qE −
K∑

k=0

αkq
n−k (23)

which then allows us to write Eq. (20) as

qtt = q̂ + λL(qtt) (24)

where λ = γ∆tδSI . In Table II we list the coefficients for the backward difference formulas of
order K = 1, ..., 6. In Figs. 2a and 2b we show the stability regions of the explicit and implicit

K=1 K=2 K=3 K=4 K=5 K=6
α0 1 4/3 18/11 48/25 300/137 360/147
α1 0 -1/3 -9/11 -36/25 -300/137 -450/147
α2 0 0 2/11 16/25 200/137 400/147
α3 0 0 0 -3/25 -75/137 -225/147
α4 0 0 0 0 12/137 72/147
α5 0 0 0 0 0 -10/147
γ 1 2/3 6/11 12/25 60/137 60/147
β0 1 2 3 4 5 6
β1 0 -1 -3 -6 -10 -15
β2 0 0 1 4 10 20
β3 0 0 0 -1 -5 -15
β4 0 0 0 0 1 6
β5 0 0 0 0 0 -1

Table II. Coefficients for the backward difference formulas of orders K = 1, ..., 6.

BDF methods. In Fig. 2a the closed loops are the stability regions of the explicit BDF methods
while in Fig. 2b the closed loops are the regions of instability of the implicit BDF methods.
For the shallow water equations, we are interested in the region near the imaginary axis (for
Re(z) = 0).

Let us now describe the semi-implicit method in terms of the governing equations. Note
that the operator R referenced above is the same operator described for the explicit method.
However, let us now write the full expression given in Eq. (24) in terms of the operator L.
Substituting the linear operator defined in Eq. (7) into Eq. (24) results in the following system

φtt = φ̂− λ∇ · U tt

U tt = Û − λ [∇ · (φttφBI2) + f(k × U tt) − φtt∇φB + γU tt] (25)

where we have retained the continuous spatial operators for clarity. At this point, there is no
difference between the semi-implicit formulation of a continuous Galerkin (e.g., finite elements)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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Figure 2. The stability regions of the a) explicit and b) implicit backward difference formulas of order
K = 1, ..., 6.

and a discontinuous Galerkin method. The differences arise through the method selected for
the discretization of the spatial operators. Replacing the continuous spatial operators with the
DG discrete representations yields

φ
(e)
tt = φ̂(e) − λ

[(
D̂

(e)
)T

U
(e)
tt −

3∑

l=1

(
M̂

(e,l)
)T (

U
(e)
tt − U

(∗,l)
tt

)]
(26)

U
(e)
tt = Û

(e) − λ

(
D̂

(e)
)T

(φttφBI2)
(e)

(27)

− λ

3∑

l=1

(
M̂

(e,l)
)T [

(φttφBI2)
(e) − (φttφBI2)

(∗,l)
]

− λ
[
f(k × U

(e)
tt ) − φ

(e)
tt ∇φB + γU

(e)
tt

]

where the flux values are specifically defined as

U
(∗,l)
tt =

1

2

[
U

(e)
tt + U

(l)
tt − |λL|n(l)

(
φ

(l)
tt − φ

(e)
tt

)]
(28)

and

(φttφBI2)
(∗,l)
tt =

1

2

[
(φttφBI2)

(e)
+ (φttφBI2)

(l) − |λL|n(l)
(
U

(l)
tt − U

(e)
tt

)]
. (29)

These equations can now be solved as a coupled system of linear equations for φtt and U tt.
We use a GMRES solver with Jacobi preconditioning to solve this system. While this choice of
preconditioner is not optimal, the resulting iterative method is nonetheless robust and efficient
in terms of computational time and memory requirements since no global matrix problem ever
needs to be stored.

In standard semi-implicit methods (e.g., see [16], [17], [19]), upon writing the fully discrete
system the goal is then to apply a block LU decomposition in order to reduce the vector
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12 F.X. GIRALDO AND M. RESTELLI

system of equations into an equivalent scalar system of equations; for first order systems of
equations, the resulting problem is in fact quite similar to a Helmholtz equation. Constructing
the Helmholtz problem for general DG polynomial spaces and boundary conditions remains an
open problem. Thus far, we only know how to construct the Helmholtz problem for collocated
DG formulations (where the interpolation points coincide with the integration points) for a
specific class of boundary conditions (see [29] and [30] for the solution to this problem for the
Navier-Stokes equations).

A few additional comments regarding the semi-implicit discretization are in order. Since
only the gravity waves (pressure gradient) are discretized implicitly, with the Rossby waves
(advection operator) discretized explicitly, the model will be unconditionally stable with
respect to the gravity waves for any time-step size as long as the conditional stability with
respect to the Rossby waves is satisfied by the explicit methods. This is the reason why we
show both the explicit and implicit stability regions of the BDF methods in Figs. 2a and
2b. Of course one could also choose to discretize all of the terms implicitly (including the
nonlinear advection operator) - this is known as the fully-implicit method. The reason for
choosing the semi-implicit method over the fully-implicit method is that in doing so we only
need to contend with a linear matrix problem; for the fully-implicit method, we would have to
solve a nonlinear matrix problem, which while not impossible, requires many more iterations
for convergence (outer Newton loops, plus inner Krylov loops, [23]). For the types of shallow
water problems that we are considering, the semi-implicit method should be more efficient
than the fully-implicit method.

5. Numerical Experiments

For the numerical experiments, we use the normalized L2 error norm

‖hS‖L2 =

√∫
Ω
(φexact − φ)2dΩ∫

Ω φ
2
exact dΩ

computed at the cubature points to judge the accuracy of the methods. To compute the
Courant number the elements are decomposed into their high-order (HO) grid points (which
are in fact the Fekete points) and these grid points form a fine grid which we refer to as the
HO cells. The velocities and grid spacings are then defined at the centers of these cells. Using
these definitions the Courant number is then defined as

Courant number = max

(
C∆t

∆s

)e

HO

∀e ∈ [1, ..., Ne] (30)

where C = U +
√
φ is the characteristic speed, U =

√
u · u is the magnitude of the velocity,

and ∆s =
√

∆x2 + ∆y2 is the grid spacing. In addition, note that the Courant number based
on the advection is given by Eq. (30) with C = U .

We use the symbol nr to refer to the refinement level of the grid. This variable nr represents
the number of quadrilateral subdivisions in each of the Cartesian directions. For example,
nr = 1 corresponds to n2

r quadrilaterals and 2n2
r triangles; the factor of 2 is required since

each quadrilateral is subdivided into 2 triangles. Examples of square domains with nr = 1,
nr = 2, and nr = 4 are shown in Fig. 3.
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a) b) c)

Figure 3. Grid refinement for the structured triangular grids with a) nr = 1, b) nr = 2, and c) nr = 4.

5.1. Description of the Test Cases

We now describe the test cases and their solutions. It should be noted that all the tests
presented below require no-flux boundary conditions at all four walls.

5.1.1. Linear Standing Wave This problem involves the transient solution of a linear inviscid
standing wave without rotation which sloshes within a square basin of unit depth. From [22]
we take the analytic solution as

h(x, t) = cosπx cos πy cos
√

2πt

u(x, t) =
1√
2

sinπx cos πy sin
√

2πt

v(x, t) =
1√
2

cosπx sinπy sin
√

2πt

with (x, y) ∈ [0, 1]2 and t ∈ [0, 2]. The source function, S, in Eq. (1) is zero and the flux tensor
is linearized.

5.1.2. Linear Kelvin Wave This problem involves the transient solution of the linearized
inviscid equations with rotation. From [13] we use the analytic solution

h(x, t) = 1 + exp

(
−y

2

2

)
exp

(
− (x+ 5 − t)2

2

)

u(x, t) = exp

(
−y

2

2

)
exp

(
− (x+ 5 − t)2

2

)

v(x, t) = 0

with f0 = 0, β = 1, and (x, y) ∈ [−10, 10]× [−5, 5] and t ∈ [0, 10].

5.1.3. Nonlinear Rossby Soliton Wave This problem describes an equatorially trapped
Rossby soliton wave [4]. The soliton wave starts off in the center of the domain. It then moves
westward along the equator without changing shape. The asymptotically derived analytic
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14 F.X. GIRALDO AND M. RESTELLI

solution is given by

h(x, y, t) = h(0) + h(1)

u(x, y, t) = u(0) + u(1)

v(x, y, t) = v(0) + v(1)

where the superscripts (0) and (1) denote the zeroth and first order asymptotic solutions of
the shallow water equations, respectively. They are given by

h(0) = η

(−9 + 6y2

4

)
e−

y2

2

u(0) =
∂η

∂ξ
(2y) e−

y2

2

v(0) = η

(
3 + 6y2

4

)
e−

y2

2

and

h(1) = c(1)η
9

16

(
−5 + 2y2

)
e−

y2

2 + η2Φ(1)(y)

u(1) = c(1)η
9

16

(
3 + 2y2

)
e−

y2

2 + η2U (1)(y)

v(1) =
∂η

∂ξ
ηV (1)(y)

where η(ξ, t) = A sech2Bξ, ξ = x − c t, A = 0.771B2, B = 0.394, and c = c(0) + c(1) where
c(0) = − 1

3 and c(1) = −0.395B2. The variable η is the solution to the equation

∂η

∂τ
+ αnη

∂η

∂ξ
+ βn

∂3η

∂ξ3
= 0

which is a simplified form of the shallow water equations upon using the method of multiple
scales presented in [3]. Finally, the remaining terms are given by




Φ(1)(y)

U (1)(y)
V (1)(y)



 = e−
y2

2

∞∑

n=0




ϕn
un
vn



Hn(y)

where Hn(y) are the Hermite polynomials and ϕn, un, vn are the Hermite series coefficients
given in [4]. The Coriolis parameter is given by f(y) = y where (x, y) ∈ [−24,+24]× [−8,+8]
t ∈ [0, 10] and g = 1.

We include this analytic solution for completeness but one cannot use this test for validating
the exponential convergence of the methods because the analytic solution is only a first order
approximation. However, this solution can be used to check the phase speed of the soliton
wave simulated by the numerical model.

5.1.4. Linear Stommel Problem The linear Stommel problem [34] is the exact steady-state
solution of the linearized inviscid equations with rotation, wind stress, and bottom friction.
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The analytic solution of this problem can be obtained by considering the linearized momentum
equation as follows

∇φ+ f(k × u) + γu = τ .

If we define the Coriolis term as f(y) = f0 + β
(
y − L

2

)
and the wind stress as

τ = − τ0
ρH

cos
(πy
L

)
i + 0j

then taking the curl yields

γ∇2ψ + β
∂ψ

∂x
= − τ0π

ρHL
sin
(πy
L

)

where we have written the velocity field in terms of the streamfunction as u = −∂ψ
∂y

and

v = ∂ψ
∂x

. Assuming a separation of variables solution of the type ψ(x, y) = ψ̂(x) sin
(
πy
L

)
yields

the following second order ordinary differential equation (ODE) for x

γ
∂2ψ̂

∂x2
+ β

∂ψ̂

∂x
− γ

(π
L

)2

ψ̂ = −
(π
L

) τ0
ρH

.

This ODE tells us that we need to seek solutions of the type ψ̂(x) = Ceλx + C0 which, after
substituting into the ODE, gives the two roots

λ1,2 =
−β
γ
±
√(

β
γ

)2

+ 4
(
π
L

)2

2

with C0 = τ0
γρH

L
π
. Imposing zero streamfunction boundary conditions at the domain boundaries

yields the final solution of the streamfunction as

ψ(x, y) =
(
C0 + C1e

λ1x + C2e
λ2x
)
sin
(πy
L

)

where

C1 = C0
1 − eλ2L

eλ2L − eλ1L
and C2 = −C0

1 − eλ1L

eλ2L − eλ1L
.

This then yields the analytic solution

h(x) =
1

g

[
C0β

L

π
cos
(πy
L

)
+ f(y)ψ(x, y) +

γπ

L
cos
(πy
L

)(C1

λ1
eλ1x +

C2

λ2
eλ2x

)]

u(x) = −π

L
ψ̂(x) cos

(πy
L

)

v(x) =
(
C1λ1e

λ1x + C2λ2e
λ2x
)
sin
(πy
L

)
.

The constants required to completely define the solution are f0 = 1 × 10−4, β = 1 × 10−11,
γ = 1 × 10−6, g = 10, ρ = 1000, τ = 0.2, H = 1000, and L = 1 × 106. The models are
integrated between 200 to 400 days in order to reach steady-state. We regard steady-state as
the condition when the error norms cease to decrease.
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16 F.X. GIRALDO AND M. RESTELLI

5.1.5. Nonlinear Riemann Problem We used the nonlinear Riemann problem previously (see
[20]) in order to validate the spatial operators of our DG model and its slope limiters. We
follow the outline of the problem presented in Toro [37]. The source function S is set to zero;
this leaves a balance between the time rate of change of the conservation variable q and the
the divergence of the flux tensor. Following [37] we use

h(x, y, 0) =

{
2.5 if r ≤ R
0.5 if r > R

with u(x, y, 0) = 0 ∀(x, y) ∈ [−20, 20]2 where r =
√
x2 + y2, R = 2.5, and t ∈ [0, 0.4]. The

cylindrical wave is positioned initially at the origin and moves outward for increasing time t.

5.2. Comparison of the Explicit and Semi-Implicit Models

In the sections below, we compare the accuracy and efficiency of the explicit RK35 method with
the semi-implicit BDF methods of orderK ≤ 6. For all simulations, the largest Courant number
shown for RK35 represents the maximum Courant number allowed by this method. The
smallest Courant number shown for the semi-implicit BDF methods represents the maximum
Courant number allowed by the explicit BDF methods; the only exception is the time-step
convergence study that we now describe.

5.2.1. Time-Step Convergence Study The first study we conduct is the rate of convergence of
explicit and implicit time-integrators. For this study we use the linear standing wave problem
with nr = 1 refinement level, corresponding to two triangular elements, and 14th order
(N = 14) polynomials. For this resolution, the best possible normalized hS L2 error norm
that can be achieved by the model is 1 × 10−9 which we obtained experimentally as ∆t → 0;
this we consider to be the exact numerical solution.

In Fig. 4 we show the results for the RK35 and BDF methods. The maximum time-step used
for RK35 is the maximum allowed by the method. For the BDF methods of order K ≤ 4, the
smallest time-steps corespond to the explicit methods while the last few points correspond to
the implicit methods. For the BDF methods of order K ≥ 5, all the simulations are obtained
with the implicit methods; because these methods are high-order in time, they achieve the exact
numerical solution for time-steps much larger than those allowed by the explicit method.

We define the time rate of convergence as

rate = abs

(
NT∑

i=1

log
[
error∆ti+1

/error∆ti
]

log [∆ti/∆ti+1]

)

where ∆ti are the NT time-step values. Figure 4 shows that RK35 is indeed formally third order
accurate, and that the BDF methods achieve their theoretical values of order K. Furthermore,
the explicit and all implicit methods yield exact mass conservation (to within machine double
precision) not just for this test case but for all cases discussed below. Let us now examine the
accuracy and efficiency of the semi-implicit BDF time-integrators for various test cases and
compare them to the explicit RK35 time-integrator.

5.2.2. Linear Standing Wave In Figs. 5a and 5b we show the L2 error norms and the wallclock
time as functions of Courant number for various time-integrators for the linear standing wave
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Figure 4. Linear Standing Wave. The normalized hS L2 error as a function of time-step for various
time-integrators. All runs use nr = 1 and N = 14.
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Figure 5. Linear Standing Wave. The a) normalized hS L2 error and b) wallclock time as functions of
Courant number for various time-integrators. All runs use nr = 6 and N = 10.

problem. In these simulations we use tenth order polynomials (N=10) with 72 triangular
elements (corresponding to nr = 6). Figure 5a shows that the RK35 explicit method is more
accurate than the semi-implicit BDF methods of order K ≤ 3. For K ≥ 4 the BDF methods
are more accurate. Figure 5b shows that all of the BDF methods are more efficient than the
explicit RK35 method for the same Courant number. Furthermore, the BDF methods of order
K ≤ 6 allow larger Courant numbers than the explicit RK35 method and the lower order BDF
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18 F.X. GIRALDO AND M. RESTELLI

methods are more efficient than the high-order BDF methods.

The small Courant numbers reported for BDF6 in Fig. 5b needs to be explained. To
understand these results, let us begin by discussing the stability regions of the implicit BDF
methods in Fig. 2b. Along the imaginary axis all the BDF methods are stable for large z.
Clearly, for some range of z, the BDF methods of orders K ≥ 3 become unstable. This is
observed in Fig. 5b for Re(z) = 0 and |Im(z)| < 5 for BDF4, for example. Once this first
instability region is reached, we stop increasing the Courant numbers which results in the
small Courant numbers reported in Figs. 5. Note that we do this for all of the simulations
throughout this paper.

5.2.3. Linear Kelvin Wave In Figs. 6a and 6b we show the normalized hS L
2 error norms and

the wallclock time as functions of Courant number for various time-integration methods for the
linear Kelvin wave problem. In these simulations we, once again, use tenth order polynomials
(N=10) with 256 triangular elements (corresponding to nxr = 16 and nyr = 8). Figure 6a shows
that the RK35 explicit method is more accurate than the semi-implicit BDF methods of order
K ≤ 3. For K ≥ 4 the BDF methods are more accurate, as in the previous case. Figure 6b
shows that all of the semi-implicit BDF methods are more efficient than the explicit RK35
method for the same Courant numbers. Once again, the BDF methods allow larger Courant
numbers with BDF2 allowing a Courant number almost one order of magnitude larger than
the RK35 method.
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Figure 6. Linear Kelvin Wave. The a) normalized hS L2 error and b) wallclock time as functions of
Courant number for various time-integrators. All runs use nx

r = 16, ny
r = 8, and N = 10.

Because the BDF2 method allows such large Courant numbers, it makes it very difficult to
discern the performance of the other BDF methods. In Figs. 7a and 7b we show the results
using smaller Courant numbers. In these figures it becomes obvious that the best method is
the BDF4 since it yields the best error norms (together with BDF5 and BDF6) while allowing
for larger Courant numbers than RK35, BDF5, and BDF6 and thereby yielding the optimal
result when considering both accuracy and efficiency.
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Figure 7. Linear Kelvin Wave. A close-up of the a) normalized hS L2 error and b) wallclock time as
functions of Courant number for various time-integrators. All runs use nx

r = 16, ny
r = 8, and N = 10.

5.2.4. Rossby Soliton Wave Figure 8a shows the wallclock time as a function of Courant
number for various time-integration methods for the nonlinear Rossby soliton wave problem.
In Fig. 8b we show the same simulations but for smaller Courant numbers. Recall that for
this test we only have a first-order solution which is not sufficiently accurate for performing a
convergence study; however, we can use it to determine whether the solitons are moving with
the proper wave speed. We consider a numerical solution to be accurate if it agrees exactly
with the semi-analytic solution as to the position of the highest peak of the solitons.

In these simulations we use eighth order polynomials (N=8) with 384 triangular elements
(corresponding to nxr = 24 and nyr = 8). Figure 8 shows that the semi-implicit BDF methods
K < 6 are more efficient than the explicit RK35 method for the same Courant numbers.
Additionally, the semi-implicit BDF methods K ≤ 3 admit larger Courant numbers than the
explicit RK35 method. Since this case is nonlinear, both the explicit and implicit BDF methods
are used in tandem to solve the problem. Therefore in this test case, the stability regions of
both the implicit and explicit BDF methods are relevant. Looking at the stability region of the
explicit BDF methods given in Fig. 2a we note that the BDF5 and BDF6 have particularly
small stability regions that result in the small Courant numbers reported in Fig. 8 for these
methods. The BDF methods of order K ≤ 4 have larger stability regions in both the explicit
and implicit forms and is the reason why these methods perform more efficiently than the
high-order BDF (K ≥ 5) and RK35 methods.

5.2.5. Linear Stommel Problem Figure 9a shows the wallclock time as a function of Courant
number for various time-integration methods for the linear Stommel problem; in Fig. 9b we
show a close-up of the same simulations for smaller Courant numbers. For this case we have
a steady-state analytic solution and so the accuracy of the time-integrator only plays a small
role. The accuracy of the model is completely dependent on the polynomial order of the DG
method; the only role that the time-integrator has is to maintain the stability of the solution
while doing so as efficienctly as possible.

In these simulations we use eighth order polynomials (N=8) with 32 triangular elements
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Figure 8. Rossby Soliton Wave. The wallclock time as a function of Courant number for various time-
integrators. Figure a) shows the results for large Courant numbers while b) shows them for small

Courant numbers. All runs use nx
r = 24, ny

r = 8, and N = 8.

(corresponding to nr = 4). Figure 9a shows that the BDF methods K ≤ 2 allow larger
Courant numbers than the other methods. More importantly, Fig. 8b shows that all of the
BDF methods are more efficient than the explicit RK35 method for the same Courant numbers.
In addition, for this test case, the implicit BDF methods admit as large a Courant number as
the explicit RK35 method. The fact that the implicit BDF methods are more efficient than
the explicit RK35 even for the same Courant number is impressive especially since the implicit
BDF methods require much more machinery to solve the problem. Recall that implicit/semi-
implicit methods require the use of iterative solvers (in this case GMRES) and preconditioners
(in this case Jacobi preconditioning) in order to solve the resulting linear matrix problem. Even
with all of this machinery, the implicit methods are more efficient than an explicit RK method
- this does not seem possible at first glance. The reason for these surprising results is simple:
for Courant numbers less than 1 the implicit BDF methods require fewer than 5 GMRES
iterations to converge; recall that the RK35 method requires 5 stages. Thus at this range of
Courant numbers the implicit BDF methods are more efficient than RK35 with respect to
operation count which translates to smaller wallclock times. For the larger Courant number
values, the number of iterations are greater than 5 but the larger time-steps (hence fewer time-
integration loops) compensate for the extra costs incurred with respect to operation count.

One final comment is in order. Since this test case is linear and the solution is steady-state,
we could have used infinitely large Courant numbers for the implicit BDF methods K ≤ 2.
We have only chosen to report the maximum Courant numbers that maintained stability for
the nonlinear Stommel problem. Since we do not have an analytic solution to the nonlinear
Stommel problem, we then use the linear problem to ensure that we are achieving L2 errors
of 1 × 10−6 which is the exact numerical solution for eighth order polynomials with nr = 4
(see [20]). This means that the results reported in Fig. 9 are also representative of the types of
efficiency gains offered by the semi-implicit BDF methods for nonlinear problems. However, it
should be noted that the reason why such large Courant numbers can be used in this test case
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Figure 9. Linear Stommel Problem. The wallclock time as a function of Courant number for various
time-integrators. Figure a) shows the results for large Courant numbers while b) shows them for small

Courant numbers. All runs use nr = 4 and N = 8.

has to do with the disparity between the speed of the gravity waves (the height of the fluid)
and the Rossby waves. For the Stommel problem, the gravity waves are much faster than the
Rossby waves and this will be the case for all deep ocean flows. Let us now discuss a type of
flow problem for which the semi-implicit method is not well suited.

5.2.6. Nonlinear Riemann Problem In Figs. 10a and 10b we show the wallclock time as a
function of Courant number for various time-integrators for the nonlinear Riemann problem.
Note that we only report the explicit RK35 and explicit BDF methods. The results for this test
show that the explicit BDF methods of order K ≤ 4 compete with RK35 in terms of efficiency.
The stability regions of the BDF methods of order K ≥ 5 are too small and, while faster
than RK35 for a given Courant number, cannot compete with the maximum Courant number
admitted by RK35. Let us now discuss why we do not show results for the semi-implicit BDF
methods.

We cannot use the semi-implicit BDF methods for this case because the Rossby waves are
faster than the gravity waves. This means that the linearization used to construct the equations
in (6) is no longer valid. The linearization used in the current semi-implicit formulation assumes
that φB is much greater than φS which is not true for the Riemann problem (as is evident by
the initial conditions where φB = 0.5 and max(φS) = 2 meters2/second). We show the result
of the Riemann problem only to point out the limitation of our current approach. Let us now
discuss some possible solutions to this dilemma.

Defining the Froude number as the ratio of propagation speeds of Rossby (call them R) and
gravity (call them G) waves, then if the flow is subcritical (i.e., G > R) then the fix to the
problem is relatively simple. Instead of linearizing about a constant state, say φB , we linearize
instead about the known state at the current time-step (i.e., φnS + φB, where n denotes the
current time-level). This presents very little changes to the current semi-implicit approach.
On the other hand, if the flow is supercritical (i.e., R > G) then nothing in the semi-implicit
machinery can improve the efficiency since the terms responsible for the fastest waves in the
system are discretized explicitly in time.
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The simplest solution, given the methodology described in this paper, is to switch from the
semi-implicit to the explicit methods which is achieved by setting the parameter δSI = 0 in
the code - this, of course, has to be done with the additional constraint that the time-step be
changed in order to satisfy the explicit stability region of the BDF methods.
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Figure 10. Riemann Problem. The wallclock time as a function of Courant number for various time-
integrators. Figure a) shows the results for large Courant numbers while b) shows them for small

Courant numbers. All runs use nr = 100 and N = 1.

Another approach is to discretize the equations fully implicitly in time which then requires
the solution of a nonlinear matrix problem. We prefer the first approach for its simplicity
and to this end we are developing tools to automate the selection of the time-step as well
as the value of the switch δSI . Our analysis has shown that not all K order methods are
created equally. For example, taking all the results collectively shows that the RK35 method
behaves most like the BDF4 method and so the optimal combination would be to use the semi-
implicit BDF4 as long as the linearization is valid and then switching to the explicit RK35
when the linearization breaks down or supercritical flow is encountered. The value of such a
hybrid solution strategy can be appreciated by considering the semi-implicit time-integration
of a tsunami wave beginning in the middle of the deep ocean. As the wave approaches the
coastline, the semi-implicit linearization breaks down and the flow becomes supercritical which
then requires the code to switch to explicit mode. We hope to report the results of such
simulations in the near future.

6. Conclusions

We present a high-order family of semi-implicit time-integration methods based on backward
difference formulas (BDF) for the triangular discontinuous Galerkin method as applied to the
oceanic shallow water equations; We use a high-order discontinous Galerkin method defined
on unstructured triangular elements which is especially useful when attempting to resolve the
complex geometry resulting from the representation of coastlines in coastal ocean models. In
this work, we have extended the explicit in time high-order DG method that was shown to
be exponentially convergent (for smooth problems) to semi-implicit in time. The semi-implicit
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BDF time-integrators of order K ≥ 4 are shown to yield better accuracy than the third order
explicit Runge-Kutta method. Furthermore, the BDF methods of order K ≤ 4 require far
less wallclock time to deliver these solutions. We show that the semi-implicit BDF methods,
even without any optimization and without the use of sophisticated preconditioners, yields
better efficiency than the explicit RK method. We expect that on a parallel computer, with
the aid of preconditioning and reduction of the implicit problem to a Helmholtz problem, the
speed-up of the semi-implicit method compared to the fastest explicit methods will be further
increased. In future work we plan on adding lateral diffusion, variable bathymetry, and wetting
and drying algorithms to the model in order to perform tsunami, storm surge, and inundation
simulations.
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