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ABSTRACT 

A SIMULINK-based algorithm for monitoring contacts in a surveillance 

video sequence using Optical Flow Analysis and Kalman Filters was developed.  

The Horn-Schunk Optical Flow Algorithm was used to identify contacts in a 

surveillance video sequence.  The position and behavior of these contacts was 

monitored by a modification of the traditional Kalman Filter.  The Kalman Filter 

algorithm implemented has the ability to track up to ten contacts at a time, 

correctly assigning each of a maximum ten filters to their respective contacts on 

a frame-by-frame basis.  Initial tests using artificial data show good performance 

of both the Optical Flow Analysis algorithm and the Kalman Filter Tracking 

algorithm.  Surveillance video data was also used to test the algorithm with 

promising results.   
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EXECUTIVE SUMMARY 

This thesis is an introductory work examining the feasibility of using 

Optical Flow algorithms in conjunction with Kalman Filters for tracking of contacts 

in a video surveillance scene.  The overall goal of the research conducted in 

automated video surveillance is to develop algorithms with the ability to 

automatically process surveillance video feeds and simplify their analysis for the 

user. 

In order to create an algorithm that can not only track contacts in a scene, 

but also analyze their behavior, three different, large-scale tasks have to be 

accomplished.  First the algorithm has to be able to take an incoming 

surveillance video feed and segment it into a stream of frames where contacts 

are distinguished from the background.  Next these contacts must be tracked 

throughout the video sequence.  Finally, these tracks must be processed to 

analyze their behavior. 

In order to segment an incoming feed of surveillance video, the algorithm 

developed in this thesis uses the Horn-Schunk Optical Flow algorithm.  This 

algorithm approximates the movement of objects in a current frame as 

referenced to some previous frame.  By determining the motion of objects, one 

can distinguish between contacts and the background.  After careful tuning and 

processing, the output of the Optical Flow algorithm consists of two main parts: 

the number of contacts present in the frame, and the location of the centroid of 

each of these contacts.  This data is passed to the Kalman Filter Tracking 

algorithm for further processing. 

The Kalman Filter is a type of recursive, adaptive filter that operates in the 

state space.  It is well-known for its ability to track objects in a timely and 

accurate manner.  The tracking algorithm developed in this thesis can process up 

to ten contacts at a time where the number of filters activated for each frame of 

data is dependent on the number of contacts deemed present in the scene.  The 
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Kalman Filter Tracking algorithm developed in this thesis is robust in its ability to 

handle non-ideal data from the Optical Flow Analysis algorithm.  It can maintain 

active tracks on a contact even when the contact is temporary lost by the Optical 

Flow Analysis algorithm.  Its design allows it to correctly assign each filter to its 

corresponding contact to ensure the most accurate operation. 

Finally, a simple, “Lost Contact Notification” algorithm is developed to 

automatically notify the user when a contact in the scene has been lost.  This 

loss could be related to a variety of factors, including system malfunction, contact 

leaving the scene, contact behind an occlusion, contact loitering in the scene.  

The visual notification created by the algorithm alerts the user to the last known 

location of the contact and it is left to the user to decide the cause of the contact 

loss. 

Results are obtained using both artificial and realistic data.  With artificial 

data, the Kalman Filter Tracking algorithm and the Lost Contact Notification 

algorithm operate very well.  The system is able to track simultaneous contacts 

under varying conditions and identify when a contact has been lost in the scene.  

The realistic surveillance video used to test the system also yields promising 

results.  While tracking of contacts is not as consistent with realistic data, the 

algorithm performs satisfactorily.  While the algorithm does encounter some 

difficulty in maintaining consistent performance, this is attributed to the 

inconsistency at the output of the Optical Flow algorithm.  It is left for further 

research to assess the effectiveness of the Optical Flow algorithm in an objective 

manner. 

Overall, the algorithm developed shows much promise as a tool to aid in 

automated surveillance video processing.  Further research should be done in 

the area of segmentation algorithms to determine an optimum algorithm to 

segment the data into contacts and background.  In addition, further development 

of algorithms that analyze the behavior of contacts in the scene could greatly 

increase the value of the system developed. 
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 I. INTRODUCTION  

A. VIDEO SURVEILLANCE 

Interest in video surveillance techniques has grown significantly in the 

years following the September 11th attacks [1].  This interest has led to a surge of 

Closed Circuit Television (CCTV) cameras being installed in public areas for 

surveillance—a departure from the traditional use by private companies for 

property protection.  In order for such systems to be a reliable tool for use by law 

enforcement officials and other interested individuals or organizations, the 

system must be able to accurately detect object behaviors and identify those 

behaviors of significance.  As the number of cameras per system grows, the task 

of identifying events of significance becomes increasingly difficult for human 

operators and necessitates the aid of computer algorithms [2]. 

Hu et al. [2] present a survey of the different applications which generally 

necessitate the use of video surveillance algorithms.  In this thesis we will 

investigate the area of anomaly detection and alarming.  This application 

generally seeks to track people (and/or vehicles) moving through a scene, to 

classify the behaviors of each track, and to identify whether these behaviors can 

be considered normal or abnormal (significant).   

The data used in this study was obtained from the European Community 

Funded CAVIAR project/IST 2001 37540 [3]. This data was taken from a wide-

angled camera in the lobby of the INRIA Laboratories in Grenoble, France.  Much 

of the video contains various pedestrians either moving through the lobby or 

loitering in certain areas of the lobby.  This study attempts to track both types of 

contacts throughout the scene.  A significant event and an alarm is generated to 

instruct the operator to investigate the area in which the contact was last known 

to be located when the algorithm is no longer able to obtain a track of said 

objects. 
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B. OBJECTIVE 

The overall goal of the study is to create a system which pre-screens 

video surveillance feed and assists the user in identifying unusual activity. 

Towards that goal, we designed an automated scheme capable of performing 

three large-scale tasks: identifying contacts, tracking contacts, and characterizing 

contact behavior. 

C OVERVIEW 

This thesis is organized as follows.  Chapter II provides background 

information on both Optical Flow Analysis and the Kalman Filter.  The next three 

chapters investigate each of the main processing blocks shown in Figure 1.  

Chapter III describes the implementation of an Optical Flow Algorithm.  Chapter 

IV describes the Kalman Filter Implementation used for tracking.  Chapter V 

describes the post-processing performed and presents the results obtained from 

post-processing.  Conclusions and recommendations are presented in Chapter 

VI. 



 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Simulink Block Diagram of Surveillance Video Processor 
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II. BACKGROUND 

This following chapter presents background information for both the 

Optical Flow algorithm and the Kalman Filter.  While neither section provides 

exhaustive derivations, the information which is most relevant to application in 

this thesis is included.  Wherever appropriate, references to more detailed 

explanations and derivations are provided for the reader’s convenience. 

A. OPTICAL FLOW  

In their 1980 paper [4], Berthold K. P. Horn and Brian G. Schunk 

presented a novel algorithm (Horn-Schunk Algorithm) for determining the optical 

flow in a sequence of images (or frames of video.)  Optical flow is a technique 

which determines the “distribution of apparent velocities of movement of 

brightness patterns in an image” [4].  These apparent velocities can arise from 

either motion of the objects or motion of the viewer.  In this thesis, only the case 

of object motion will be considered due to the constraint of a stationary camera. 

 A typical frame of data at the output of the Horn-Schunk algorithm 

consists of a vector field with velocity vectors corresponding to each pixel in the 

image (Figure 2.)  If each pixel’s velocity were independent of the other pixel 

velocities in the image, it would be impossible to obtain an accurate vector field 

[4].  Horn and Schunk realized that each scene is generally composed of a finite 

number of objects.  These objects occupy many adjacent pixels within a scene, 

and each of the pixels in a given object should ideally have similar velocities.  To 

ensure this behavior, Horn and Schunk introduced a constraint called the 

smoothness factor. 

The smoothness factor is defined as a constraint which controls how 

smoothly the velocity field of the brightness patterns in images varies throughout 

the image.  The Horn-Schunk algorithm quantifies the smoothness of the velocity 

field using the magnitude of the gradient of the optical flow velocity defined as 



 
2 22 2

 and u u v v
x y x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠y
+ , (1) 

where u and v are the velocity vectors corresponding to optical flow. 

A low value for this gradient indicates that the vector field is very smooth.  A high 

value for this gradient indicates that the vector field is not smooth.  A smooth 

vector field tends to zero-out regions where no motion is detected leaving only 

limited areas of non-zero vector fields.  By separating the image in this fashion, 

the Horn-Schunk algorithm achieves binary segmentation into regions of motion 

and regions of no motion. 

 
Figure 2. Sample Velocity Vector Field [After Ref. 4] 
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In this thesis the Optical Flow algorithm allows us to perform the first step 

in anomaly detection and alarming, namely identifying contacts.  Through 

segmentation of a sequence of video frames into regions of non-motion and 

regions of motion, it is possible to separate the background of an image from 

contacts moving through the image.  Only after contacts have been identified can 

contact behavior be monitored. The following section discusses the Kalman filter 

which is used for contact monitoring, anomaly detection and alarming.    

B. KALMAN FILTER 

In 1960, R. E. Kalman presented an alternate way to solve the problem of 

linear minimum mean-square error filtering using state space methods [5]. In 

essence, the Kalman filter is a type of recursive, adaptive filter that operates in 

the state-space.  The discrete Kalman filter is characterized by both a process 

model and a measurement equation. 

The process model is characterized by the assumption that the present 

state, kx , can be related to the past state, 1kx − , by the relationship [5] 

 1k k k kx x w−= Φ +  (2) 

Here, is assumed to be a discrete, white, zero-mean process noise with 

known covariance matrix, .  The matrix 

kw

kQ kΦ is referred to as the state transition 

matrix which determines the relationship between the present state and the past 

state. 

 In the case of this thesis, we attempt to track the state of a contact based 

on its last known state.  Here, the state will consist of a two-dimensional position 

expressed in Cartesian coordinates, a two-dimensional velocity and a two-

dimensional acceleration.  As such, the state vectors will be vectors of size six by 

one with the first two elements corresponding to position, the next two to velocity, 

and the last two to acceleration.  Assuming constant acceleration, the normalized 

state transition matrix can be obtained from basic kinematic equations as follows. 
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 2
1 1 1

1
2k k k ks s v t a t− − −= + + , (3) 

 1k k kv v a 1t− −= + , (4) 
 1k ka a −= . (5) 

Here s is defined as contact position, v is defined as contact velocity and a 

is defined as contact acceleration.  The variable t is the sampling interval.  In 

matrix form for the two-dimensional problem considered in this study, these 

kinematic equations may be rewritten as  

  

 

, ,

, ,

, ,

, ,

, ,

, ,

1 0 1 0 0.5 0
0 1 0 1 0 0.5
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

x k x k

y k y k

x k x k

y k y k

x k x k

y k y k

s s
s s
v v
v v
a a
a a

−

−

−

−

−

−

1

1

1

1

1

1

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥

=
⎥

⎢ ⎥ ⎢ ⎢ ⎥⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

⎥

k

 (6) 

 

Here, the subscripts x and y refer to the direction of the contacts position, 

velocity and acceleration in the two-dimensional plane. The sampling interval t is 

assumed to be 1.  From this equation it follows that the state transition matrix, 

, is defined as   kΦ

  (7) 

1 0 1 0 0.5 0
0 1 0 1 0 0.5
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Φ = ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 
The measurement equation is defined as 

 k k kz H x v= + . (8) 

Here,  is assumed to be the discrete, white, zero-mean measurement noise 

with known covariance matrix . The variable is defined as the vector 

kv

kR kz
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measurement.  In this thesis, only position will be measured (not acceleration or 

velocity).  As such,  is a vector of length two.  The variable  is a matrix 

which describes the ideal relationship between the measurement vector, , and 

the state vector, 

kz kH

kz

kx .  Given the state vector is of length six and the measurement 

vector is of length two, the matrix must be of size two by six.  It follows from 

the above description that  is defined as 

kH

kH

 . (9) 
1 0 1 0 0.5 0
0 1 0 1 0 0.5kH ⎡ ⎤

= ⎢
⎣ ⎦

⎥

Drawing from both the process model and the measurement equation, the 

Kalman filter attempts to improve the prior state estimate using the incoming 

measurement which has been corrupted by noise.  Brown and Hwang [6] achieve 

this improvement by linearly blending the prior estimate, 1kx
∧

− , with the noisy 

measurement, , in the equation kz

 k k kk k kx x K z H x
− −∧ ∧ ∧⎛ ⎞

= + −⎜
⎝ ⎠

⎟ . (10) 

Here the superscript minus sign refers to the a-priori estimate.  The factor, , is 

referred to as a blending factor.  It is shown [6] that the minimum mean squared 

error of the estimate is obtained when the blending factor assumes the value of 

the Kalman gain, i.e. 

kK

 ( ) 1T T
k k k k k k kK P H H P H R

−− −= + . (11) 

The variable in Equation (11) is known as the state error covariance 

matrix, or simply either the state covariance matrix or the error covariance matrix.  

Generally the state covariance matrix is a diagonal matrix as implied by the 

assumption of independence of the error vectors, 

kP

kk ke x x
−∧

= − , at all lags not 

equal to zero.  The state covariance matrix is calculated from the a-priori state 

covariance matrix by the equation 

 (k k kP I K H P) k
−= − . (12) 
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In this thesis, is a matrix of size six by six and thus I is the identity matrix of 

size six by six. 

kP

After the Kalman gain has been calculated (Equation (11)), and the state 

and state error covariance matrices have been updated (Equations (10) and (12)

), the Kalman filter makes projections for the next value of k.  These projections 

will be used as the a-priori estimates during processing of the next frame of data.   

 1k kkx x+

−∧ ∧

= Φ  (13) 
  (14) 

+

− = Φ Φ +
1

.
k k

T
k k kP P Q

Equations (13) and (14) are the two projection equations for the state estimate 

and the state covariance matrix, respectively.   

Figure 3 shows the Kalman filter loop in a flow diagram form.  For the 

implementation used in this thesis, persistent variables for both the state 

estimate and the state covariance matrix were used, as described further in 

Chapter IV.  In short, this choice allowed us to not distinguish between a-priori 

and a-posteriori estimates derived in the Kalman filter implementation.  Instead of 

differentiating between a-priori and a-posteriori estimates, each estimate was 

overwritten as the next was calculated.  That is, the previous frame’s a-posteriori 

estimate was replaced by the current frame’s a-priori estimate.  Similarly, the 

current frame’s a-posteriori estimate replaced the current frame’s a-priori 

estimate after it was calculated.  This required that no differentiation be made 

between a-priori and a-posteriori estimates and thus the same memory location 

could be allocated for both.  This however is the only difference between the 

notation used in the equations in Figure 3 and the notation used in the 

Embedded MATLAB Function code found in the Appendix, which includes the 

Kalman filter tracking code developed in the study.  
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Figure 3. Kalman Filter Recursion [From Ref.7] 
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III. OPTICAL FLOW ANALYSIS 

Aside from post-processing, there are two main blocks in the Simulink 

Block Diagram in Figure 1.  The first of these blocks, the Optical Flow Analysis 

block, will be analyzed in this section.  The purpose of the Optical Flow Analysis 

block is to determine contacts in the incoming surveillance video and process 

them in such a way that the Kalman filter will be able to track contacts with 

minimal error.  Error can be caused by a variety of factors, most notably changes 

in illumination that are perceived as contacts moving through the scene.   

A. OVERVIEW 

A view of the inner workings of the Optical Flow Analysis subsystem is 

found in Figure 4.  The rest of this chapter describes the specific task performed 

by each block contained in this subsystem.   

 
Figure 4. Simulink Block Diagram of Optical Flow Subsystem 

 

It should be noted here that throughout the Optical Flow Analysis Block, 

certain subsystems are tuned for optimal performance given the CAVIAR data [3] 

used in this study.  As such, results would undoubtedly differ if the exact 

subsystem were to be used on a different set of data.  Given the application of 

the system created in this study, it is conceivable that cameras providing the data 

would be fixed.  This implies that properties of the data from the same camera 

would not differ substantially over time.  That said it is not only conceivable, but 

inevitable, that some initial tuning would be required to achieve optimum 

performance.  Special care was taken to ensure, however, that the system was 
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not over-tuned to perform well on only certain data taken from the CAVIAR study 

[3].  Throughout this chapter, any tuning performed will be conspicuously 

documented.  

B. SEGMENTATION     

The term segmentation is used here to describe the processing of a video 

stream in such a way that it becomes a sequence of binary images.  At the 

output stage of this subsystem each of these binary images has black areas 

(zeros) corresponding to portions of the frame in which no motion is detected.  

Similarly, each frame of the segmented stream will also have white areas (ones) 

corresponding to the frames in which motion is detected.  The inner workings of 

the segmentation subsystem are shown in Figure 5.  

 
Figure 5. Simulink Block Diagram of Segmentation Subsystem 

 

1. Color Space Conversion 

The Color Space Conversion block (Figure 5) converts the color 

information from the incoming video (Figure 6) to the intensity color space 

(Figure 7)  The video sequence which was previously coded in Red, Green and 

Blue (RGB) color space is now coded by intensity as required by the Optical Flow 

block.     
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Figure 6. Sample Frame of Original Video 

 

2. Optical Flow 

The Optical Flow block (Figure 5) uses the Horn-Schunk algorithm 

described earlier to estimate the optical flow between two video frames.  The 

tuning of several parameters was required in this block.  The block computes the 

optical flow between the current frame and the N -th frame back in time.  As such 

the parameter N  was tunable to the constraints of the data in this study.  
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Figure 7. Sample Frame of Original Video after Color Space Conversion 

 

We noted that it is unrealistic that in the time difference between two 

successive frames a person will have moved significantly given the 25 frames 

per second (fps) frame rate.  Thus it is unlikely that the algorithm would detect 

significant optical flow and consequently no motion would be have detected if  

had been set to a low number (e.g., 1).  By setting the value of , the 

algorithm uses a delay of 0.4 seconds to estimate optical flow, which is a 

reasonable choice for N given the walking speed of the average person. A lower 

N value would be sufficient in applications (e.g. traffic monitoring), where contact 

speeds are faster. 

N

10N =
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Figure 8. Sample Frame of Video after Optical Flow Block 

 

Another tunable parameter in this block was the smoothness factor, as 

discussed in Chapter II.  The smoothness factor input in Simulink is inversely 

proportional to the magnitude of the velocity gradients discussed in Chapter II.  

That is, a low value for the smoothness factor results in a high gradient, and thus 

a velocity vector field which is less smooth.  Conversely, a high value for the 

smoothness factor results in a low gradient, and thus a velocity vector field which 

is smoother. In this thesis, the value of the smoothness factor was set equal to 

0.5. By visual inspection, allowing the algorithm to detect motion throughout the 

scene without being overly sensitive to noise.       
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3. Compare to Constant 

For each pixel in a frame of video, the Optical Flow block estimated the 

optical flow between the pixel in that frame and the same pixel in the 10th frame 

back.  At the output of that block, each frame consists of a frame of optical flow 

vector magnitudes corresponding to each pixel (Figure 8.)  For those pixels in 

which little motion is detected, the value of this optical flow vector is close to 

zero.  For those pixels in which motion is detected, the optical flow vector is non-

zero.  By viewing a histogram of the optical flow output, it is trivial to find a 

constant value that is higher than zero and lower than the value for the majority 

of non-zero optical-flow vector magnitudes to serve as a threshold.    

The Compare to Constant block (Figure 5) compares the magnitude of the 

flow vector at each pixel to the tuned value of 0.03, resulting in a sequence of 

binary frames.  The flow vector values which are greater than this constant 

correspond to areas of motion and are represented by white areas (ones) at the 

output of the Segmentation subsystem.  Similarly, the flow vector values which 

are less than this constant correspond to areas in which no motion is detected 

and are represented by black areas (zeros) at the output of the Segmentation 

subsystem (Figure 9.) 



 
Figure 9. Sample Frame of Video at Output of Segmentation Subsystem         

 

C. MEDIAN FILTER 

One issue with the optical flow algorithm is the propensity, even with 

proper tuning, to be sensitive to changes in illumination or quality of video from 

frame to frame.  This sensitivity often results in erroneous blobs appearing in 

individual frames at the output of the Segmentation subsystem (Figure 5.)  If 

these erroneous blobs are small, they can generally be accounted for in the 

morphological operations described later in this chapter.  However, large 

erroneous blobs (here large is defined as anything approaching the average size 

of a person tracked in the scene) create problems for successful morphological 

operations.   

Two factors led to the use of a median filter to attempt to correct the 

issues caused by erroneous blobs.  In general, most of these erroneous blobs 

are anomalies.  That is, they appear in singular frames, not to appear again for at 
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least several more frames.  Moreover, in a span of three frames at a frame rate 

of 25 fps, the movement of intended contacts is very small and most of the pixels 

in which movement is correctly detected will be the same.  A median filter serves 

to decrease the effect of anomalies (or erroneous blobs) while still maintaining 

the information of the correctly detected contacts.  The exact implementation of 

this median filter is shown in Figure 10. 

    
Figure 10. Simulink Block Diagram of Median Filter Implementation 
 

Figure 11 shows three successive frames that serve as an input to the 

median filter as implemented in Figure 10.  Each of the frames has correctly 

detected three general areas of motion.  The second of these frames also has 

erroneous blobs that are most likely due to slight illumination changes in the 

scene.   

 
Figure 11. Three Successive Frames of Segmented Video Used as an Input to 

the Median Filter Implementation 
 

Given each of the frames is a binary image, the median filter of length 

equal to three is implemented as a combination of a simple average of each pixel 

over three frames followed by a rounding function operation. This approach was 
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chosen over a direct median filter operation due to the way in which MATLAB 

defines the Median function.  In MATLAB if the input to a median function is an M 

by N matrix, the output will be a length-M vector consisting of the median value of 

each of the N column vectors.  This obviously was undesired, and thus the filter 

was implemented as described here.     

At the output of the Product block (Figure 10) each pixel has one of four 

values: . Rounding these values using the Rounding Function 

block results in a binary image identical to that which would have been obtained 

had a traditional median filter been applied on each pixel over a time-span of 

three frames.  The result is a binary image for each frame which eliminates many 

erroneous blobs while maintaining correct detection of contact movement (Figure 

12.) 

0, 1/ 3, 2/3 or 1

 
Figure 12. Frame without Erroneous Blobs at Output of Median Filter 

Implementation 
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D. MORPHOLOGICAL OPERATIONS 

The Morphological Operations subsystem attempts to process the video at 

the output of the Median Filter subsystem in such a way that any remaining 

erroneous blobs are eliminated and all correctly detected contacts are 

maintained and classified as one contact.  The inner workings of the 

Morphological Operations subsystem are presented in Figure 13.  

 
Figure 13. Simulink Block Diagram of Morphological Operations Subsystem  

 

1. Quadrant Operation 

Due to the wide-angle camera used in the CAVIAR data [3], the average 

size of a contact in the bottom right quadrant of the video is somewhat larger 

than the average size of a contact in the top left quadrant of the video.  In order 

to provide flexibility for the erosion and dilation operations depending on a blob’s 

location in the scene, each frame was split into overlapping quadrants.  Further 

flexibility could have been obtained by again splitting each quadrant into smaller 

quadrants. However, such a step was deemed unnecessary given the size of the 

frames in this study and the relatively small difference in contact size within a 

primary quadrant.  The block diagram of the Quadrant Operation subsystem is 

presented in Figure 14. 
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Figure 14. Simulink Block Diagram of Quadrant Operation Subsystem 
 

One issue with splitting the data into quadrants is the possibility that at any 

time a blob may reside in more than one quadrant.  In the extreme case where 

the blob is resting in all four quadrants, it is likely that erosion could eliminate the 

partial-blob from each quadrant and the contact would be lost.  As a result, each 

quadrant overlapped the lines of horizontal and vertical symmetry by ten pixels to 

prevent this situation from occurring.  This amount of overlap was found to be 

sufficient to ensure that contacts were not lost with the selected 4-pixel wide 

erosion block described later in this chapter.  Figure 15 presents the four sub-

frames at the output of the Quadrant Operation block to be used in the Erosion 

and Dilation block.  The frame which generated these sub-frames is found in 

Figure 12.  

 23



 

 
Figure 15. Segmented Frame Split into Four Quadrants at the Output of the 

Quadrant Operation Subsystem 
 

2. Erosion and Dilation 

The Erosion and Dilation subsystem performs tailored erosion and dilation 

of each sub-frame by using optimal structuring elements on each sub-frame 

(Figure 16.)  Optimal erosion is achieved when the structuring element used 

keeps at least the remnants of a blob for all correct contacts. If a sub-optimal 

structuring element is used for the erosion operation, a valid contact could be lost 

completely, or an erroneous blob could be tracked.  Both of these errors create 

significant barriers to optimal dilation, and, consequently, Kalman filter tracking.  

Optimal dilation is obtained when the structuring element used merges all 

remnants of a single blob into one contact.  If a sub-optimal structuring element is 
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used for dilation, one contact could be viewed as multiple contacts or multiple 

contacts could be viewed as one contact.  Again, both of these errors create 

significant issues for Kalman filter tracking.   

 
Figure 16. Simulink Block Diagram of Erosion and Dilation Subsystem 

 

Next, each quadrant was processed with a unique set of structuring 

elements to allow for optimal morphological processing (Figure 17)..   

Note that the optimal structuring elements to be used in each quadrant 

were derived empirically by processing a group of ten random frames from the 

CAVIAR data [3].  These frames were split into quadrants.  Next, resulting sub-

frames were grouped according to their quadrant, and each group of quadrant 

specific sub-frames eroded using a square structuring element of edge-length 

varying from two to five.  At that point, the eroded sub-frames were compared to 

the corresponding original frames and a decision was made on the optimal 

structuring element size via visual inspection. 

 
Figure 17. Simulink Block Diagram of a Erosion and Dilation Subsystem for a 

Particular Quadrant 
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After an optimal structuring element for erosion was determined, each 

group of sub-frames was eroded using said structuring element.  Determination 

of the optimal structuring element for dilation was similar to that of erosion.  Each 

group of sub-frames was dilated with a square structuring element of edge-length 

which varied from five to nineteen.  The dilated sub-frames were compared to the 

corresponding frames and a decision was made on the optimal structuring 

element size via inspection. 

 

Quadrant 
Erosion Edge-Length 

(pixels) 
Dilation Edge-Length 

(pixels) 

Top Left 4 11 

Top Right 4 14 

Bottom Left 4 14 

Bottom Right 4 15 

Table 1. Optimal Edge-Length for Square Structural Elements 
 

The optimal edge-lengths for the structural elements in each quadrant are 

presented in Table 1.  For simplicity, only square structuring elements were used 

in this tuning process.  An infinite number of possibilities exist for size and shape 

of structuring elements.  Depending on the data used, the size and shape of the 

optimal structuring element could vary significantly from quadrant to quadrant.  

3. Video Concatenation  

Before the morphed frames can enter the Blob Analysis subsystem 

(Figure 4) the sub-frames must be concatenated to form a complete frame again.  

Since each quadrant overlapped the adjacent quadrants, some pre-processing 

was necessary before concatenation.  The subsystem used for concatenation is 

presented in Figure 18.   



 
Figure 18. Simulink Block Diagram of Video Concatenation Subsystem 

 

Four Submatrix blocks are used prior to horizontal concatenation of the 

top left and top right quadrants, as well as the bottom left and bottom right 

quadrants.  These blocks return sub-frames that contain no overlap such that 

concatenation will result in frames which are of the same size as the original.  

Following the horizontal matrix concatenation, the resulting sub-frames are half 

of the original frame size.  These sub-frames are concatenated vertically to 

create a full frame.  Next, a Compare to Constant block is applied at the output of 

the Video Concatenation subsystem to ensure the frame is a binary image 

containing Boolean values of zero and one. 
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Figure 19. Sample Frame after Morphological Operations 

 

A sample frame at the output of the Morphological Operations subsystem 

is presented in Figure 19.  Comparing this frame to the frame it was generated 

from (Figure 12) shows that the erosion operation removed one of the areas of 

detected motion, thus deeming it not a contact.  Further dilation has created solid 

blobs out of the other two areas of detected motion and these two blobs will be 

tracked as contacts. 

E. BLOB ANALYSIS 

The Blob Analysis block (Figure 4) processes the binary frames at the 

output of the Morphological Operations subsystem for use in both system 

monitoring and Kalman filter tracking.  Several parameters are set in the Blob 

Analysis block to improve system functionality: minimum blob size and maximum 

number of blobs.   
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The minimum blob size provides an added level of protection against 

erroneous blobs by specifying a minimum size that a blob must be in order to be 

tracked.  Thus, any blob smaller than the minimum size requirements is not 

tracked.  The minimum blob size was set to approximately 250% of the size of 

the largest dilation structural element (225 pixels) or 560 pixels. 

The maximum number of blobs provides a bound on the number of 

contacts that can be tracked by the system.  For this study the maximum number 

of contacts was set to ten.  This number was low enough so as not to be 

unwieldy, yet high enough to allow for the tracking of multiple contacts.  This 

number was also used to determine the maximum number of Kalman filters to 

make available for tracking in the Kalman Filter Tracking Implementation 

discussed in Chapter IV. 

1. System Monitoring  

As a debugging tool, the output of the Optical Flow Analysis subsystem 

(Figure 1) is a convenient place to analyze how the system is performing.  The 

Blob Analysis block has an option which when selected produces the coordinates 

of a bounding box around each blob on a frame by frame basis.  By selecting this 

option, these bounding boxes can be superimposed on the video sequence and 

the user has a simple method of monitoring system performance.  The details of 

this monitoring process will be explained further in Chapter V.  A sample frame 

with bounding boxes superimposed is presented in Figure 20. 



 
Figure 20. Sample Frame with Bounding Boxes Superimposed 

 

2. Kalman Filter Tracking 

The output of the Blob Analysis block is also used as an input to the 

Kalman Filter Implementation (Figure 1.)  The Blob Analysis block has two 

options that were selected for use in the Kalman Filter Implementation.  The 

number of blobs found is provided as the input count to the Kalman Filter 

Implementation.  The location of the center of mass of each blob is also provided 

as the measurement input z to the Kalman Filter Implementation.  The exact 

implementation of the Kalman filter algorithm will be discussed next in Chapter 

IV.   
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IV. KALMAN FILTER IMPLEMENTATION 

Aside from post-processing, there are two main blocks in the Simulink 

Block Diagram in Figure 1.  The second of these blocks, the Kalman Filter 

Implementation block, will be analyzed in this section.  The purpose of the 

Kalman Filter Tracking Implementation is two-fold: to correctly assign a tracking 

filter to each of the measurements entering the system from the Optical Flow 

Analysis block and to alert the user when a contact has been lost (a significant 

event has occurred.) 

A. OVERVIEW 

An Embedded MATLAB Function block was used in the Simulink Block 

Diagram shown in Figure 1, to implement the Kalman Filter Tracking algorithm.  

This type of block is often used when the function to be performed is more easily 

expressed in MATLAB’s symbolic language than in Simulink’s graphical 

language [8].  While most of the functionality present in MATLAB can be utilized 

in an Embedded MATLAB Function, there are some limitations to its use.  Two 

types of limitations of interest are limitations on defining the type and size of 

variables and limitations on indexing operations. 

1. Imbedded MATLAB Functions Constraints  

Embedded MATLAB functions require that the type and size of a variable 

must be defined prior to being called for the first time [8].  In short this means that 

a variable can never be defined as an empty matrix.  It also required that careful 

thought be given to how to handle the data in this thesis.  That is, even though at 

any given time we may be tracking less than ten contacts, which is the maximum 

number of contacts assumed to exist in the video at a given time, the Embedded 

MATLAB Function must be written in such a way that it can accommodate the 

maximum number of possible contacts.  As a result, ten filters were created in  
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the function and the number of necessary filters to access in a given frame was 

determined based on the number of contacts at the output of the Optical Flow 

Analysis subsystem.   

The limitations on indexing operations are related to the limitations on the 

type and size of variables.  In short, Simulink requires that the indices of a 

variable be defined explicitly when it is indexed within a loop.. That is, this 

variable must be defined in such a way that a known quantity of memory can be 

allocated to it prior to execution of the loop. This constraint sometimes created 

the need for workaround techniques when indexing certain variables in this 

thesis.  These workaround techniques may appear as inefficient when looking at 

the code present in the Appendix.  However, throughout this chapter, the reasons 

behind these workarounds will be conspicuously documented to benefit the 

reader. 

The rest of this chapter presents the details of each section of the tracking 

algorithm.  Figure 21 presents a flow diagram which illustrates the progression of 

the code for each frame.  This flowchart and the code present in the Appendix 

should be used as references when reading the remainder of this chapter. 



 
Figure 21. Flow Diagram for Embedded MATLAB Function Kalman Filter 

Implementation 
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B. INITIALIZATION 

The initialization portion of the Kalman Filter Tracking function first 

includes the definition of several persistent variables.  Persistent variables are 

variables which are local to the function in which they are defined.  However, 

their value is retained between calls to the function.  This functionality gracefully 

complemented the reliance of the Kalman Filter on the position estimates from 

the previous frame.  Persistent variables allowed for a type of feedback system 

that operated within the constraints of the Embedded MATLAB Function block.    

Thus, the algorithm checks whether one of these persistent variables is 

empty prior to processing each frame  Note that persistent variables are empty 

only when the algorithm first starts, i.e. when the first frame of data is processed.  

In such a case, initial conditions must be set for several variables.  The rest of 

this section will be devoted to discussing the specific initial conditions set for 

each variable of interest. 

1. State Estimates 

The state estimates for each of the ten Kalman filters are referred to as 

the variable XHAT.  XHAT is defined as a matrix of size six by ten, where each 

column corresponds to a specific state estimate for a given filter.  The first two 

rows of the column vector represent the coordinates (row, column) of the position 

estimates.  The next two rows are the velocity estimates, and the last two rows 

are the acceleration estimates.  Thus, a one-filter XHAT has the form 

  

 

row position
column position

row velocity
column velocity
row acceleration

column acceleration

XHAT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (15) 
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Note that the initial positions were centered in the middle of the frame, so 

as not to bias initial conditions.  Thus, the initial row and column positions for 

each filter were set to 144 and 192, respectively, for a frame size of 288 pixels by 

384 pixels.  Velocity and acceleration pixels were set to small non-zero values of 

0.1.  Thus, after initialization, the initial six-by-ten matrix, XHAT, took the form 

 

144 144 ... 144
192 192 ... 192
0.1 0.1 ... 0.1

.
0.1 0.1 ... 0.1
0.1 0.1 ... 0.1
0.1 0.1 ... 0.1

XHAT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (16) 

  

2. State Covariance Matrices 

In addition to state estimates, each filter is defined by its own state 

covariance matrix of size six by six.  The matrix PP implemented in the algorithm 

is a side-by-side concatenation of ten of these covariance matrices to form a 

matrix of size six by sixty.  Each of these matrices is a diagonal matrix, as 

defined in Chapter II.  The first two elements on the diagonal correspond to the 

covariance of the position estimate.  The next two elements correspond to the 

covariance of the velocity estimate.  The last two elements correspond to the 

covariance of the acceleration estimate. 

The initial conditions for each of these matrices are set arbitrarily.   Given 

the position of the contacts are known with greater accuracy than both the 

velocity and acceleration, the values increase along the diagonal.  If we assume 

the position of the contact is known within three pixels, the position covariance 

was initialized at  or nine.  Similarly, assuming the velocity is known within five 

pixels per second and the acceleration is known within seven pixels per second  

 

 

23

 35



squared, we obtain covariance values for velocity and acceleration of 25 and 49, 

respectively.  After initialization, the six by sixty covariance matrix, PP, takes the 

form 

  (17) 

9 0 0 0 0 0 ...9 0 0 0 0 0
0 9 0 0 0 0 ...0 9 0 0 0 0
0 0 25 0 0 0 ...0 0 25 0 0 0

.
0 0 0 25 0 0 ...0 0 0 25 0 0
0 0 0 0 49 0 ...0 0 0 0 49 0
0 0 0 0 0 49...0 0 0 0 0 49

PP

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Throughout the operation of the algorithm, these covariance matrices will 

be updated to reflect a more accurate representation of the covariance of the 

state estimates. 

3. Number of Contacts Vector 

The number of contacts in each frame needs to be monitored in order to 

keep track of changes in the contact behavior.  However, changes cannot be 

accurately monitored on a frame-by-frame basis because of the fluctuations in 

the number of contacts at the output of the Optical Flow Analysis block.  As a 

result, it was necessary to monitor the number of contacts over several frames 

and monitor trends in the number of contacts over those frames.  The number of 

contacts was monitored over the last second of video (25 frames) in order to 

provide enough data to monitor these trends. 

A vector used to monitor the number of contacts in the present frame and 

the 24 previous frames was created and referred to as numbin.  Appropriate 

initial values for numbin must be set when the initial frame is processed.  Thus, 

each value of numbin was set equal to the number of contacts in the first frame, 

num, to allow for tracking of all contacts found in the first frame.  In other words, 

upon initialization, numbin is a vector of length 25 with all 25 values in the vector 

equal to num. 
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4. Median Number of Contacts 

The median number of contacts in the last frame is a variable created to 

aid in the identification of lost contacts.  It is referred to as lastmed.  Note that 

there is no previous frame from which to obtain a value for lastmed when the 

algorithm processes the first frame of video.  As a result, the parameter lastmed 

is initialized to the value of the number of contacts in the first frame, num.     

5. Indexing Vector 

An indexing vector index is used to keep incoming measurement values, 

i.e., locations, (z), state estimates (XHAT) and state covariance matrices (PP) 

properly associated.  The indexing vector, index, of size ten by one is set to  

 [ ]'1 2 3 4 5 6 7 8 9 10index =  (18) 
to ensure each initial location is assigned a different filter. 

C. CONTACT MONITORING 

In this section we will discuss how contact behavior is monitored by the 

algorithm.  The first sub-section will discuss how the algorithm determined how 

many filters to activate based on the number of contacts at the output of the 

Optical Flow Analysis Block.  The second sub-section will discuss how each of 

these filters is assigned to the correct contact.  The last sub-section will discuss 

how the algorithm handles a lost contact.   

1. Median Filter 

Despite the copious amounts of tuning discussed in Chapter III, the 

number-of-contacts output (num) of the Optical Flow Analysis block is 

susceptible to some degree of fluctuation.  Note that these fluctuations are 

normally of no more than one contact in either direction, and usually do not last 

much longer than one frame.  A persistent increase (or decrease) in the number 

of contacts indicates a gain (or loss) of contact.  A change in the number of 
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contacts reflects an anomaly in the data at the output of the Optical Flow 

Analysis block when the behavior is not persistent.  As such, a median filter of 

length 25 was designed to monitor the behavior of num over the current and the 

previous 24 frames to minimize the impact due to temporary fluctuations.  The 

median filter allows temporary fluctuations due to anomalies in the Optical Flow 

Analysis block to be ignored and only persistent changes in the number of 

contacts to be tracked.  The output of the median filter was also used to 

determine the number of Kalman filters needed for each frame of video. 

The median operation was chosen instead of a traditional mean for two 

reasons.  First, recall that the input and outputs to the median filter are always 

integer values.  This behavior was desired as the output of the filter is used as an 

indexing operator for various loops throughout the function.  The median filter 

allowed for correct indexing without the implementation of a rounding function.   

Second, the median operation ensured that there was no need to prioritize 

which contacts would be tracked.  The benefit of this behavior may be 

overlooked at first, however it proved quite powerful.  As an example, assume 

that for 25 successive frames only one contact was present in the video.  Next 

assume that for the next 25 successive frames nine contacts were present in the 

video.  A simple moving-window average of length 25 over this length of time 

would yield values spanning from one to nine.  For the time when the moving-

window average filter yielded an output of five, for example, an undesirable result 

is produced.  The algorithm must decide to which five of the nine contacts to 

assign a filter. A median filter over the same length of time would only have two 

possible outputs, either one or nine.   The median filter eliminates the decision of 

which contacts to track by tracking either the initial contact, or the subsequent 

nine.  While the example presented here is highly unlikely given the constraints 

of the problem, the same example can be shown to be true for smaller 

differences in the number of contacts (e.g. two and four).  

Initializing this filter at the start of the algorithm is done by selecting each 

coordinate of the vector numbin to be equal to the value of num at the first frame.  
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This choice was made as it allowed for the median to be calculated at the first 

frame without error.  For each subsequent frame, the last 24 entries in the vector 

are copied to the first 24 entries in the vector and the value of num for the current 

frame is inserted as the last value.  The median value of the newly updated 

numbin is calculated as the parameter mednum.  As mentioned, mednum is used 

later to determine the number of Kalman Filters needed in each frame.   

2. Filter Indexing  

After the initialization step is complete, the algorithm must assign a filter to 

each of the contacts in the measurement vector (z).  This step is accomplished 

by comparing each incoming position in z to the previous estimated position 

values present in XHAT which have remained persistent from the last frame.  It 

should be noted that throughout the function, it is assumed that the number of 

contacts from frame to frame changes by at most one in either direction.  This 

assumption was deemed acceptable given the low contact density of the data 

used and the high frame rate of the video (25 fps).  

a. Number of Contacts is Equal to the Median Number of 
Contacts Over the Last 25 Frames 

No further indexing is necessary when the estimated variable num 

is equal to mednum, due to the initial conditions discussed above and the 

behavior of the Blob Analysis block (Figure 4).  Note that a distinct filter is 

assigned to each contact because the parameter index was initially defined to 

include ten distinct values.   

Note that the correct filter is still matched to the correct input 

measurement when values in index change from their initial conditions, because 

the Blob Analysis block (Figure 4) always orders its outputs in increasing order 

by row coordinate.  Keeping the values in index constant in this case makes the 

assumption that one contact does not leave the scene at exactly the same time 

as another contact enters it.  Given the frame rate of the data as 25 fps, the 
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likelihood of this event is negligible and this assumption is deemed acceptable.    

In the unlikely event that this assumption is false, the Kalman filter is flexible 

enough that it will equilibrate to the state of the new contact within a nominal 

amount of frames. 

b. Number of Contacts is Greater than the Median Number 
of Contacts Over the Last 25 Frames 

Indexing becomes necessary when num is found to be greater than 

mednum.  While the added contact will not be immediately tracked due to the 

Median Filter described above, it is important that the new contact be identified 

and only the contacts present in the last frame be assigned filters.  Thus, each 

measurement in the vector z is individually compared to all of the previous 

estimated positions in XHAT to assign the correct incoming measurement to the 

correct filter.  This step is accomplished by calculating the vector norm of the 

difference between each measurement in z and all previous position estimates in 

XHAT.  Next, the index of the estimate corresponding to the minimum norm, and 

consequently the index of the filter used to determine said estimate, is 

determined.   

Given a contact will not realistically move more than a few pixels in 

the time between two frames, each of the previous position estimates will be 

correctly matched to the corresponding incoming measurement via the vector 

norm minimization calculation.  For the situation where N contacts increase to 

N+1 contacts, the new contact is assigned the filter of index N+1.  This filter is 

defined by initial conditions described above.  If this contact remains in the scene 

long enough for mednum to increase to N+1, the new contact will be tracked 

using the filter of index N+1 under the conditions described in Subsection 2.a. 

above. 



c. Number of Contacts is Less than the Median Number of 
Contacts Over the Last 25 Frames         

Indexing also becomes necessary when num is smaller than 

mednum, which reflects a temporary loss of contact.  As a result, the number of 

active filters is larger than the number of incoming measurements.  Indexing 

occurs for the N-1 measurements by computing the vector norm between each 

measurement and the N position estimates as described above.  

Next the incoming measurements vector, z, is redefined to include 

a measurement for the contact which has been lost in the frame. In effect, the 

incoming measurement matrix of size two by N-1 is redefined as a matrix of size 

two by N.  The added measurement is obtained by copying the position estimate 

from the previous frame which corresponds to the lost measurement.  This 

procedure results in the filter being continually updated if the contact is only lost 

for one or a few frames.  If the loss of contact is persistent, (in this case for more 

than 13 frames in a 25 frame span of time) the contact is deemed lost and 

mednum assumes the value of N-1.  Further processing of the lost contact will be 

described in the following sub-section.   

3. Permanent Contact Loss 

If a loss in contact is persistent for 13 out of 25 consecutive frames, the 

parameter mednum decreases to a value of one less than lastmed.  This change 

is deemed a significant event and thus an alert will be sent to the user.  In 

practical application, this situation could indicate that a contact has left the room, 

hidden behind an occlusion, or stopped moving.  In order for the user to have 

some indication of which behavior has led to the loss of contact, the last known 

position of the contact will be marked on the current video frame.  In the worst 

case scenario, this will be the position of the contact 13 frames ago, or 

approximately 0.5 seconds ago.  By visually inspecting the current video 

/ 25
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sequence the user should be able to identify which of the above behaviors has 

caused the contact to be lost. 

The index of the lost contact is obtained via the method described above.  

The last position estimate which corresponds to this index is copied to the 

variable LCpos.  This variable is used to create a mark on the video sequence 

corresponding to the lost contact in a process which will be described in Chapter 

V.  Since the contact has now been lost, the filter corresponding to the lost 

contact is reset to its initial conditions.  Finally, whether or not a contact has been 

lost, lastmed is set to the value of medcount so that it can be used in the 

processing of the next frame of video.   

D. KALMAN TRACKING UPDATES 

Before the Kalman tracking updates can be applied to each filter, the 

indexing vector is utilized to obtain the desired state estimates and covariance 

matrices from XHAT and PP respectively.  A “for loop” was used to update each 

Kalman filter individually, where the vector index is used to access the correct 

state estimate in XHAT.  Note that each column of the correct covariance matrix 

in PP is assigned separately to work around some of the indexing issues with 

Embedded MATLAB Functions as discussed above.   

The individual state estimates and covariance matrices are assigned the 

variable-names xhat and P, respectively.  Next, the Kalman equations are 

implemented, as described in Chapter II using the values xhat and P.  After all 

equations are implemented, the updated values of xhat and P are copied to their 

corresponding locations in the variables XHAT and PP.  Again to combat issues 

with indexing, the values copied to PP are copied one column at a time. 



E. OUTPUT  

The only relevant outputs from the Kalman Filter Implementation are the 

position estimates present in XHAT and the position of any lost contacts, lcpos, 

in this thesis.  As such, the output of the Embedded MATLAB Function 

implementation consists of two variables.  At each frame a two-by-ten matrix of 

position vectors (xhatOut) is produced.  For N contacts, the first N position 

vectors in the matrix xhatOut correspond to the position of the N contacts.  The 

remaining position vectors correspond to the initial position conditions as 

defined earlier in this chapter.       

10 N−

Also present at the output is a position vector of length two corresponding 

to the position of a lost contact.  When there is no lost contact, lcpos assumes 

the value [ ]'0 0 .  When a contact has been lost, lcpos assumes the value of the 

position vector corresponding to the last known location of the contact.  The post-

processing of these two output variables will be discussed further in Chapter V.  

In theory the persistent variables defined earlier are also outputs of the Kalman 

Filter Implementation block.  These outputs however are of no practical use to 

the user and are only accessed by the algorithm upon processing of the next 

frame of video. 
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V. POST-PROCESSING/RESULTS 

In this chapter post-processing techniques used to monitor system 

performance are described.  Results which describe the performance are also 

presented. 

A. POST-PROCESSING 

Aside from the two blocks discussed in Chapters III and IV, the final block 

in the subsystem created was the Post-Processing/Video Output Subsystem 

(Figure 1.)  This block was used to process the outputs from both the Optical 

Flow Analysis and Kalman Filter Tracking Implementation blocks and verify 

correct behavior of said blocks. 

 
Figure 22. Simulink Block Diagram of Post-Processing Subsystem 

 
Figure 22 presents a view of the inner workings of the Post-

Processing/Video Output Subsystem.  The first video output block is simply an 

output of the input video in the intensity color-space.  The rest of this section will 

be dedicated to describing the task performed by each of the remaining video 

viewers. 
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1. Optical Flow Analysis 

The second video viewer shown in Figure 22 is the Optical Flow Video 

Viewer.  This video viewer takes four inputs.  The first three inputs are the input 

video in RGB color-space. The last of these inputs is labeled Pts (Bbox).  This 

input is identical to the BBox output shown in Figure 4.  The Blob Analysis Block 

shown in Figure 4 produces coordinates for a bounding box around every blob in 

each frame.  The Draw Rectangles block in Figure 22 draws rectangles on the 

video frame as defined by these coordinates. 

In short, the Optical Flow Video Viewer allows the user to ensure that the 

Optical Flow Analysis subsystem is operating properly.  The user can see in real-

time which contacts in the video are being sent to the Kalman Filter Tracking 

Implementation block by monitoring the Optical Flow Video Viewer.  If bounding 

boxes are not consistently surrounding obvious contacts in the image, then the 

Optical Flow Video Viewer serves as an indication that the Optical Flow Analysis 

subsystem is not working properly for the data being used.  On the contrary,  the 

user can deduce that the Optical Flow Analysis subsystem is working as desired 

when contacts are consistently surrounded by bounding boxes. Figure 20 shows 

a sample frame output of the Optical Flow Video Viewer with bounding boxes 

superimposed on contacts in the scene. 

2. Kalman Filter Tracking 

The third video viewer shown in Figure 22 is the Kalman Filter Tracking 

Video Viewer.  This video viewer takes four inputs as well.  The first three inputs 

are the input video in RGB color-space. The last of these inputs is labeled Pts 

(Tracks).  This input is identical to the xhatOut port at the output of the Kalman 

Filter Tracking Implementation.   This output is a matrix of size two by ten where 

each column is a position vector corresponding to either the position of a contact  
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or the initial conditions set at the center of the frame.  The Draw Markers block in 

Figure 22 draws ten circular marks on the video frame as defined by each of 

these ten position vectors. 

 In short, the Kalman Filter Tracking Video Viewer allows the user to 

ensure that the Kalman Filter Tracking algorithm is operating properly.  The user 

can see in real-time which contacts in the video are being tracked by the Kalman 

Filter Tracking Implementation block via markers drawn on the video frames.  

The Kalman Filter Tracking Video Viewer serves as an indication that the Kalman 

Filter Tracking Implementation subsystem is not working properly when markers 

are not consistently following obvious contacts in the image.  On the contrary, the 

user can deduce that the Kalman Filter Tracking Implementation subsystem is 

working as desired when contacts are consistently tracked by markers.  

Figure 23 shows a sample frame of the Kalman Filter Tracking Video 

Viewer output. The marker drawn at the middle of the frame (indicated by an 

arrow) corresponds to the initial conditions of the eight inactive filters.  Although 

only one marker is visible, in actuality there are eight markers overlapping each 

other at this position.  The other two markers are correctly tracking contacts in 

the scene.   



 
Figure 23. Sample Frame of Kalman Filter Tracking Video Viewer  

 

3. Lost Contact Notification 

The last video viewer shown in Figure 22 is the Lost Contact Video 

Viewer.  This video viewer takes four inputs as well.  The first three inputs are the 

input video in RGB color-space. The last of these inputs is labeled lcpos.  This 

input is identical to the lcpos port at the output of the Kalman Filter Tracking 

Implementation.  This output is a position vector which takes either the value 

[0,0]' or the position of a lost contact.  Given the lost contact position is only 

produced for the frame in which the contact is lost, some processing is necessary 

before it can be sent to the Draw Markers block.  The Delay and Sum Filter sums 

the value of lcpos over the last 50 frames.  It is assumed here that two contacts 

are not lost within two seconds (50 frames) of each other.  Given when no  
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contact is lost the output is simply a vector of zeros, the filter allows the position 

of the lost contact to be sent to the Draw Markers block for 50 consecutive 

frames.  

B. RESULTS 

This section is devoted to discussing the results of the three major areas 

investigated in the Post-Processing/Video Output subsystem.  The first sub-

section describes the results of Optical Flow Analysis.  The second sub-section 

describes the results of Kalman Filter Tracking.  The third sub-section describes 

the results of Lost Contact Notification.   

1. Optical Flow Analysis 

Results for the Optical Flow Analysis portion of this thesis were subjective 

in nature.  The goal of the Optical Flow Analysis subsystem was to segment the 

video sequence into binary frames containing blobs which could be tracked as 

contacts.  Jacinto C. Nascimento and Jorge S. Marques [9] have presented 

metrics for performance evaluation of object detection algorithms.  This field is 

very underdeveloped, and little information is available on how to monitor the 

performance of algorithms like the Optical Flow Analysis subsystem.  As such, 

the point of the results for this subsystem was simply to provide a proof of 

concept.  That is, the Optical Flow Analysis subsystem did provide a consistent 

stream of contacts to be tracked by the Kalman Filter Tracking algorithm.  The 

process of objectively defining results of the Optical Flow Analysis will be left for 

further study. 

2. Kalman Filter Tracking 

In order to determine how well the Kalman Filter tracked contacts 

throughout the scene it was necessary to create a ground truth to compare 

against the Kalman Filter Tracking algorithm output.  To achieve this, several 

artificial videos were created.  These videos consist of one or more white blobs 
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moving through a black background.  These videos simulate the video sequence 

found at the output of the Optical Flow Analysis block under ideal conditions.  

Results for both single contacts and multiple contacts are presented in the 

following sub-sections. 

a. Single Contact 

A single contact was tracked under three different conditions.  The 

first condition was that of constant direction and speed.  The second condition 

was that of constant direction and varying speed.  Finally the contact was tracked 

under constant speed and varying direction.   

For each condition, two figures are shown.  The first plots the 

vector norm of the difference between the known position (z) and the Kalman 

Filter estimate (xhat) plotted against time.  The second is a three-dimensional 

plot showing the position of the contact (z) as well as the position of the track 

(xhat) against time.  In all three cases the first plot shows that the norm 

approaches zero in much less than a second.  This is reflected in the fact that the 

second plot for all three cases shows overlapping tracks for z and xhat after a 

nominal amount of frames.  The output from the Kalman Filter Tracking Video 

Viewer is available at www.nps.navy.mil/faculty/fargues/theses/dsemko/.  
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Figure 24. Vector Norm Plot for One Contact (Constant Speed and Direction) 
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Figure 25. Position Track for One Contact (Constant Speed and Direction) 
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Figure 26. Vector Norm Plot for One Contact (Varying Speed and Constant 

Direction) 
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Figure 27. Position Track for One Contact (Varying Speed and Constant 

Direction) 
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Figure 28. Vector Norm Plot for One Contact (Constant Speed and Varying 

Direction) 
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Figure 29. Position Track for One Contact (Constant Speed and Varying 

Direction) 
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b. Multiple Contacts 

Three separate contacts were tracked simultaneously.  One of 

these contacts had a constant speed and constant direction.  The second contact 

had a constant speed and a variable direction.  The third contact had a variable 

speed and a constant direction.  Again, a plot of the vector norms of each of the 

known locations (zk) and the estimated positions (xhatk) are shown in Figure 30.   

Each subplot corresponds to the norm vector between the known location and its 

respective estimated position.  As in the case of a single contact, the value of this 

norm approaches zero within a nominal number of frames.  As in the case of a 

single contact, the position track plot shown in Figure 30 concurs with the vector 

norm plots as the tracks for both the known locations and their respective 

estimated positions overlap after a nominal amount of frames.  The output from 

the Kalman Filter Tracking Video Viewer is available at 

www.nps.navy.mil/faculty/fargues/theses/dsemko/. 
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Figure 30. Vector Norm Plot for Multiple Contacts Under Various Conditions 
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Figure 31. Position Tracks for Multiple Contacts under Various Conditions 
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3. Lost Contact Notification 

Again, the results for the Lost Contact Notification behavior were very 

subjective in nature.   Proof of concept was obtained by creating artificial data (as 

discussed in the previous sub-section) and visually determining whether the lost 

contact notification operated properly.  Two videos (from the Kalman Filter 

Tracking Video Viewer and the Lost Contact Video Viewer) showing the correct 

behavior of this portion of the algorithm are available at 

www.nps.navy.mil/faculty/fargues/theses/dsemko/.  These videos show correct 

tracking of a contact until it is deemed permanently lost, at which point the lost 

contact notification appears on the video. 

4.  CAVIAR Data Results 

In addition to the artificial data constructed for analysis in the previous two 

subsections, the algorithm was used on the data from the CAVIAR study [3].  A 

sample video showing the behavior of the algorithm under actual conditions can 

be found at www.nps.navy.mil/faculty/fargues/theses/dsemko/.  While, as 

expected, the algorithm does not perform as well as the case with artificial data, 

tracking of contacts is maintained somewhat consistently throughout the video.   
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VI. CONCLUSIONS 

The problem of tracking objects in a scene hinges on two main factors: the 

speed to process the video in real-time and the accuracy to distinguish between 

contacts moving in the scene.  In this thesis we have shown that through use of 

Optical Flow Analysis algorithms as well as Kalman Filter Tracking algorithms it 

is possible to track contacts through a scene in real-time and identify some basic 

contact behaviors. 

The Optical Flow Analysis algorithms used in this thesis presented the 

largest barrier to fast and accurate operation.  Because the Optical Flow Analysis 

is an iterative process to determine the best approximation to the optical flow 

between video frames, there is an inevitable trade-off between accuracy and 

speed.  In order to accurately distinguish contacts moving in a scene, the 

computational time of the algorithm must be increased to allow for more 

iterations.  If the required increase in processing time is too large, the algorithm 

cannot possibly operate in real-time. 

The Kalman Filter Tracking algorithm implemented in this thesis was novel 

in its ability to process more than one contact at a time and assign the correct 

filter to its respective contact.  Using artificial data simulating ideal output from 

the Optical Flow Analysis, the algorithm developed performed encouragingly.  

The algorithm was able to correctly track contacts moving under a variety of 

conditions and notify the user when a contacts track had been lost.  Using real 

data, in conjunction with the Optical Flow Analysis algorithm, the Kalman Filter 

Tracking algorithm was able to track contacts with moderate consistency.  Due to 

the success with artificial data, any inconsistencies in tracking can be traced to 

the fluctuations in performance of the Optical Flow Analysis algorithm. 

Finally, the Lost Contact Notification algorithm was able to correctly 

identify the last known location of a contact and provide a visible alert to the user.  

This behavior was admittedly simple, but did indicate a possibility for further 
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advancement.  It is conceivable that further work could lead to more complex 

notification systems that would further ease the workload placed on the user 

when viewing the surveillance video. 

Future research in the area of surveillance video processing should be 

focused in two directions.  First, due to the fluctuation in performance of the 

Optical Flow Analysis algorithm, significant work should be done to determine an 

objective measure of performance for this algorithm.  The question of whether or 

not Optical Flow is the proper algorithm to use for segmentation should also be 

examined.  Other algorithms may exist that could be better suited to accurate, 

real-time processing of video.  These algorithms could provide similar outputs to 

be used in conjunction with the Kalman Filter Tracking algorithm presented in this 

thesis which has shown much promise.      

Second, research should be focused in the area of determining contact 

behavior.  While we have shown the ability to detect a loss of a contact, there are 

many more ways to classify significant behavior.  For example, future research 

could explore areas such as the merging of contacts into groups and also the 

dividing of groups of contacts into separate contacts.  Building off of the work in 

this thesis, there are a number of different ways to classify contact behavior 

which could further benefit the user and should be explored. 
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APPENDIX: KALMAN FILTER TRACKING CODE 

%kalman_10 
%The following code processes the output measurements from the Optical  
%Flow Analysis block (z) and the number of contacts (num) at the output  
%of the same block and performs a Kalman Filter Tracking operation on  
%each measurement to determine an estimated position (xhatOut).  The  
%code also monitors changes in the number of contacts and produces the  
%last known location of a contact (lcpos) if a contact is lost. 
  
function [lcpos, xhatOut]=kalman_10(z,num) 
  
%The following variables are set as persistent in order to make them  
%available frame after frame.   
persistent XHAT  
persistent PP 
persistent lastmed 
persistent numbin 
persistent P 
persistent index 
persistent XHATtemp 
  
%Initial conditions for various variables are set here for use throughout  
%the embedded MATLAB function 
if isempty(PP) 
    XHAT = 0.1*ones(6,10);             %Estimated pos./vel/accel. 
    XHAT(1,:)=144*ones(1,10);          %Estimated pos. (row) 
    XHAT(2,:)=192*ones(1,10);          %Estimated pos. (column) 
    pp = diag([9 9 25 25 49 49]);      %Initial P-covariance matrix (6x6) 
    PP=[pp pp pp pp pp pp pp pp pp pp];%10 P matrices side by side 
    numbin=num*ones(25,1);             %Bin tracks num over succ.frames 
    lastmed=num;                       %Bin median 
    P=pp;                              %Initial value for P  
    index=[1:10]';                     %Index vector for filter assignment  
    XHATtemp=zeros(6,10);              %Temporary estimated pos.  
end 
  
%Numbin is continually updated to include information from the current  
%frame and 24 previous frames.  Median value for number of contacts (num) 
%is calculated as mednum. 
numbin(1:24,1)=numbin(2:25,1); 
numbin(25,1)=num; 
mednum=median(numbin); 
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%Each measurement (z) is compared to the position estimates which have  
%remained persistent from last frame.  Each measurement is paired with  
%its closest position estimate and the index of said estimate is recorded. 
%Two “for loops” are used to ensure that no two successive measurements are  
%matched with the same filter and position estimate.  The first loop  
%calculates the index for the first measurement and the second calculates 
%it for all subsequent measurements. 
if mednum~=num 
    normMIN=10e10; 
    for j=1:lastmed 
        normCALC=norm(z(:,1)-XHAT(1:2,j)); 
        if normCALC<normMIN  
            index(1,1)=j; 
            normMIN=normCALC-eps; 
        end 
    end 
  
    for k=2:num 
        normMIN=10e10; 
        for j=1:lastmed 
            normCALC=norm(z(:,k)-XHAT(1:2,j)); 
            if normCALC<normMIN && index(k-1)~=j 
                index(k,1)=j; 
                normMIN=normCALC-eps; 
            end 
        end 
    end 
end 
  
%The measurements are adjusted here to account for the possibility that 
%a contact was lost or gained for less than 13 frames.  Any measurement  
%that is missing is replaced with the position estimate from the previous 
%frame. 
ztemp=XHAT(1:2,:); 
for i=1:num 
    ztemp(:,index(i,1))=z(:,i); 
end 
z=ztemp; 
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%If lastmed is greater than mednum, then a contact has been missing for 
%13 out of the past 25 frames and the contact is deemed lost.  The index 
%of that contact is determined and subsequently the position corresponding 
%to that index is sent to the post-processing block.  The filter which  
%corresponded to the lost contact is re-set to the initial conditions. 
%*If LCindex is less than or equal to zero then there is an error in the  
%index assignments and no lost contact information is sent to the post- 
%processing block. 
if lastmed>mednum 
    sumSOME=0; 
    sumALL=0; 
    for i=1:mednum 
        sumSOME=sumSOME+index(i,1); 
    end 
    for j=1:lastmed 
        sumALL=sumALL+j; 
    end 
    LCindex=sumALL-sumSOME; 
    if LCindex>0 
        LCpos=XHAT(1:2,LCindex); 
        for i=1:10 
            XHATtemp(:,i)=XHAT(:,index(i,1)); 
        end 
        XHAT=XHATtemp; 
        XHAT(:,num+1)=[144;192; 0.1; 0.1; 0.1; 0.1]; 
        index=[1:10]'; 
    else 
        LCpos=[0;0]; 
    end 
else 
    LCindex=0; 
    LCpos=[0;0]; 
end 
  
%lastmed is updated for use in the processing of the next frame of video. 
lastmed=mednum; 
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%The Kalman filter is implemented based on the number of adjusted data 
%points that are present at the input of the block.  Each data point is 
%processed separately and filterindex is used to index the correct pos. 
%estimates and covariance matrices.   
for i=1:mednum 
    if index(i,1)>0 
        filterindex=index(i,1); 
    else 
        filterindex=10; 
    end 
        xhat=XHAT(:,filterindex); 
        low=filterindex*6-5; 
        P(:,1)=PP(:,low); 
        P(:,2)=PP(:,low+1); 
        P(:,3)=PP(:,low+2); 
        P(:,4)=PP(:,low+3); 
        P(:,5)=PP(:,low+4); 
        P(:,6)=PP(:,low+5); 
         
        % 1. Compute Phi, H, Q, and R  
        Phi = [1 0 1 0 0.5 0; 0 1 0 1 0 0.5; 0 0 1 0 1 0; 0 0 0 1 0 1; 0 0 0 0 1 0; 0 0 0 0 0 1]; 
        H=zeros(2,6); 
H(1:2,1:2)=diag(ones(1,2));H(1:2,3:4)=diag(ones(1,2));H(1:2,5:6)=0.5*diag(ones(1,2)); 
        Q =diag(0.5*ones(1,6)); 
        R =diag(ones(1,2));  
  
        %2. Compute Kalman Gain and Update State Covariance 
        K=P*H'*((H*P*H'+R)^-1); 
        P = (eye(6,6)+K*H)*P; 
  
        % 3. Propagate the track estimate:: 
        xhat = xhat+K*(z(:,i)-H*xhat); 
        xhat=Phi*xhat; 
         
        % 4. Update Covariance Matrix 
        P = Phi*P*Phi'+Q; 
         
        % 5. Refill filter bank 
        XHAT(:,filterindex)=xhat; 
        PP(:,low)=P(:,1); 
        PP(:,low+1)=P(:,2); 
        PP(:,low+2)=P(:,3); 
        PP(:,low+3)=P(:,4); 
        PP(:,low+4)=P(:,5); 
        PP(:,low+5)=P(:,6); 
         
end 
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%Updated position estimates and lost contact position (if any) are sent to  
%the post-processor. 
lcpos=LCpos; 
xhatOut=XHAT(1:2,:); 
 
 

 



 68

THIS PAGE INTENTIONALLY LEFT BLANK 



 69

LIST OF REFERENCES 

[1] Wei Niu, Long Jiao, Dan Han and Yuan-Fang Wang, “Real-Time Multi-person 
Tracking in Video Surveillance,” Proceedings of the 4th International Conf. on 
Information, Communications and Signal Processing, Singapore, December 
2003. 
 
[2] Weiming Hu, Tieniu Tan, Liang Wang and Steve Maybank, “A survey on 
Visual Surveillance of Object Motion and Behaviors,” IEEE Trans. on Systems, 
Man, and Cybernetics, Vol. C-34, No. 3, pp. 334-352, 2004.   
 
[3]”CAVIAR: Context Aware Vision using Image-based Active Recognition,” 
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ [website], Last Accessed: June 2007. 
 
[4] B.K.P. Horn and B.G. Schunk, "Determining optical flow." Artificial 
Intelligence, vol 17, pp. 185-203, 1981. 
 
[5] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems," 
Transactions of the ASME - Journal of Basic Engineering, Vol. 82, pp. 35-45, 
1960. 
 
[6] Robert Grover Brown and Patrick Y.C. Hwang, Introduction to Random 
Signals and Applied Kalman Filtering, Third edition, John Wiley & Sons, New 
York, 1997. 
 
[7] Conrado Aparacio, “Implementation of a Quaternion-Based Kalman Filter for 
Human Body Motion Tracking using MARG Sensors,” Master’s Thesis, Naval 
Postgraduate School, Monterey, California, 2004. 
 
[8] “Simulink Help,” 
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index.html?/ac
cess/helpdesk/help/toolbox/simulink/slref/embeddedmatlabfunction.html 
[website], Last Accessed: June 2007. 
 
[9] Jacinto C. Nascimento and Jorge S. Marques, “Novel Metrics for Performance 
Evaluation of Object Detection Algorithms,” Proceedings of the 6th IEEE 
International Workshop on Performance Evaluation of Tracking and Surveillance, 
Prague, Czech Republic, 2004.   

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index.html?/access/helpdesk/help/toolbox/simulink/slref/embeddedmatlabfunction.html
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index.html?/access/helpdesk/help/toolbox/simulink/slref/embeddedmatlabfunction.html


 70

THIS PAGE INTENTIONALLY LEFT BLANK 



 71

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Jeffery B. Knorr 
Chairman, Department of Electrical and Computer Engineering  
Naval Postgraduate School 
Monterey, California 
 

4. Monique P. Fargues 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

5. Roberto Cristi 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 


	A. VIDEO SURVEILLANCE
	B. OBJECTIVE
	C OVERVIEW
	A. OPTICAL FLOW
	B. KALMAN FILTER
	A. OVERVIEW
	B. SEGMENTATION
	1. Color Space Conversion
	2. Optical Flow
	3. Compare to Constant

	C. MEDIAN FILTER
	D. MORPHOLOGICAL OPERATIONS
	1. Quadrant Operation
	2. Erosion and Dilation
	3. Video Concatenation

	E. BLOB ANALYSIS
	1. System Monitoring
	2. Kalman Filter Tracking

	A. OVERVIEW
	1. Imbedded MATLAB Functions Constraints

	B. INITIALIZATION
	1. State Estimates
	2. State Covariance Matrices
	3. Number of Contacts Vector
	4. Median Number of Contacts
	5. Indexing Vector

	C. CONTACT MONITORING
	1. Median Filter
	2. Filter Indexing
	a. Number of Contacts is Equal to the Median Number of Conta
	b. Number of Contacts is Greater than the Median Number of C
	c. Number of Contacts is Less than the Median Number of Cont

	3. Permanent Contact Loss

	D. KALMAN TRACKING UPDATES
	E. OUTPUT
	A. POST-PROCESSING
	1. Optical Flow Analysis
	2. Kalman Filter Tracking
	3. Lost Contact Notification

	B. RESULTS
	1. Optical Flow Analysis
	2. Kalman Filter Tracking
	a. Single Contact
	b. Multiple Contacts

	3. Lost Contact Notification
	4.  CAVIAR Data Results


