
Development of the Nonhydrostatic Unified Model of

the Atmosphere (NUMA): Limited-Area Mode

James F. Kelly and Francis X. Giraldo

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA

Abstract

This paper describes a Nonhydrostatic Unified Model of the Atmosphere
(NUMA) based on a spectral element, or high-order continuous Galerkin
(CG) spatial discretization utilizing 3D hexahedral elements. The nonhydro-
static dynamical core, based on the compressible Euler equations, is appropri-
ate for both limited-area and global atmospheric simulations. In this paper,
we restrict our attention to 3D limited-area phenomena; global atmospheric
simulations will be presented in a follow-up paper. A suite of explicit and
semi-implicit time-integrators is presented. Domain decomposition and com-
munication algorithms utilized by our distributed memory implementation is
presented, allowing efficient evaluation of the the direct stiffness summation
(DSS) operator. Numerical verification of the model is performed using four
test cases: 1) 2D inertia-gravity waves, 2) flow past a 3D linear hydrostatic
mountain, 3) flow past a 3D nonlinear mountain and 4) 3D buoyant convec-
tion of a bubble in a neutral atmosphere; these tests indicate that NUMA
can simulate the necessary physics of a dry numerical weather prediction dy-
namical core. Scalability for the explicit dynamical core is demonstrated for
12288 cores on TACC’s Ranger cluster, while the semi-implicit core is shown
to scale to 4096 cores on the same architecture.

Keywords: compressible flow, Euler, Lagrange, Legendre, Navier-Stokes,
nonhydrostatic, parallelization.

1. Introduction

As the resolution of numerical weather prediction (NWP) models increase,
nonhydrostatic effects become relevant. Nonhydrostatic dynamical cores al-
low grid resolutions ranging from a few hundred kilometers (mesoscale) to

Preprint submitted to Journal of Computational Physics April 14, 2011

several kilometers (microscale) to approximately 100 meters (large eddy sim-
ulations). Almost all current limited-area models utilize a nonhydrostatic
core, while global models are currently transitioning from the hydrostatic
to the nonhydrostatic regime. A host of challenging, non-trivial numerical
problems arise when one enters the nonhydrostatic regime: these include 1)
choosing the appropriate equation set to ensure efficiency, accuracy, and con-
servation, 2) effectively resolving multi-scale flow features, that may require
adaptive mesh refinement (AMR), 3) developing efficient time-integrators
and/or “soundproof” equation sets to confront the fast acoustic and gravity
waves present in non-hydrostatic models, and 4) developing scalable parallel
codes for shared, distributed, and hybrid architectures based on 1) -3).

Virtually all current nonhydrostatic NWP models are based on a combi-
nation of finite-difference discretization in space and either split-explicit or
semi-implicit discretization in time. Examples include WRF [24] (NCAR),
Lokal Modell [30] (DWD), COAMPS [18] (US Navy), and UM [2] (UK Met
Office). Although finite difference schemes are very efficient, they suffer from
several problems, including: 1) dispersion error, 2) geometrical inflexibility,
and 3) lacking of scalability to large (e.g. tens of thousands) of processors.
To overcome some of the limitations of finite-difference approximations, sev-
eral emerging NWP models utilize finite-volume spatial discretization, such
as MPAS [38] and MCORE [40], which utilize polynomial reconstruction
of the inter-element fluxes. To overcome these limitations, element-based
Galerkin (EBG) methods have recently been proposed for several next gen-
eration NWP models [12, 14, 28] and [5] using both the continuous Galerkin
(CG) and discontinuous Galerkin (DG) formulations.

EBG methods possess several desirable attributes, such as 1) higher-order
accuracy, 2) geometrical flexibility, whereby the solver is completely indepen-
dent of the grid, 3) excellent dispersion properties [26] and 4) minimal com-
munication overhead within a parallel implementation. High-order accuracy,
which allows fine-scale atmospheric flow features to be resolved, is achieved
by representing the prognostic variables via an orthogonal basis function ex-
pansion within each element. Geometrical flexibility, which is inherent to all
EBGs (both low and high order), is advantageous since any terrain-following
coordinate may be utilized within the same solver; also, both static and
dynamic adaptivity may be retro-fitted to the existing solver. Finally, in a
distributed memory environment (e.g. cluster), low communication overhead
is critical to maintain linear scalability to hundreds of thousands of proces-
sor cores. In our previous work, higher-order accuracy and geometrical flex-

2

ibility were addressed within an explicit framework [12] and semi-implicit
framework [14] for 2D (x-z slices) problems using a serial implementation.
However, parallel implementation was not explicitly addressed. The purpose
of the present work is to extend the work begun in [12] and [14] to realis-
tic 3D domains using a parallel, MPI-based implementation. Although we
restrict our attention to limited-area (mesoscale and large-eddy scale) simu-
lations, the dynamical core developed in this paper may also be applied to
global atmospheric simulations. Hence, we are considering a Nonhydrostatic
Unified Model of the Atmosphere (NUMA) that is being developed in con-
junction with the Naval Research Laboratory (NRL) in Monterey, CA; to our
knowledge, this is the first 3D spectral element model for a nonhydrostatic
atmosphere.

This work is guided by a need for highly scalable models in distributed
memory environments. In the past five years, clock speeds of processors
have remained stagnant; to achieve increased floating-point performance,
chip manufacturers have developed multiple core processors that allow many
threads to execute in parallel. In tandem, high performance computing
(HPC) has evolved towards clusters with processors counts exceeding 100,000.
As we approach the exaflop era, core counts are expected to approach 1,000,000.
Therefore, next-generation NWP models must be based upon scalable nu-
merical methods that allow arbitrarily large processor counts with minimal
communication overhead. EBG methods, both CG and DG, have proved
effective in this respect in modeling massive biological flow [15], shallow wa-
ter flows [7], incompressible flows using low-order finite elements [19], and
geodynamical problems [41].

This paper presents a scalable, 3D nonhydrostatic spectral element at-
mospheric model targeted toward distributed memory architectures. We
are developing a unified dynamical core appropriate for both mesoscale and
global simulations. The current implementation utilizes tensor products of
Lagrange polynomials in a hexahedral grid for maximum computational effi-
ciency; however, more flexible grids based on either tetrahedra or triangular
prisms may be incorporated into future versions with relative ease. The
remainder of this paper is structured as follows. In Section 2, we formu-
late the nonhydrostatic compressible Euler equations (Set 2NC from [14]),
which constitute the governing equations of our dynamical core. To ensure
numerical stability, these nonhydrostatic equations are solved about a hydro-
static base state. In Section 3, we present the spectral element discretization,
along with explicit and semi-implicit time-integration schemes and the nec-

3

essary boundary conditions. Section 4, which forms the core of the paper,
outlines the parallelization algorithm for both the explicit and semi-implicit
time-integrators. Numerical results for a 2D inertia-gravity wave, 3D linear
hydrostatic and non-linear mountains, and a 3D rising thermal bubble are
shown in Section 5 along with the results of scalability experiments. Scala-
bility for the explicit code is demonstrated to 12288 processor cores for the
explicit code and 4096 processor cores for the semi-implicit code.

2. Governing Equations

We consider the fully compressible, nonhydrostatic Euler equations in
non-conservative form. These equations (Set 2NC), which are valid for spatial
resolutions finer than 10 km, have previously been considered within a semi-
implicit framework in [14] for 2D, limited-area atmospheric flows. Of the five
equation sets considered in [14], set 2NC proved to be both computationally
efficient and provides acceptable mass and energy conservation properties; in
addition, replacing the advection operator in the momentum equation allows
for formal conservation of energy up to time truncation error. Both diabatic
forcing and the effects of moisture are neglected; in other words, we consider a
dry dynamical core without sub-grid scale turbulence closure. In the present
study, we consider three-dimensional flow in Cartesian coordinates (x-y-z)
subject to gravitational and Coriolis forces, yielding

∂ρ

∂t
+∇ · (ρu) = 0 (1a)

∂u

∂t
+ u · ∇u +

1

ρ
∇P + gk̂ + f × u = 0 (1b)

∂θ

∂t
+ u · ∇θ = 0 . (1c)

where the prognostic variables are (ρ,uT , θ), where ρ is density, u = (u, v, w)T

is velocity, and θ is potential temperature. In addition, P is pressure, g is the
gravitational constant, f = 2Ωk̂ is a Coriolis parameter (with Ω the angular
frequency of the earth), and k̂ is the unit vector in the z direction. Eq. (1a)
enforces mass conservation, Eq. (1b) enforces conservation of momentum,
and Eq. (1c) enforces conservation of entropy. To close the system of conser-
vation laws given by Eq. (1), a thermodynamic equation of state is required.

4

We utilize the ideal gas law given by

P = PA

(

ρRθ

PA

)γ

(2)

where PA is the atmospheric pressure at ground, R is the ideal gas constant,
and γ ≈ 1.4 is the ratio of specific heats. In three dimensions, Eqs. (1) and
(2) constitute a closed system of nonlinear PDEs in five unknowns.

To facilitate the solution of the compressible Euler equations and maintain
numerical stability, we split the density, pressure, and potential temperatures
about their mean hydrostatic values:

ρ(x, z, y, t) = ρ0(z) + ρ′(x, y, z, t) (3a)

θ(x, y, z, t) = θ0(z) + θ′(x, y, z, t) (3b)

P (x, y, z, t) = P0(z) + P ′(x, y, z, t) (3c)

where ρ0, θ0, and P0 are the hydrostatic reference states that depend only
on the vertical distance z. Inserting Eq. (3) into Eq. (1) and applying
hydrostatic balance

dP0

dz
= −ρ0g (4)

yields the system

∂ρ′

∂t
+ u · ∇ρ′ + w

dρ0

dz
+ (ρ′ + ρ0)∇ · u = 0 (5a)

∂u

∂t
+ u · ∇u +

1

ρ′ + ρ0
∇P ′ +

ρ′

ρ′ + ρ0
gk̂ + f × u = 0 (5b)

∂θ′

∂t
+ u · ∇θ′ + w

dθ0
dz

= 0. (5c)

Defining a solution vector q = (ρ′,uT , θ′)T , Eq. (5) is written in condensed
form as

∂q

∂t
= S(q) (6)

where the source term S(q) is a nonlinear, first-order differential operator.

5

3. Numerical Methods

In this section, we briefly discuss the numerical discretization used by
NUMA: 1) spatial discretization of Eq. (5) using a continuous Galerkin (CG),
or spectral element method, 2) a suite of explicit and semi-implicit time-
integrators, and 3) the necessary boundary conditions required for limited-
area problems.

3.1. Spatial Discretization

The spectral element method decomposes the spatial domain Ω ⊂ R3

into Ne disjoint elements Ωe via

Ω =
Ne
⋃

e=1

Ωe. (7)

In the current formulation of NUMA, we let Ωe be hexahedra, which provides
1) simple grid generation and 2) efficient (fast) evaluation of the necessary
differentiation and integration operators. We note, however, that Ωe may be
replaced by either 1) tetrahedra or 2) triangular prisms in a future version
of NUMA.

Letting the unit cube (ξ, η, ζ) ∈ E = [−1, 1]3 be the reference hexahedral
element, a transformation Fe : Ωe → E mapping physical space to com-
putational space is defined for each element, yielding (x, y, z) = Fe(ξ, η, ζ).
Associated with Fe is a Jacobian Je, that, in conjunction with the decompo-
sition in Eq. (7) allows globally defined integrals. We express

∫

Ω

f(x) dΩ =

Ne
∧

e=1

|Je|f (e) (xe) dΩe (8)

where
∧Ne

e=1 denotes the global assembly, or direct stiffness summation (DSS)
operator and |Je| is the determinant of the Jacobian mapping. Eq. (8) forms
the basis for all CG algorithms; moreover, Eq. (8) is responsible for the
local nature of CG that facilitates parallelization. This aspect of CG will be
explored in detail in Section 4.

Within each element Ωe, a finite-dimensional approximation qN is formed
by expanding q(x, t) in basis functions ψj (x) such that

qN(x, t) =

MN
∑

j=1

qj(t)ψj(x) (9)

6

whereMN = (N+1)3 is the number of nodes per element andN is the order of
the basis functions. The discrete solution qN is assumed C0(Ω) continuous
across inter-element boundaries. For basis functions, we construct tensor
products of Lagrange polynomials given by

ψi (x) = hα(ξ)⊗ hβ(η)⊗ hγ(ζ) (10)

where hα(ξ) is the Lagrange polynomial associated with the Legendre-Gauss-
Lobatto (LGL) points ξi and (ξ, η, ζ) are functions of the physical variable
x. These LGL points satisfy

(1− ξ2)P
′

N(ξ) = 0 (11)

where PN(ξ) is the N -th order Legendre polynomial. Approximating the
prognostic vector q(x, t) by a finite-dimensional approximation qN in Eq.
(9), multiplying by a basis function ψi and integrating over the domain Ω
yields the weak form

∫

Ω

ψI
∂qN

∂t
dΩ =

∫

Ω

ψIS (qN) dΩ (12)

where we have replaced the index i with I to emphasize that Eq. (12) is now
a global representation. Applying the Galerkin expansion given by Eq. (9)
to Eq. (12) yields the matrix-vector equation

∂qI
∂t

= M−1
IJ S(qI) (13)

where the mass-matrix MIJ =
∫

Ω
ψIψJ dΩ is diagonal if the interpolation

and integration points are co-located. This approximation is valid for N ≥ 4
while incurring a small error in integration [9]. Denoting the right-hand side
(RHS) of Eq. (13) by RI(qI), Eq. (13) is expressed as

∂qI
∂t

=

Ne
∧

e=1

R
(e)
i

(

q
(e)
i

)

. (14)

Note that the DSS operator maps local, element-wise coordinates i to global
coordinates I. Eq. (14) forms the core of the spectral element method, al-

lowing local, element-wise information q
(e)
i to propagate to adjacent elements

via the DSS operator. In Section 4, we discuss the efficient evaluation of
Eq. (14) within a distributed memory architecture. Moreover, the choice
of tensor product basis functions, coupled with inexact integration, allows
the right-hand sides S(q) to be evaluated with O(NeN

4) work [6], thereby
resulting in an efficient algorithm [6].

7

3.2. Temporal Discretization

In the following section, we discuss two schemes used to evolve Eq. (6)
forward in time: an explicit Runge-Kutta RK-35 method and a semi-implicit
BDF2 method. A fully-implicit, Jacobian-Free Newton Krylov (JFNK) time-
integrator [25] and a family of semi-implicit RK methods were also imple-
mented; however, we defer discussing these results and will report their rel-
ative strengths and weaknesses in future work.

3.2.1. Explicit RK methods

We implemented a strong stability preserving (SSP) Runge-Kutta third-
order, five stage time-integrator proposed by [36]. This time-integrator is
stable for Courant numbers of 1.3 or less.

3.2.2. Semi-Implicit BDF2 (Schur Form)

Semi-implicit, or IMEX schemes, decompose the operator S(q) in Eq. (6)
into two components: a linear term and and a nonlinear term. This decom-
position exploits the underlying physics of the compressible Euler equations:
namely, that the fast moving acoustic and gravity waves are linear, while
the slower advective waves are nonlinear. Hence, the fast moving waves may
be discretized implicitly, while the slower advective waves are discretized ex-
plicitly. Hence, the semi-implicit schemes allow much larger time-steps than
explicit schemes, since the Courant number is only restricted by the advec-
tive dynamics. Semi-implicit discretizations of spectral-element atmospheric
models was recently developed in [14]; a brief outline is provided in this
section for completeness.

First, Eq. (6) is rewritten as follows:

∂q

∂t
= [S(q)− δL(q)] + δL(q) (15)

where L(q) is the linearized Euler operator specified in Appendix A of [14]
and δ = 0, 1 is a switch. The operator L(q) is responsible for 1) acoustic,
2) barotropic gravity and 3) baroclinic gravity waves. By setting δ = 0, we
recover an explicit scheme, while for δ = 1, we have the semi-implicit scheme.
To discretize Eq. (15) in time, a general backward difference (BDF) formula
is utilized, yielding

qn+1 =
K−1
∑

k=0

αkq
n−k +γ∆t

K−1
∑

k=0

βk

[

S(qn−k)− δL(qn−k)
]

+γ∆tδL(qn+1) (16)

8

where 1 ≤ K ≤ 6 is the order of the time-integrator. Eq. (16) is rewritten
in terms of the variables defined in Section 3 of [14] yielding

qtt + λL (qtt) = q̂ (17)

where λ = δγ∆t. Eq. (17) is immediately realized as a system of linear
equations Ax = b, where the left-hand side (LHS) matrix A is given by
A = I+λL and right-hand side (RHS) vector q̂. Examining Eq. (17) in con-
junction with [14], the semi-implicit problem consists of the following three
steps: 1) solve the explicit problem and form q̂, 2) solve the linear system
given by Eq. (17) for the intermediate variable qtt, and 3) backsubstitute to
determine the update qn+1.

The majority of the computational work is spent in solving Eq. (17) via
an iterative Krylov subspace technique, such as GMRES [29]. Noting that
this linear system is size 5Ng × 5Ng for the 3D Euler equations, the cost
of an iterative solve is O(25k2N2

g), where Ng is the number of global grid
points and k is the number of Krylov iterations. Hence, the cost of solving
Eq. (17) may become prohibitive even for relatively small 3D problems. To
mitigate this problem, the size of the linear system may be reduced from 5Ng

to Ng via the Schur complement approach, where the first-order system of
5Ng equations is reduced to a second-order system of Ng equations written
in terms of the linearized discrete pressure Ptt. Symbolically, we solve

HPtt = Rtt (18)

where H = H
(

D,DT
)

is a linear, pseudo-Helmholtz operator consisting
of gradient D and divergence DT operators operating on the discretized
pressure Ptt and Rtt is an effective source term. Explicit expressions for H
and Rtt are given by Eq. (A.10) in [14]. We note that the gradient operator
may be written as a DSS of local gradient operators D(e) using the notation

D =
Ne
∧

e=1

D(e) (19)

which is crucial for the construction of a parallel, semi-implicit algorithm
(see Section 4).

3.3. Boundary Conditions

Limited-area atmospheric models, such as mesoscale codes, typically re-
quire two types of boundary conditions: 1) no-flux boundary conditions

9

(NFBCs), that mimic impenetrable objects (e.g., the ground) and 2) non-
reflecting boundary conditions (NRBCs), that mimic an infinite domain (e.g.
the top of the atmosphere) by allowing waves to propagate out of the com-
putational domain without generating spurious reflections. In this section,
we outline how NFBCs are imposed via projection matrices and how NRBCs
are imposed via sponges. For additional details, see [12].

3.3.1. No-Flux Boundary Conditions

All of our test cases utilize NFBCs on the bottom boundary, while some
test cases (such as the rising thermal bubble) utilize NFBCs on other bound-
aries as well. For NFBCs, we enforce

n̂ · u = 0 (20)

for all points on the boundary Γ, where n̂ is the outward pointing unit normal
on Γ. In order to apply the NFBC to the prognostic vector q, we augment
n̂ to R5 via n̂ = (0, n̂T , 0)T , yielding n̂ · q = 0. To apply theses boundary
conditions in the strong sense, we construct a 3 by 3 projection matrix P via

P =

1− n2
x −nxny −nxnz

−nynx 1− n2
y −nynz

−nznx −nzny 1− n2
z

 . (21)

This matrix is constructed during the initialization phase and applied to the
RHS of Eq. (16) after each time-step.

3.3.2. Non-Reflecting Boundary Conditions

In an operational NWP model, the four lateral and the top boundary of
any mesoscale model should mimic an open domain. That is, waves should
smoothly exit the domain without reflection; in addition, information from
outside the domain should be allowed to enter the domain of interest. Math-
ematically modeling this behavior is non-trivial and has attracted the atten-
tion of researchers in many domains [3, 17, 27]. In our model, we utilize
a simple, albeit, effective absorbing sponge layer method. The computa-
tional domain is surrounded by a layer with Newtonian relaxation coefficients
α(x, y, z) and β(x, y, z) such that α = 1 and β = 0 in the domain of interest,
while α→ 0 and β → 1 at the boundary. Specifically, for the top boundary,
we choose

β =

(

z − zs

zt − zs

)4

(22)

10

where zt is the vertical height of the domain and zs is the bottom of the sponge
layer. Similar functions are used for the lateral boundaries of the domain.
Once the sponge layer is constructed, the numerical solution q̃ given by the
RHS of Eq. (16) is relaxed to some known solution at the boundary qb via

q = α(x, y, z)q̃ + β(x, y, z)qb. (23)

For problems under consideration in this paper, qb is a far-field condition
(e.g. known wind velocity).

4. Parallel Implementation

NUMA is an MPI-based code targeted toward distributed memory ar-
chitectures (e.g. clusters). In this section, we discuss the parallel imple-
mentation of NUMA, including a description of the domain-decomposition,
necessary data structures (e.g. local to global mappings), and communication
algorithms.

4.1. Domain Decomposition

We decompose Ω into Np processor elements (PE) Ωp that consist of local

elements Ω
(p)
e′ . Mathematically, we rewrite Eq. (7) as

Ω =

Np
⋃

p=1

N
(p)
e

⋃

e′=1

Ω
(p)
e′ (24)

where N
(p)
e is the number of local elements residing on PE p. Since the DSS

operator acts on global elements e, we must also construct local to global
mappings e = LG(p)(e′) that map local elements e′ on processor p to global
elements e residing on the global domain Ω.

A guiding principle in the construction of NUMA is to maintain indepen-
dence between grid generation and the spectral element solver; hence, domain
decomposition should be as general as possible and not constrained by the
underlying grid connectivity. Therefore, we have implemented a domain de-
composition strategy based on the widely used METIS graph partitioning
library [22]. METIS requires an adjacency graph where the Ne vertices are
elements Ωe and the “edges” denote the connectivity between elements. Since
the DSS operator requires information from elements that share nodes, the

11

“edges” include all forms of geometric connectivity (faces, edges, and ver-
tices). For maximum flexibility, we constructed a weighted adjacency graph
G′ = (V,E) with adjacency matrix A′ of size Ne by Ne defined via

a′ij =

1 if i and j are vertex neighbors

2 if i and j are edge neighbors

4 if i and j are faces neighbors

(25)

The weights in Eq. (25) represent the number of common points between
neighbors assuming linear (N = 1) elements; these weights are arbitrary and
may be altered to construct a machine-optimal weighted adjacency matrix.
Once A′ is constructed, the adjacency matrix A for the graph G = (V, F),
where F are geometrical faces is simply aij = 1 if a′ij = 4 and aij = 0
otherwise. An example connectivity graph for a 2D grid is shown in Figure 1,
showing both edge and vertex connectivity. The associated 9 by 9 adjacency
matrix has nodes with degree ranging from 3 (for the corner nodes) to 8 (for
the central node). This standard adjacency matrix A may be utilized within
a discontinuous Galerkin (DG) framework [11], where the only inter-element
communication is between adjacent faces via flux operators.

Since we are considering a local method, both A and A′ are sparse. There-
fore, these matrices are stored in compressed storage (CSR) format using an
adjacency list adjncy of length 2|E| and array xadj of length |V |+1. These
arrays, along with the number of processor Np are then passed to METIS,
which returns a partition P : V → {1, 2, ..., Np}, that maps global elements
to processors. This mapping is then used to construct the local to global
mappings LG necessary for global assembly in Eq. (14).

In addition to the element adjacency graph G, a processor-element adja-
cency graph GP = (VP , EP) is constructed, where the vertices VP are pro-
cessor elements and the edges EP are the connectivity between processor
elements. Again, since we are considering a CG method, EP includes vertex,
edge, and face connections between processor elements. The adjacency ma-
trix NP by NP adjacency matrix A(P) associated with GP is derived from A′

as follows: the element a
(P)
ij = 1 if the intersection of all rows i′ and columns

j′ of A′ such that i = P(i′) and j = P(j′) has at least one nonzero element;

otherwise, a
(P)
ij = 0. From the inter-processor adjacency matrix A(P), the

necessary communication data structures are constructed with ease. Specif-
ically, the neighbors of processor element i are simply the non-zero columns
of row i, while the number of neighbors for element i is given by

∑NP

j=1 a
(P)
ij .

12

1

7 8 9

4

5

6

32

Figure 1: Example 2D grid (left) and the associated adjacency graph. Since spectral
element methods utilize nodal communication, the adjacency graph includes both edge
and vertex connectivity, with a maximum degree of eight. For 3D, structured, Cartesian
grids, the maximum degree is 26.

Thus, a low-communication partition will have an adjacency matrix A(P)

that is as sparse as possible.

4.2. Parallelization: Explicit TI

We first consider the parallelization of the explicit time-integrator, due to
its simplicity. The global DSS operator in Eq. (14) requires inter-processor
communication due to the overlap of elements at processor element bound-
aries. A global DSS is required in two parts of the code: 1) construction
of the mass matrix and 2) construction of the right-hand side (RHS). To
perform this communication, we first construct the boundary nodes of each
processor (excluding the physical boundary where BCs are applied). Denote
the boundary of processor element i by ∂Ωi. In order to communicate be-
tween processor elements, we construct two data structures send and recv.
Consider a particular processor i and neighboring processor j. send contains
the local nodes on processor i that are sent to each neighboring processor j,
while recv contains the local nodes on processor j that must be sent to i. In
order to construct send, we utilize the method shown in Algorithm 1. The
corresponding recv structure contains the same grid points as send, although
they may be ordered differently.

Once these data structures have been constructed, the global mass matrix

13

Algorithm 1 Construction of MPI send/receive communication data struc-
tures.

for all NBHs j of i do

MPISEND ∂ΩG
i ← LG(i) (∂Ωi) to proc j

MPIRECV ∂ΩG
j ← LG(j) (∂Ωj) to proc i

B ← ∂ΩG
i ∩ ∂ΩG

j

send(j)←
[

LG(i)
]−1

(B)
end for

and RHS operators may be constructed via a two step process. The global
mass matrix MIJ and RHS operator in Eq. (14) is decomposed as

MIJ =
Ne
∧

e=1

M
(e)
ij =

Np
∧

np=1

N
(p)
e

∧

e′=1

M
(e′)
ij and (26a)

RI =

Ne
∧

e=1

R
(e)
i =

Np
∧

np=1

N
(p)
e

∧

e′=1

R
(e′)
i . (26b)

Hence, the global DSS is decomposed into a local, on-processor DSS and a
global DSS, that requires inter-processor communication. In this way, global
continuity between elements is preserved during the construction of each
RHS. Note that the communication stencil is simply the boundary of each
processor element ∂Ω(i) and is independent of the polynomial order N ; that
is, unlike higher-order finite difference or finite volume methods, the spectral-
element method is halo-free. In summary, the global DSS procedure may be
summarized as follows:

1. Perform a local DSS on processor i.

2. Exchange boundary points between processors i and all processor neigh-
bors j using send and recv.

3. Perform a global DSS using the boundary data received from neighbors
j.

The global DSS operation is represented schematically in Figure 2 in a 2D
setting. To simplify the discussion, each processor is assumed to own one el-
ement. In order to construct the RHS operator on the boundary (red dots),
the element E (green) requires nodal information for its 8 nodal neighbors.

14

These neighbors include both edge neighbors (2, 4, 6, and 8) and vertex
neighbors (1, 3, 5, and 7). In a 3D setting, an element may have (a max-
imum) of 6 face neighbors, 12 edge neighbors, and 8 vertex neighbors, for
a total of 26 nodal neighbors. To reduce this communication cost, METIS
is utilized to reduce the total number of vertex neighbors; in a typical 3D
partition, a processor element lying away from a physical boundary has 16 or
less nodal neighbors; hence, the METIS-based decomposition further reduces
communication cost relative to a naive geometric domain decomposition.

Spectral elements, and in fact all Galerkin based methods, possess purely
local communication stencils. Referring to Fig. 2, the interior nodes (yellow
dots) do not need to be communicated to adjacent processors, resulting in a
halo-free algorithm. Thus unlike high-order finite difference and finite volume
schemes, spectral elements may achieve spectral accuracy without sacrific-
ing their local character. We note in passing that discontinuous Galerkin
(DG) methods further reduce communication costs, since elements need only
communicate with face neighbors; we will report the results of our DG im-
plementation in a future paper.

4.3. Parallelization: Semi-Implicit TI

Unlike the explicit RK-35 TI, the semi-implicit TI requires the solution
of the linear system given by Eq. (18) at each time-step. First, the effective
source term Rtt must be constructed, which requires applying the divergence
operator DT . To solve the linear system, the Krylov-space solver GMRES is
utilized, which requires constructing a set of orthonormal basis vectors vi that
spans the solution space by 1) constructing the matrix-vector product ṽ =
Hvi at each iteration, and 2) constructing the orthonormal vector vi+1 from
ṽ via orthogonalization of Krylov vectors. After the discrete pressure Ptt is
constructed, additional differential operators D must be applied to construct
the solution qn+1. Each of these operations require MPI communication,
which is outlined in this section.

In constructing both the LHS and RHS operators in Eq. (18), the dif-
ferential operator given by Eq. (19) must be applied to the Krylov vector
vi. Analogous to the construction of the RHS operator in Eq. (26b), the
differential operator is decomposed into a local, or on-processor DSS, and
a global DSS that requires inter-processor communication. The communi-
cation stencil for the global DSS is the same as the explicit RHS; that is,
the computation of derivatives is halo-free within the continuous Galerkin
paradigm.

15

Figure 2: Global DSS operator in a 2D setting, where each processor owns one element.
The element E (green) requires nodal information for its 8 nodal neighbors in order to
construct the RHS operator on the boundary (red dots). However, the interior nodes
(yellow dots) do not need to be communicated to adjacent processors, resulting in a halo-

free algorithm.

16

In addition to differentiation operators, the orthogonalization procedure
requires communication. In the modified Gram-Schmidt procedure, k global
dot products αi = ṽT vi must be performed at the k-th Krylov iteration,
where 1 ≤ i ≤ k. These dot products 1) depend on the global vector, and 2)
are required by each processor element; hence, the computation of dot prod-
ucts is an all-to-all communication that becomes prohibitive for large pro-
cessor counts. To mitigate this communication overhead, a communication-
avoiding GMRES solver [4] will be incorporated in our next-generation semi-
implicit solver.

5. Results

5.1. Test Cases

Although a standard set of 2D mesoscale test cases has been proposed
[31] and later utilized within an element-based Galerkin framework [12], an
analogous suite of 3D test cases has not yet been developed. Fortunately,
a 3D dynamical core can be run in 2D mode by imposing symmetry in the
y-dimension and periodic boundary conditions in the y-lateral boundaries.
For initial verification of NUMA, we utilized the test cases proposed in [31];
later, we ran full 3D test cases with no y-symmetry. In the following analysis,
we consider four test cases: 1) 2D inertia-gravity waves, 2) a 3D linear hy-
drostatic mountain, 3) a 3D nonlinear mountain and 4) a 3D rising thermal
bubble.

5.1.1. 2D Inertia-Gravity Waves

The 2D nonhydrostatic inertia-gravity wave simulates the evolution of
a potential temperature perturbation in a channel with periodic boundary
conditions; this test case was originally proposed in [32]. To adapt this
problem to 3D, symmetry in the y-dimension was enforced along with pe-
riodic boundary conditions in the y-dimension. The domain is defined as
(x, y, z) ∈ [0, 300000] × [0, 300000] × [0, 10000] m. No-flux boundary con-
ditions are applied at the top and bottom of the domain, while periodic
boundary conditions are applied on the lateral boundaries.

5.1.2. 3D Linear Hydrostatic Mountain

To test the 3D capabilities of NUMA and the NRBCs, we consider strat-
ified flow past an isolated mountain as outlined in [33]. An initial horizontal

17

flow U = 20 m/s blows past a mountain with orography given by

h(x, y) =
h0

(x2/a2 + y2/a2 + 1)3/2
(27)

with mountain half-width a = 10 km and height h0 = 1 m. A profile of the
linear hydrostatic mountain is shown in Figure 3, where the z-axis has been
amplified for illustrative purposes. The hydrostatic background is specified
by a constant Brunt-Väisälä frequency Nbv = g/

√
cpT0 with ground temper-

ature T0 = 250 K. In other words, we consider an isothermal atmosphere. No
flux boundary conditions are imposed on the bottom of the domain, while
NRBCs are imposed on the four lateral boundaries and the top boundary. In
order to verify our numerical results, several analytical results from [33] and
[34] are utilized. First, a contour integral solution for the density perturba-
tions ρ′ valid under a linear Boussinesq approximation is utilized. Also, the
velocity perturbations parallel and perpendicular to the flow (u′ and v′) are
known for observation points near the ground (z = 0) (see Eqs. (39) and
(41) in [33]):

u′(x, y, 0) = hNbv
x/a

1 + x2/a2 + y2/a2
(28a)

v′(x, y, 0) = hNbv
y/a

1 + x2/a2 + y2/a2
(28b)

under the same approximation.

5.1.3. 3D Nonlinear Mountain

Additional tests were performed by increasing the height of the mountain
in Eq. (27) from h0 = 1 m to h0 = 1000 m, causing nonlinear effects such as
flow splitting. All other parameters were held constant.

5.1.4. 3D Rising Thermal Bubble

We consider a 3D buoyant thermal bubble rising in a neutrally stratified
atmosphere [37], which is the 3D extension of a 2D thermal bubble originally
considered in [35]. The hydrostatic potential temperature θ0(z) = 300 K
(neutral atmosphere) is perturbed with a sphere of radius rc = 250 m centered
at (xc, yc, zc) = (500, 500, 260) m by a cosine taper given by

θ′ = A

[

1 + cos

(

πr

rc

)]

(29)

18

Figure 3: Profile of the isolated, 3D linear hydrostatic mountain defined by Eq. (27)
originally considered in [33]

19

where r =
√

(x− xc)2 + (y − yc)2 + (z − zc)2 and A is a constant. Unlike
the test case utilized in [37], our problem has a C1 initial condition, thus
mitigating unphysical oscillations associated with spectral element methods.
The domain is defined as (x, y, z) ∈ [0, 1000]× [0, 1000]× [0, 1500] m. No-flux
boundary conditions are applied on all six boundaries.

5.2. Numerical Verification

The numerical verification proceeds in three steps. In phase one, we ran
the code in pseudo-2D mode using 1 element and periodic boundary condi-
tions in the y-direction. The numerical results for the standard mesoscale
suite [31] are directly compared to the results of our existing 2D model. In
phase two, we considered the linear isolated mountain problem, which pos-
sess an approximate analytical solution in the form of a contour integral. In
phase three, we consider flows over nonlinear mountains with height of 1 km
and three-dimensional buoyant convection. Although these problems do not
have analytical solutions, their qualitative behavior is understood.

Figure 4 displays results from NUMA for the 2D Inertia-Gravity Waves
test case. Fig. 4(a) shows the potential temperature perturbation θ′ after
2500 s for 250 m resolution (120 by 1 by 4 elements) and 10-th order polyno-
mials for a slice in the center of the domain. Fig. 4(b) shows profiles along
z = 5000 m; note the symmetry about x = 150000 m. These 3D results
agree to eight decimal places of precision with earlier results generated by a
2D spectral element model. From this initial test, we conclude that NUMA
is capable of 1) capturing the propagation of gravity waves in a stratified
medium and 2) mimicking the results of a purely 2D model.

In order to test the 3D operators, orography, and non-reflecting boundary
conditions, flow over a 3D isolated linear hydrostatic mountain was consid-
ered. This problem may be solved under the linear Bosusinesq approximation
via a contour integral technique as described in [34]. In addition, closed form
expressions for both the down-stream and cross-stream velocity components
may be compared to the numerical solution. We used 20 spectral elements
in the x and y dimensions and 10 in the z direction with eighth-order poly-
nomials yielding effective resolutions of ∆̄x = ∆̄y = 1.5 km and ∆̄z = 300
m. The semi-implicit TI was run with a time-step of ∆t = 1 s on an Apple
XServe cluster using 10 processors.

Figure 6 compare the density perturbations ρ’ using both of these ap-
proaches. In panel a), contours for ρ’ are shown after 6 hours of simulation
time and compared to the contour integral solution. Agreement is very good

20

x (m)

z
(m

)

0 1 2 3

x 10
5

0

2500

5000

7500

10000

0 0.5 1 1.5 2 2.5 3

x 10
5

−1

0

1

2

3
x 10

−3

x (m)

θ‘
 (

K
)

Figure 4: Case 1: 2D Inertia-gravity waves. Potential temperature perturbation after 2500
s for 250 m resolution (120 by 1 by 4 elements) and 10-th order polynomials. a) shows a
slice in the center of the domain and b) shows profiles along z = 5000 m.

near the mountain, while the two solutions begin to deviate as z increases
due to the influence of the sponge. Agreement between NUMA and Smith’s
results may be brought into closer agreement by either 1) increasing the res-
olution of the model or 2) running the model longer. Additional verification
was performed by comparing the velocity on the surface of the mountain.
The down-stream velocity perturbation u′ and cross-stream velocity pertur-
bation v′ at the ground are compared with the analytical formulas in Eq.
(28). Figure 5 displays the results of this comparison after t = 4 hours of
integration. Agreement between the numerical spectral element model and
the analytical formulas given by Eq. (28) is satisfactory, especially for the
cross-stream velocity perturbation.

After verification in an isothermal atmosphere, the hydrostatic isolated
mountain problem was also tested in a neutral atmosphere with θ0(z) = 250
K. To our knowledge, there is no analytical solution for this problem, but
the results are qualitatively similar to the wave patterns generated for a
2D linear hydrostatic ridge. The three velocity components are shown in
Figure 7 after 20 and 60 minutes. The initially horizontal flow creates a
discontinuity and triggers vertically propagating acoustic waves. Note that
the cross-stream velocity is symmetric with respect to the y-axis, that is
expected since the initial cross-stream velocity is zero. As time evolves, a

21

steady state mountain wave pattern develops, which begins to converge after
3600 seconds of simulation time. These tests show the development of eddies,
especially on the lee side of the mountain. Unlike flows in atmospheres with
constant Nbv, the velocity components do not attenuate as z increases. Since
the mountain has a small height (1 m), there is no splitting of the flow around
the base of the mountain. Qualitatively, these 3D mountain results are very
similar to the standard 2D mountain (or ridge).

Additional tests on a nonhydrostatic mountain h0 = 1000 m were also per-
formed using the same initial horizontal velocity. By increasing the height
of the mountain from h0 = 1 m to h0 = 1000 m, nonlinear phenomena, such
as flow splitting emerge. Figure 8 shows the flow (i.e. velocity vectors) pro-
duced by the nonlinear mountain. Unlike the linear hydrostatic mountain
analyzed above, this problem cannot be solved by analytical means. In this
test case, the velocity perturbations are much larger than the 1 m mountain
and significant eddy mixing develops on the lee side of the mountain. How-
ever, since the maximum velocity is an order of magnitude smaller than the
speed of sound, a relatively large time-step may be utilized within a semi-
implicit solver, demonstrating the efficiency of the Schur SI-integrator. This
test confirms that NUMA is capable of handling topography; in future tests,
we will consider flow over realistic orography. To compare the velocity fields
of the nonlinear mountain with the linear mountain, the horizontal (u) and
vertical (w) velocity perturbations in the plane y = 0 are shown in Figure 9.
Note that the magnitude of the vertical velocities between the LHM and the
nonlinear mountain differ by over three orders of magnitude.

Finally, the results of the buoyant convection (i.e., rising 3D thermal bub-
ble) experiment are shown in Figure 10. A smooth potential temperature
perturbation in an initially neutral atmosphere generates vertical updrafts
and shear velocities, which cause the bubble to rise, deform, and transition
to turbulence. The rising thermal bubble problem tests the model’s ability
to capture 1) the effects of turbulence and 2) turbulent convection. Although
no analytical solution exists for this problem, the numerical results are phys-
ically plausible and resemble previous 3D bubble experiments in [37] and [1].
Similar results are seen for both the explicit and semi-implicit codes.

5.3. Comparison of Time-Integrators

An extensive comparison of high-order RK35 time-integrators and the
semi-implicit BDF2 integrator was performed in [14] for 2D nonhydrostatic
problems. In this section, we briefly extend this analysis to 3D, where we

22

0.8 1 1.2 1.4 1.6

x 10
5

−6

−4

−2

0

2

4

6

x 10
−3

 x (m)

u‘
 (

m
/s

)

numerical
analytical

(a) down-stream velocity

0.8 1 1.2 1.4 1.6

x 10
5

−6

−4

−2

0

2

4

6

x 10
−3

 y (m)

v‘
 (

m
/s

)

numerical
analytical

(b) cross-stream velocity

Figure 5: Comparison of the a) down-stream velocity perturbation u′ and b) cross-stream
velocity perturbation v′ for the isolated mountain at ground level. Agreement between
the numerical spectral element model and the analytical formulas given by Eq. (28) is
satisfactory, especially for the cross-stream velocity perturbation.

23

x (m)

z
(m

)

0.8 1 1.2 1.4 1.6

x 10
5

2000

4000

6000

8000

10000

12000

(a)

−2 0 2 4 6

x 10
−5

0

2000

4000

6000

8000

10000

12000

ρ‘ (kg/m3)

z
(m

)

Numerical
Analytical

(b)

Figure 6: Comparison of the density perturbations ρ’ for the isolated linear hydrostatic
mountain using 1) NUMA and 2) a contour integral solution [34]. In panel a), the ρ’
contours in the plane y = 0 are shown. In panel b), ρ’ is shown as a function of z using
x = y = 0.

show that the semi-implicit Schur integrator is more efficient than the RK35
integrator in serial mode for all applicable Courant numbers. Figure 11
displays CPU times versus Courant numbers for both the a) linear hydrostatic
mountain and b) the 3D rising thermal bubble using the explicit RK35 time-
integrator and the semi-implicit BDF2 integrator. Examining panel a), we see
the BDF2 integrator continues to gain efficiency until we reach the maximum
Courant number of 4.88; for Courant numbers larger than 4.88, the semi-
implicit integrator becomes unstable due to the explicit discretization of the
non-linear advective terms. Comparing the CPU times of the RK35 and
BDF2 integrator at their maximum Courant number, we see that the semi-
implicit integrator is faster by a factor of 2.6. A similar trend holds for the
3D rising thermal bubble problem; however, since the velocities are much
smaller for the bubble problem, the semi-implicit integrator may be run with
a much larger time-step. Note that the semi-implicit integrator begins to lose
efficiency when the Courant number is increased from 4.02 to 8.04; in this
case, the number of required GMRES iterations increases from 15 to 30. We
attribute this behavior to the GMRES solver, which scales quadratically with
respect to the number of Krylov iterations. Hence, for both test problems,
the optimal Courant numbers is about 4.

24

(a) u (m/s) t = 1200 s (b) u (m/s) t = 3600 s

(c) v (m/s) t = 1200 s (d) v (m/s) t = 3600 s

(e) w (m/s) t = 1200 s (f) w (m/s) t = 3600 s

Figure 7: Down-stream, cross-stream, and vertical velocities for the 3D linear hydrostatic
mountain problem in a neutral atmosphere.

25

Figure 8: Streamlines and velocity vectors produced by flow about a nonlinear mountain
with h = 1000 m.

(a) u (m/s) t = 3600 s (b) w (m/s) t = 3600 s

Figure 9: Horizontal and vertical velocities in the plane y = 0 for flow over a nonlinear
mountain with h = 1000 m.

26

(a) t = 50 s (b) t = 100 s

(c) t = 150 s (d) t = 200 s

(e) t = 250 s (f) t = 300 s

Figure 10: Evolution of a 3D rising thermal bubble problem (x− z-slices of the potential
temperature perturbation θ′) in the y = 500 m plane for t = 50, 100, 150, 200, 250, and
300 seconds.

27

(a) LHM (b) RTB

Figure 11: Comparison of the explicit RK35 and semi-implicit BDF2 time-integrators in
serial mode for a) the linear hydrostatic mountain problem and 2) the 3D rising thermal
bubble problem. In both cases and for all applicable Courant numbers, the BDF2-SI
integrator is more efficient.

5.4. Parallel Performance

Optimized explicit and semi-implicit versions of NUMA have been de-
ployed on TACC’s Ranger Sun Constellation cluster. Ranger consists of 3,936
16-way SMP compute nodes (blades) with 4 AMD quad-core Opteron proces-
sors per blade for a total of 62,976 compute cores and a theoretical peak per-
formance of 579 Tera FLOPS. Two test problems utilizing the rising thermal
bubble with fourth order polynomials were executed: a 483 = 110592 element
problem for processor counts ranging from 16 to 512 and a 643 = 262144 el-
ement problem for processor counts ranging from 512 to 12288. The wall
clock time associated with time-integration was then recorded for each run;
the startup times required for constructing grids and data structures were
omitted, as well as the time required for model output. A time-step of 0.001
s was utilized for the explicit code, whereas a time step of 0.01 s was used
for the semi-implicit code.

Figure 12 displays CPU times associated with these scaling problems.
In panel a), note the nearly linear scaling of NUMA for processor counts
ranging from 32 to 512. In panel b), note the near-linear scaling of the
MPI code for processor counts ranging from 512 to 4096 (for semi-implicit)
and 12288 (for explicit); this linear scaling is attributed to 1) the minimal

28

communication costs associated with spectral elements, and 2) the near-
optimal implementation of the communication algorithm. Secondly, note the
super-linear speedup for processor counts ranging from 1024 to 2048. This
super-linear speedup is observed once the local problem size fits inside the
L2 cache memory.

Comparing the computation times of the explicit and semi-implicit codes
in Fig. 12, we see the semi-implicit code is more than an order of magnitude
faster than the explicit code for the time-steps chosen. This speed-up is
attributed to two factors: 1) the SI time-integrator admits a larger time-step
and 2) the BDF2-based discretization required only 2 GMRES iterations
per time-step, whereas the RK35 integrator requires constructing 5 RHS’s.
In addition, each of the iterations associated with the Schur-complement SI
has O (Np) operations, while the explicit time-integrator requires O (5Np)
operations to construct a RHS where Np is the number of global grid points.
Hence, we conclude the SI integrator is more efficient, for both single and
multiple processors, relative to the explicit time-integrator.

We note that the scaling performance of the semi-implicit code depends
on the number of GMRES iterations required for convergence. For a time
step of 0.01 s, an average of 2 GMRES iterations per time step are required
for convergence. Increasing the time step increases the number of required
GMRES iterations, which reduces the scalability of the semi-implicit code to
large processor counts. Hence, increasing the time-step may make the semi-
implicit algorithm more efficient for small processor counts but less efficient
for higher processor counts. The optimal time-step for our semi-implicit code
is hence a function of both the test problem at hand (which determines the
number of GMRES iterations) and the available architecture (e.g. number of
processors). The choice of this optimal time-step will be studied in a future
work.

6. Discussion and Conclusion

6.1. Future Work

6.1.1. Microphysical Parameterizations

In conjunction with NRL Monterey, we are incorporating microphysical
parameterizations into NUMA. Preliminary experiments using the Kessler
scheme [23] have been conducted within a 2D, serial implementation [8].
Since physical parameterizations operate on columns of data independently
of adjacent data, the problem is embarrassingly parallel provided the domain

29

(a) 110592 elements (b) 262144 elements

Figure 12: Optimized, explicit RK35 and semi-implicit BDF2 METIS-based spectral ele-
ment code, displaying CPU times versus processor counts ranging from a) 16 to 512 and b)
512 to 12288. Near linear scaling to 12288 processors on TACCs Ranger Sun Constellation
cluster with super-linear speedup observed once the local problem size fits inside the L2
cache memory.

is decomposed in the horizontal only such that all z values reside on processor.
To facilitate scaling on hybrid shared-distributed memory architectures (such
as TACC’s Ranger), hierarchical domain decomposition is desirable, whereby
MPI communication based on the algorithm developed in the present paper
is utilized in the horizontal and either OpenMP parallelization, appropriate
for shared memory, or graphical processor units (GPUs) are employed for
fine-grained parallelism in the vertical.

6.1.2. Global Model

As stated in the Introduction, NUMA is a unified nonhydrostatic dynam-
ical core appropriate for both limited-area and global atmospheric simula-
tions. In this respect, NUMA may be viewed as the nonhydrostatic successor
to the Naval Spectral Element Atmospheric Model (NSEAM) [13, 10]. At
present, we have developed 3D spherical grids based on the cubed sphere
and icosahedral geometries and have successfully performed rising thermal
bubble, acoustic wave propagation and inertia-gravity wave propagation ex-
periments on these grids. In a companion paper, we will present numerical
results for the standard dry dynamical core tests such as the Jablonowski-
Williamson baroclinic instability [21], linear and non-linear mountains [39] ,

30

and Held-Suarez [16] test cases.

6.2. Conclusion
In this paper, we have developed a nonhydrostatic unified model of the at-

mosphere (NUMA) based on a spectral element (or continuous Galerkin) dis-
cretization in space and a suite of explicit and semi-implicit time-integrators.
This model is suitable for simulations of both limited-area (mesoscale) and
global-area simulations of atmospheric phenomena; this paper has subjected
NUMA to a battery of limited-area simulations, including inertia-gravity
waves, orographic flow, and buoyant convection problems. The results of
these test problems are in agreement with either 1) previous simulations, 2)
analytical results, or 3) physical intuition.

NUMA is targeted towards distributed memory architectures, such as Sun
constellation clusters, and hence requires implementing both domain decom-
position and communication algorithms. These parallelization strategies are
based on a general graph-theoretic approach utilizing METIS graph parti-
tioning. Since spectral elements are halo-free, only the boundary of each
processor element needs to be communicated during the DSS operation. De-
noting the number of local elements by Ne, the communication bandwidth

is O
(

N
2/3
e N2

)

while the amount of on-processor work is O (NeN
4), yielding

a work-to-communication ratio of O
(

N
1/3
e N2

)

. Hence, the spectral ele-

ment formulation is optimal for high orders of discretization. NUMA has
been deployed on TACC’s Ranger Sun Constellation cluster and scalabil-
ity experiments have been conducted. These experiments reveal near linear
scaling to 12288 processors for the explicit code and 4096 processors for the
semi-implicit code. We note that the semi-implicit algorithm scalability is
adversely affected by increasing the time-step and the associated number of
GMRES iterations. We are currently working on scalable preconditioners
that are expected to improve scalability on the semi-implicit method [20].

Acknowledgment

The authors acknowledge Gabriele Jost, Texas Advanced Computing
Center (TACC), for conducting the semi-implicit scalability study reported
in Section 5, Simone Marras, Barcelona Supercomputing Center, and Lester
E. Carr, Dept. of Applied Mathematics, Naval Postgraduate School. The au-
thors also acknowledge TeraGrid for providing resources on TACC’s Ranger
Sun Constellation cluster. This work was funded by ONR Grant PE-0602435N.

31

References

[1] N. Ahmad, J. Lindeman, A Godunov-type finite volume scheme for
meso- and micro-scale flows in three dimensions, Pure and Applied Geo-
physics 165 (2008) 1929–1939.

[2] T. Davies, M.J.P. Cullen, A.J. Malcolm, M.H. Mawson, A. Staniforth,
A.A. White, N. Wood, A new dynamical core for the Met Office’s global
and regional modelling of the atmosphere, Q. J. R. Meteorol. Soc. 131
(205) 1759–1782.

[3] J.R. Dea, F.X. Giraldo, B. Neta, High-order non-reflecting boundary
conditions for the linearized 2-D Euler equations: No mean flow case ,
Wave Motion 46 (2009) 210–220.

[4] J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, Avoiding commu-
nication in sparse matrix computations, Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on (2008) 1
–12.

[5] J.M. Dennis, R.D. Nair, H.M. Tufo, M. Levy, T. Voran, Development of
a scalable global discontinuous Galerkin atmospheric model, Int. J. of
Comput. Sci. Eng. In Press (2008).

[6] M.O. Deville, P.F. Fischer, E.H. Mund, High-Order Methods for Incom-
pressible Fluid Flow, Cambridge University Press, 2002.

[7] A. Fournier, M.A. Taylor, J.J. Tribbia, The spectral element atmosphere
model (SEAM): High-resolution parallel computation and localized res-
olution of regional dynamics, Mon. Wea. Rev. 132 (2004) 726–748.

[8] S. Gabersek, F.X. Giraldo, J.D. Doyle, Simple microphysics experi-
ments with a spectral element model, Mon. Wea. Rev. (in preparation)
(2010).

[9] F.X. Giraldo, The Lagrange-Galerkin spectral element method on un-
structured quadrilateral grids, J. Comp. Phys. 147 (1998) 114–146.

[10] F.X. Giraldo, Semi-implicit time-integrators for a scalable spectral ele-
ment atmospheric model, Q. J. R. Meteorol. Soc. 131 (2005) 2431–2454.

32

[11] F.X. Giraldo, J.S. Hesthaven, T. Warburton, Nodal high-order discon-
tinuous Galerkin methods for the spherical shallow water equations, J.
Comp. Phys. 181 (2002) 499–525.

[12] F.X. Giraldo, M. Restelli, A study of spectral element and discontinuous
Galerkin methods for the Navier–Stokes equations in nonhydrostatic
mesoscale atmospheric modeling: Equation sets and test cases, J. Comp.
Phys. 227 (2008) 3849–3877.

[13] F.X. Giraldo, T.E. Rosmond, A scalable spectral element Eulerian at-
mospheric model (SEE-AM) for NWP: Dynamical core tests, Mon. Wea.
Rev. 132 (2004) 133–153.

[14] Giraldo, Francis Xavier and Restelli, M. and L äuter, M., Semi-
implicit formulations of the Navier-Stokes equations: Applications to
non-hydrostatic atmospheric modeling, SIAM J. Sci. Comp. 32 (2010)
3394–3425.

[15] L. Grinberg, G.E. Karniadakis, A new domain decomposition method
with overlapping patches for ultrascale simulations: Application to bio-
logical flows , J. Comput. Phys. 229 (2010) 5541–5563.

[16] I.M. Held, M.J. Suarez, A proposal for the intercomparison of the dy-
namical cores of atmospheric general circulation models, Bull. Amer.
Meteor. Soc. 75 (1994) 1825–1830.

[17] R.L. Higdon, Radiation boundary condtions for dispersive waves , Siam
J. Numer. Anal. 31 (1994) 64–100.

[18] R. Hodur, The Naval Research Laboratory’s coupled ocean/atmosphere
mesoscale prediction system (COAMPS), Mon. Wea. Rev. 125 (1997)
1414–1430.

[19] G. Houzeaux, M. Vázquez, R. Aubry, J.M. Cela, A massively parallel
fractional step solver for incompressible flows, J. Comp. Phys. 228 (2009)
6316–6332.

[20] L.E.C. III, C.F. Borges, F.X. Giraldo, An element-based, spectrally-
optimized, approximate inverse preconditioner for the Euler equations,
SIAM J. Sci. Comp. Submitted (2011).

33

[21] C. Jablonowski, D.L. Williamson, A baroclinic instability test case for
atmospheric model dynamical cores , Q. J. R. Meteorol. Soc. 132 (2006)
2943–2975.

[22] G. Karypis, V. Kuman, A fast and highly quality multilevel scheme for
partitioning irregular graphs, SIAM J. Sci. Comp. 20 (1998) 359–392.

[23] E. Kessler, On the Distribution and Continuity of Water Substance in
Atmospheric Circulation, AMS, 1969.

[24] J. Klemp, W. Skamarock, J. Dudhia, Conservative split-explicit time in-
tegration methods for the compressible nonhydrostatic equations, Mon.
Wea. Rev. 135 (2007) 2897–2913.

[25] D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a sur-
vey of approaches and applications, J. Comp. Phys. 193 (2004) 357 –
397.

[26] D.Y. Le Roux, Dispersion relation analysis of the pNC1−p1 finite-element
pair in shallow-water models, SIAM J. Sci. Comput. 27 (2005) 394–414.

[27] J.M. Lindquist, B. Neta, F.X. Giraldo, A spectral element solution of
the Klein-Gordon equation with high-order treatment of time and non-
reflecting boundary, Wave Motion 47 (2010) 289 – 298.

[28] M. Restelli, F.X. Giraldo, A conservative discontinuous galerkin semi-
implicit formulation for the navier-stokes equations in nonhydrostatic
mesoscale modeling, SIAM J. Sci. Comp. 31 (2009) 2231–2257.

[29] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing,
Boston, 1996.

[30] U. Schattler, G. Doms, J. Steppeler, Requirements and problems in
parallel model development at DWD, Scientific Programming 8 (2000)
13–22.

[31] W.C. Skamarock, J.D. Doyle, P. Clark, N. Wood, A standard test set
for nonhydrostatic dynamical cores of NWP models , AMS NWP-WAF
Conference Poster (2004) P2.17.

34

[32] W.C. Skamarock, J.B. Klemp, Efficiency and accuracy of the Klemp-
Wilhelmson time-splitting technique, Mon. Wea. Rev. 122 (1994) 2623–
2630.

[33] R.B. Smith, Linear theory of stratified hydrostatic flow past an isolated
mountain , Tellus 32 (1980) 348–364.

[34] R.B. Smith, Linear theory of stratified flow past an isolated mountain
in isoteric coordinates , J. Atmos. Sci. 45 (1988) 3889–3896.

[35] P.K. Smolarkiewicz, J.A. Pudykiewicz, A class of semi-Lagrangian ap-
proximations for fluids, J. Atmos. Sci. 49 (1992) 2082–2096.

[36] R.J. Spiteri, S.J. Ruuth, A new class of optimal high-order strong-
stability-preserving time discretization methods, SIAM J. Numer. Anal.
40 (2002) 469–491.

[37] S.J. Thomas, J.P. Hacker, P.K. Smolarkiewicz, Spectral precondition-
ers for nonhydrostatic atmospheric models, Mon. Wea. Rev. 131 (2003)
2464–2478.

[38] J. Thuburn, T.D. Ringler, W.C. Skamarock, J.B. Klemp, Numerical
representation of geostrophic modes on arbitrarily structured c-grids, J.
Comp. Phys. 228 (2009) 8321–8335.

[39] H. Tomita, M. Satoh, A new dynamical framework of nonhydrostatic
global model using the icosahedral grid, Fluid Dynamics Research 34
(2004) 357–400.

[40] P.A. Ullrich, C. Jablonowski, B. van Leer, High-order finite-volume
methods for the shallow-water equations on the sphere, J. Comp. Phys.
229 (2010) 6104–6134.

[41] L.C. Wilcox, G. Stadler, C. Burstedde, O. Ghattas, A high-order discon-
tinuous Galerkin method for wave propagation through coupled elastic-
acoustic media, J. Comp. Phys. 229 (2010) 9373–9396.

35

