

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

OPTICAL FLOW ANALYSIS AND KALMAN FILTER
TRACKING IN VIDEO SURVEILLANCE ALGORITHMS

by

David A. Semko

June 2007

 Thesis Advisor: Monique P. Fargues
 Second Reader: Roberto Cristi

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Optical Flow Analysis and Kalman Filter
Tracking in Video Surveillance Algorithms
6. AUTHOR(S) Semko, David A.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 A SIMULINK-based algorithm for monitoring contacts in a surveillance video sequence using Optical
Flow Analysis and Kalman Filters was developed. The Horn-Schunk Optical Flow Algorithm was used to
identify contacts in a surveillance video sequence. The position and behavior of these contacts was
monitored by a modification of the traditional Kalman Filter. The Kalman Filter algorithm implemented has
the ability to track up to ten contacts at a time, correctly assigning each of a maximum ten filters to their
respective contacts on a frame-by-frame basis. Initial tests using artificial data show good performance of
both the Optical Flow Analysis algorithm and the Kalman Filter Tracking algorithm. Surveillance video data
was also used to test the algorithm with promising results.

15. NUMBER OF
PAGES

89

14. SUBJECT TERMS

Optical Flow, Kalman Filter, Horn-Schunk, Surveillance, Video Processing, Contact Tracking,
Morphological Operations 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

OPTICAL FLOW ANALYSIS AND KALMAN FILTER TRACKING IN VIDEO
SURVEILLANCE ALGORITHMS

David A. Semko

Ensign, United States Navy
B.S.E., Duke University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Author: David A. Semko

Approved by: Monique P. Fargues
Thesis Advisor

Roberto Cristi
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A SIMULINK-based algorithm for monitoring contacts in a surveillance

video sequence using Optical Flow Analysis and Kalman Filters was developed.

The Horn-Schunk Optical Flow Algorithm was used to identify contacts in a

surveillance video sequence. The position and behavior of these contacts was

monitored by a modification of the traditional Kalman Filter. The Kalman Filter

algorithm implemented has the ability to track up to ten contacts at a time,

correctly assigning each of a maximum ten filters to their respective contacts on

a frame-by-frame basis. Initial tests using artificial data show good performance

of both the Optical Flow Analysis algorithm and the Kalman Filter Tracking

algorithm. Surveillance video data was also used to test the algorithm with

promising results.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. VIDEO SURVEILLANCE ... 1
B. OBJECTIVE ... 2
C OVERVIEW .. 2

II. BACKGROUND.. 5
A. OPTICAL FLOW .. 5
B. KALMAN FILTER .. 7

III. OPTICAL FLOW ANALYSIS.. 13
A. OVERVIEW .. 13
B. SEGMENTATION... 14

1. Color Space Conversion ... 14
2. Optical Flow ... 15
3. Compare to Constant .. 18

C. MEDIAN FILTER.. 19
D. MORPHOLOGICAL OPERATIONS... 22

1. Quadrant Operation... 22
2. Erosion and Dilation.. 24
3. Video Concatenation ... 26

E. BLOB ANALYSIS .. 28
1. System Monitoring .. 29
2. Kalman Filter Tracking .. 30

IV. KALMAN FILTER IMPLEMENTATION.. 31
A. OVERVIEW .. 31

1. Imbedded MATLAB Functions Constraints......................... 31
B. INITIALIZATION... 34

1. State Estimates .. 34
2. State Covariance Matrices .. 35
3. Number of Contacts Vector .. 36
4. Median Number of Contacts ... 37
5. Indexing Vector.. 37

C. CONTACT MONITORING.. 37
1. Median Filter... 37
2. Filter Indexing .. 39

a. Number of Contacts is Equal to the Median
Number of Contacts Over the Last 25 Frames 39

b. Number of Contacts is Greater than the Median
Number of Contacts Over the Last 25 Frames 40

c. Number of Contacts is Less than the Median
Number of Contacts Over the Last 25 Frames 41

3. Permanent Contact Loss... 41

 viii

D. KALMAN TRACKING UPDATES.. 42
E. OUTPUT... 43

V. POST-PROCESSING/RESULTS.. 45
A. POST-PROCESSING... 45

1. Optical Flow Analysis.. 46
2. Kalman Filter Tracking .. 46
3. Lost Contact Notification .. 48

B. RESULTS... 49
1. Optical Flow Analysis.. 49
2. Kalman Filter Tracking .. 49

a. Single Contact... 50
b. Multiple Contacts .. 57

3. Lost Contact Notification .. 60
4. CAVIAR Data Results .. 60

VI. CONCLUSIONS.. 61

APPENDIX: KALMAN FILTER TRACKING CODE 63

LIST OF REFERENCES.. 69

INITIAL DISTRIBUTION LIST ... 71

 ix

LIST OF FIGURES

Figure 1. Simulink Block Diagram of Surveillance Video Processor............... 3
Figure 2. Sample Velocity Vector Field [After Ref. 4] 6
Figure 3. Kalman Filter Recursion [From Ref.7] ... 11
Figure 4. Simulink Block Diagram of Optical Flow Subsystem..................... 13
Figure 5. Simulink Block Diagram of Segmentation Subsystem................... 14
Figure 6. Sample Frame of Original Video ... 15
Figure 7. Sample Frame of Original Video after Color Space Conversion ... 16
Figure 8. Sample Frame of Video after Optical Flow Block 17
Figure 9. Sample Frame of Video at Output of Segmentation Subsystem ... 19
Figure 10. Simulink Block Diagram of Median Filter Implementation 20
Figure 11. Three Successive Frames of Segmented Video Used as an

Input to the Median Filter Implementation 20
Figure 12. Frame without Erroneous Blobs at Output of Median Filter

Implementation.. 21
Figure 13. Simulink Block Diagram of Morphological Operations

Subsystem .. 22
Figure 14. Simulink Block Diagram of Quadrant Operation Subsystem 23
Figure 15. Segmented Frame Split into Four Quadrants at the Output of

the Quadrant Operation Subsystem.. 24
Figure 16. Simulink Block Diagram of Erosion and Dilation Subsystem......... 25
Figure 17. Simulink Block Diagram of a Erosion and Dilation Subsystem for

a Particular Quadrant .. 25
Figure 18. Simulink Block Diagram of Video Concatenation Subsystem 27
Figure 19. Sample Frame after Morphological Operations............................. 28
Figure 20. Sample Frame with Bounding Boxes Superimposed 30
Figure 21. Flow Diagram for Embedded MATLAB Function Kalman Filter

Implementation.. 33
Figure 22. Simulink Block Diagram of Post-Processing Subsystem............... 45
Figure 23. Sample Frame of Kalman Filter Tracking Video Viewer................ 48
Figure 24. Vector Norm Plot for One Contact (Constant Speed and

Direction)... 51
Figure 25. Position Track for One Contact (Constant Speed and Direction) .. 52
Figure 26. Vector Norm Plot for One Contact (Varying Speed and Constant

Direction)... 53
Figure 27. Position Track for One Contact (Varying Speed and Constant

Direction)... 54
Figure 28. Vector Norm Plot for One Contact (Constant Speed and Varying

Direction)... 55
Figure 29. Position Track for One Contact (Constant Speed and Varying

Direction)... 56
Figure 30. Vector Norm Plot for Multiple Contacts Under Various

Conditions ... 58

 x

Figure 31. Position Tracks for Multiple Contacts under Various Conditions ... 59

 xi

 LIST OF TABLES

Table 1. Optimal Edge-Length for Square Structural Elements 26

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank Professor Monique Fargues for sparking my interest

in the interesting topic of surveillance video processing. I am indebted to her for

her countless hours of support in developing the algorithm presented and editing

this thesis. I would also like to thank Professor Roberto Cristi for his help

throughout the completion of this project. His advice and explanations were

invaluable in my coming to understand the topics of Optical Flow Algorithms and

Kalman Filtering.

On a more personal note I would like to thank all of the other Ensigns,

especially The Crew, who have made my time in Monterey so enjoyable. Special

thanks go to Kyle and Dan, my EE support group. I’d also like to thank my

girlfriend Bridgette for continually encouraging me when I became frustrated with

my progress in this thesis. Finally, I’d like to thank my parents who have loved

me and supported me in all of my endeavors and have helped me get to where I

am today.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

This thesis is an introductory work examining the feasibility of using

Optical Flow algorithms in conjunction with Kalman Filters for tracking of contacts

in a video surveillance scene. The overall goal of the research conducted in

automated video surveillance is to develop algorithms with the ability to

automatically process surveillance video feeds and simplify their analysis for the

user.

In order to create an algorithm that can not only track contacts in a scene,

but also analyze their behavior, three different, large-scale tasks have to be

accomplished. First the algorithm has to be able to take an incoming

surveillance video feed and segment it into a stream of frames where contacts

are distinguished from the background. Next these contacts must be tracked

throughout the video sequence. Finally, these tracks must be processed to

analyze their behavior.

In order to segment an incoming feed of surveillance video, the algorithm

developed in this thesis uses the Horn-Schunk Optical Flow algorithm. This

algorithm approximates the movement of objects in a current frame as

referenced to some previous frame. By determining the motion of objects, one

can distinguish between contacts and the background. After careful tuning and

processing, the output of the Optical Flow algorithm consists of two main parts:

the number of contacts present in the frame, and the location of the centroid of

each of these contacts. This data is passed to the Kalman Filter Tracking

algorithm for further processing.

The Kalman Filter is a type of recursive, adaptive filter that operates in the

state space. It is well-known for its ability to track objects in a timely and

accurate manner. The tracking algorithm developed in this thesis can process up

to ten contacts at a time where the number of filters activated for each frame of

data is dependent on the number of contacts deemed present in the scene. The

 xvi

Kalman Filter Tracking algorithm developed in this thesis is robust in its ability to

handle non-ideal data from the Optical Flow Analysis algorithm. It can maintain

active tracks on a contact even when the contact is temporary lost by the Optical

Flow Analysis algorithm. Its design allows it to correctly assign each filter to its

corresponding contact to ensure the most accurate operation.

Finally, a simple, “Lost Contact Notification” algorithm is developed to

automatically notify the user when a contact in the scene has been lost. This

loss could be related to a variety of factors, including system malfunction, contact

leaving the scene, contact behind an occlusion, contact loitering in the scene.

The visual notification created by the algorithm alerts the user to the last known

location of the contact and it is left to the user to decide the cause of the contact

loss.

Results are obtained using both artificial and realistic data. With artificial

data, the Kalman Filter Tracking algorithm and the Lost Contact Notification

algorithm operate very well. The system is able to track simultaneous contacts

under varying conditions and identify when a contact has been lost in the scene.

The realistic surveillance video used to test the system also yields promising

results. While tracking of contacts is not as consistent with realistic data, the

algorithm performs satisfactorily. While the algorithm does encounter some

difficulty in maintaining consistent performance, this is attributed to the

inconsistency at the output of the Optical Flow algorithm. It is left for further

research to assess the effectiveness of the Optical Flow algorithm in an objective

manner.

Overall, the algorithm developed shows much promise as a tool to aid in

automated surveillance video processing. Further research should be done in

the area of segmentation algorithms to determine an optimum algorithm to

segment the data into contacts and background. In addition, further development

of algorithms that analyze the behavior of contacts in the scene could greatly

increase the value of the system developed.

 1

 I. INTRODUCTION

A. VIDEO SURVEILLANCE

Interest in video surveillance techniques has grown significantly in the

years following the September 11th attacks [1]. This interest has led to a surge of

Closed Circuit Television (CCTV) cameras being installed in public areas for

surveillance—a departure from the traditional use by private companies for

property protection. In order for such systems to be a reliable tool for use by law

enforcement officials and other interested individuals or organizations, the

system must be able to accurately detect object behaviors and identify those

behaviors of significance. As the number of cameras per system grows, the task

of identifying events of significance becomes increasingly difficult for human

operators and necessitates the aid of computer algorithms [2].

Hu et al. [2] present a survey of the different applications which generally

necessitate the use of video surveillance algorithms. In this thesis we will

investigate the area of anomaly detection and alarming. This application

generally seeks to track people (and/or vehicles) moving through a scene, to

classify the behaviors of each track, and to identify whether these behaviors can

be considered normal or abnormal (significant).

The data used in this study was obtained from the European Community

Funded CAVIAR project/IST 2001 37540 [3]. This data was taken from a wide-

angled camera in the lobby of the INRIA Laboratories in Grenoble, France. Much

of the video contains various pedestrians either moving through the lobby or

loitering in certain areas of the lobby. This study attempts to track both types of

contacts throughout the scene. A significant event and an alarm is generated to

instruct the operator to investigate the area in which the contact was last known

to be located when the algorithm is no longer able to obtain a track of said

objects.

 2

B. OBJECTIVE

The overall goal of the study is to create a system which pre-screens

video surveillance feed and assists the user in identifying unusual activity.

Towards that goal, we designed an automated scheme capable of performing

three large-scale tasks: identifying contacts, tracking contacts, and characterizing

contact behavior.

C OVERVIEW

This thesis is organized as follows. Chapter II provides background

information on both Optical Flow Analysis and the Kalman Filter. The next three

chapters investigate each of the main processing blocks shown in Figure 1.

Chapter III describes the implementation of an Optical Flow Algorithm. Chapter

IV describes the Kalman Filter Implementation used for tracking. Chapter V

describes the post-processing performed and presents the results obtained from

post-processing. Conclusions and recommendations are presented in Chapter

VI.

Figure 1. Simulink Block Diagram of Surveillance Video Processor

 3

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

This following chapter presents background information for both the

Optical Flow algorithm and the Kalman Filter. While neither section provides

exhaustive derivations, the information which is most relevant to application in

this thesis is included. Wherever appropriate, references to more detailed

explanations and derivations are provided for the reader’s convenience.

A. OPTICAL FLOW

In their 1980 paper [4], Berthold K. P. Horn and Brian G. Schunk

presented a novel algorithm (Horn-Schunk Algorithm) for determining the optical

flow in a sequence of images (or frames of video.) Optical flow is a technique

which determines the “distribution of apparent velocities of movement of

brightness patterns in an image” [4]. These apparent velocities can arise from

either motion of the objects or motion of the viewer. In this thesis, only the case

of object motion will be considered due to the constraint of a stationary camera.

 A typical frame of data at the output of the Horn-Schunk algorithm

consists of a vector field with velocity vectors corresponding to each pixel in the

image (Figure 2.) If each pixel’s velocity were independent of the other pixel

velocities in the image, it would be impossible to obtain an accurate vector field

[4]. Horn and Schunk realized that each scene is generally composed of a finite

number of objects. These objects occupy many adjacent pixels within a scene,

and each of the pixels in a given object should ideally have similar velocities. To

ensure this behavior, Horn and Schunk introduced a constraint called the

smoothness factor.

The smoothness factor is defined as a constraint which controls how

smoothly the velocity field of the brightness patterns in images varies throughout

the image. The Horn-Schunk algorithm quantifies the smoothness of the velocity

field using the magnitude of the gradient of the optical flow velocity defined as

2 22 2

 and u u v v
x y x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠y
+ , (1)

where u and v are the velocity vectors corresponding to optical flow.

A low value for this gradient indicates that the vector field is very smooth. A high

value for this gradient indicates that the vector field is not smooth. A smooth

vector field tends to zero-out regions where no motion is detected leaving only

limited areas of non-zero vector fields. By separating the image in this fashion,

the Horn-Schunk algorithm achieves binary segmentation into regions of motion

and regions of no motion.

Figure 2. Sample Velocity Vector Field [After Ref. 4]

 6

In this thesis the Optical Flow algorithm allows us to perform the first step

in anomaly detection and alarming, namely identifying contacts. Through

segmentation of a sequence of video frames into regions of non-motion and

regions of motion, it is possible to separate the background of an image from

contacts moving through the image. Only after contacts have been identified can

contact behavior be monitored. The following section discusses the Kalman filter

which is used for contact monitoring, anomaly detection and alarming.

B. KALMAN FILTER

In 1960, R. E. Kalman presented an alternate way to solve the problem of

linear minimum mean-square error filtering using state space methods [5]. In

essence, the Kalman filter is a type of recursive, adaptive filter that operates in

the state-space. The discrete Kalman filter is characterized by both a process

model and a measurement equation.

The process model is characterized by the assumption that the present

state, kx , can be related to the past state, 1kx − , by the relationship [5]

 1k k k kx x w−= Φ + (2)

Here, is assumed to be a discrete, white, zero-mean process noise with

known covariance matrix, . The matrix

kw

kQ kΦ is referred to as the state transition

matrix which determines the relationship between the present state and the past

state.

 In the case of this thesis, we attempt to track the state of a contact based

on its last known state. Here, the state will consist of a two-dimensional position

expressed in Cartesian coordinates, a two-dimensional velocity and a two-

dimensional acceleration. As such, the state vectors will be vectors of size six by

one with the first two elements corresponding to position, the next two to velocity,

and the last two to acceleration. Assuming constant acceleration, the normalized

state transition matrix can be obtained from basic kinematic equations as follows.

 7

 2
1 1 1

1
2k k k ks s v t a t− − −= + + , (3)

 1k k kv v a 1t− −= + , (4)
 1k ka a −= . (5)

Here s is defined as contact position, v is defined as contact velocity and a

is defined as contact acceleration. The variable t is the sampling interval. In

matrix form for the two-dimensional problem considered in this study, these

kinematic equations may be rewritten as

, ,

, ,

, ,

, ,

, ,

, ,

1 0 1 0 0.5 0
0 1 0 1 0 0.5
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

x k x k

y k y k

x k x k

y k y k

x k x k

y k y k

s s
s s
v v
v v
a a
a a

−

−

−

−

−

−

1

1

1

1

1

1

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥

=
⎥

⎢ ⎥ ⎢ ⎢ ⎥⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

⎥

k

 (6)

Here, the subscripts x and y refer to the direction of the contacts position,

velocity and acceleration in the two-dimensional plane. The sampling interval t is

assumed to be 1. From this equation it follows that the state transition matrix,

, is defined as kΦ

 (7)

1 0 1 0 0.5 0
0 1 0 1 0 0.5
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Φ = ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The measurement equation is defined as

 k k kz H x v= + . (8)

Here, is assumed to be the discrete, white, zero-mean measurement noise

with known covariance matrix . The variable is defined as the vector

kv

kR kz

 8

measurement. In this thesis, only position will be measured (not acceleration or

velocity). As such, is a vector of length two. The variable is a matrix

which describes the ideal relationship between the measurement vector, , and

the state vector,

kz kH

kz

kx . Given the state vector is of length six and the measurement

vector is of length two, the matrix must be of size two by six. It follows from

the above description that is defined as

kH

kH

 . (9)
1 0 1 0 0.5 0
0 1 0 1 0 0.5kH ⎡ ⎤

= ⎢
⎣ ⎦

⎥

Drawing from both the process model and the measurement equation, the

Kalman filter attempts to improve the prior state estimate using the incoming

measurement which has been corrupted by noise. Brown and Hwang [6] achieve

this improvement by linearly blending the prior estimate, 1kx
∧

− , with the noisy

measurement, , in the equation kz

 k k kk k kx x K z H x
− −∧ ∧ ∧⎛ ⎞

= + −⎜
⎝ ⎠

⎟ . (10)

Here the superscript minus sign refers to the a-priori estimate. The factor, , is

referred to as a blending factor. It is shown [6] that the minimum mean squared

error of the estimate is obtained when the blending factor assumes the value of

the Kalman gain, i.e.

kK

 () 1T T
k k k k k k kK P H H P H R

−− −= + . (11)

The variable in Equation (11) is known as the state error covariance

matrix, or simply either the state covariance matrix or the error covariance matrix.

Generally the state covariance matrix is a diagonal matrix as implied by the

assumption of independence of the error vectors,

kP

kk ke x x
−∧

= − , at all lags not

equal to zero. The state covariance matrix is calculated from the a-priori state

covariance matrix by the equation

 (k k kP I K H P) k
−= − . (12)

 9

In this thesis, is a matrix of size six by six and thus I is the identity matrix of

size six by six.

kP

After the Kalman gain has been calculated (Equation (11)), and the state

and state error covariance matrices have been updated (Equations (10) and (12)

), the Kalman filter makes projections for the next value of k. These projections

will be used as the a-priori estimates during processing of the next frame of data.

 1k kkx x+

−∧ ∧

= Φ (13)
 (14)

+

− = Φ Φ +
1

.
k k

T
k k kP P Q

Equations (13) and (14) are the two projection equations for the state estimate

and the state covariance matrix, respectively.

Figure 3 shows the Kalman filter loop in a flow diagram form. For the

implementation used in this thesis, persistent variables for both the state

estimate and the state covariance matrix were used, as described further in

Chapter IV. In short, this choice allowed us to not distinguish between a-priori

and a-posteriori estimates derived in the Kalman filter implementation. Instead of

differentiating between a-priori and a-posteriori estimates, each estimate was

overwritten as the next was calculated. That is, the previous frame’s a-posteriori

estimate was replaced by the current frame’s a-priori estimate. Similarly, the

current frame’s a-posteriori estimate replaced the current frame’s a-priori

estimate after it was calculated. This required that no differentiation be made

between a-priori and a-posteriori estimates and thus the same memory location

could be allocated for both. This however is the only difference between the

notation used in the equations in Figure 3 and the notation used in the

Embedded MATLAB Function code found in the Appendix, which includes the

Kalman filter tracking code developed in the study.

 10

Figure 3. Kalman Filter Recursion [From Ref.7]

 11

 12

THIS PAGE INTENTIONALLY LEFT BLANK

III. OPTICAL FLOW ANALYSIS

Aside from post-processing, there are two main blocks in the Simulink

Block Diagram in Figure 1. The first of these blocks, the Optical Flow Analysis

block, will be analyzed in this section. The purpose of the Optical Flow Analysis

block is to determine contacts in the incoming surveillance video and process

them in such a way that the Kalman filter will be able to track contacts with

minimal error. Error can be caused by a variety of factors, most notably changes

in illumination that are perceived as contacts moving through the scene.

A. OVERVIEW

A view of the inner workings of the Optical Flow Analysis subsystem is

found in Figure 4. The rest of this chapter describes the specific task performed

by each block contained in this subsystem.

Figure 4. Simulink Block Diagram of Optical Flow Subsystem

It should be noted here that throughout the Optical Flow Analysis Block,

certain subsystems are tuned for optimal performance given the CAVIAR data [3]

used in this study. As such, results would undoubtedly differ if the exact

subsystem were to be used on a different set of data. Given the application of

the system created in this study, it is conceivable that cameras providing the data

would be fixed. This implies that properties of the data from the same camera

would not differ substantially over time. That said it is not only conceivable, but

inevitable, that some initial tuning would be required to achieve optimum

performance. Special care was taken to ensure, however, that the system was

 13

not over-tuned to perform well on only certain data taken from the CAVIAR study

[3]. Throughout this chapter, any tuning performed will be conspicuously

documented.

B. SEGMENTATION

The term segmentation is used here to describe the processing of a video

stream in such a way that it becomes a sequence of binary images. At the

output stage of this subsystem each of these binary images has black areas

(zeros) corresponding to portions of the frame in which no motion is detected.

Similarly, each frame of the segmented stream will also have white areas (ones)

corresponding to the frames in which motion is detected. The inner workings of

the segmentation subsystem are shown in Figure 5.

Figure 5. Simulink Block Diagram of Segmentation Subsystem

1. Color Space Conversion

The Color Space Conversion block (Figure 5) converts the color

information from the incoming video (Figure 6) to the intensity color space

(Figure 7) The video sequence which was previously coded in Red, Green and

Blue (RGB) color space is now coded by intensity as required by the Optical Flow

block.

 14

Figure 6. Sample Frame of Original Video

2. Optical Flow

The Optical Flow block (Figure 5) uses the Horn-Schunk algorithm

described earlier to estimate the optical flow between two video frames. The

tuning of several parameters was required in this block. The block computes the

optical flow between the current frame and the N -th frame back in time. As such

the parameter N was tunable to the constraints of the data in this study.

 15

Figure 7. Sample Frame of Original Video after Color Space Conversion

We noted that it is unrealistic that in the time difference between two

successive frames a person will have moved significantly given the 25 frames

per second (fps) frame rate. Thus it is unlikely that the algorithm would detect

significant optical flow and consequently no motion would be have detected if

had been set to a low number (e.g., 1). By setting the value of , the

algorithm uses a delay of 0.4 seconds to estimate optical flow, which is a

reasonable choice for N given the walking speed of the average person. A lower

N value would be sufficient in applications (e.g. traffic monitoring), where contact

speeds are faster.

N

10N =

 16

Figure 8. Sample Frame of Video after Optical Flow Block

Another tunable parameter in this block was the smoothness factor, as

discussed in Chapter II. The smoothness factor input in Simulink is inversely

proportional to the magnitude of the velocity gradients discussed in Chapter II.

That is, a low value for the smoothness factor results in a high gradient, and thus

a velocity vector field which is less smooth. Conversely, a high value for the

smoothness factor results in a low gradient, and thus a velocity vector field which

is smoother. In this thesis, the value of the smoothness factor was set equal to

0.5. By visual inspection, allowing the algorithm to detect motion throughout the

scene without being overly sensitive to noise.

 17

 18

3. Compare to Constant

For each pixel in a frame of video, the Optical Flow block estimated the

optical flow between the pixel in that frame and the same pixel in the 10th frame

back. At the output of that block, each frame consists of a frame of optical flow

vector magnitudes corresponding to each pixel (Figure 8.) For those pixels in

which little motion is detected, the value of this optical flow vector is close to

zero. For those pixels in which motion is detected, the optical flow vector is non-

zero. By viewing a histogram of the optical flow output, it is trivial to find a

constant value that is higher than zero and lower than the value for the majority

of non-zero optical-flow vector magnitudes to serve as a threshold.

The Compare to Constant block (Figure 5) compares the magnitude of the

flow vector at each pixel to the tuned value of 0.03, resulting in a sequence of

binary frames. The flow vector values which are greater than this constant

correspond to areas of motion and are represented by white areas (ones) at the

output of the Segmentation subsystem. Similarly, the flow vector values which

are less than this constant correspond to areas in which no motion is detected

and are represented by black areas (zeros) at the output of the Segmentation

subsystem (Figure 9.)

Figure 9. Sample Frame of Video at Output of Segmentation Subsystem

C. MEDIAN FILTER

One issue with the optical flow algorithm is the propensity, even with

proper tuning, to be sensitive to changes in illumination or quality of video from

frame to frame. This sensitivity often results in erroneous blobs appearing in

individual frames at the output of the Segmentation subsystem (Figure 5.) If

these erroneous blobs are small, they can generally be accounted for in the

morphological operations described later in this chapter. However, large

erroneous blobs (here large is defined as anything approaching the average size

of a person tracked in the scene) create problems for successful morphological

operations.

Two factors led to the use of a median filter to attempt to correct the

issues caused by erroneous blobs. In general, most of these erroneous blobs

are anomalies. That is, they appear in singular frames, not to appear again for at

 19

least several more frames. Moreover, in a span of three frames at a frame rate

of 25 fps, the movement of intended contacts is very small and most of the pixels

in which movement is correctly detected will be the same. A median filter serves

to decrease the effect of anomalies (or erroneous blobs) while still maintaining

the information of the correctly detected contacts. The exact implementation of

this median filter is shown in Figure 10.

Figure 10. Simulink Block Diagram of Median Filter Implementation

Figure 11 shows three successive frames that serve as an input to the

median filter as implemented in Figure 10. Each of the frames has correctly

detected three general areas of motion. The second of these frames also has

erroneous blobs that are most likely due to slight illumination changes in the

scene.

Figure 11. Three Successive Frames of Segmented Video Used as an Input to

the Median Filter Implementation

Given each of the frames is a binary image, the median filter of length

equal to three is implemented as a combination of a simple average of each pixel

over three frames followed by a rounding function operation. This approach was

 20

chosen over a direct median filter operation due to the way in which MATLAB

defines the Median function. In MATLAB if the input to a median function is an M

by N matrix, the output will be a length-M vector consisting of the median value of

each of the N column vectors. This obviously was undesired, and thus the filter

was implemented as described here.

At the output of the Product block (Figure 10) each pixel has one of four

values: . Rounding these values using the Rounding Function

block results in a binary image identical to that which would have been obtained

had a traditional median filter been applied on each pixel over a time-span of

three frames. The result is a binary image for each frame which eliminates many

erroneous blobs while maintaining correct detection of contact movement (Figure

12.)

0, 1/ 3, 2/3 or 1

Figure 12. Frame without Erroneous Blobs at Output of Median Filter

Implementation

 21

D. MORPHOLOGICAL OPERATIONS

The Morphological Operations subsystem attempts to process the video at

the output of the Median Filter subsystem in such a way that any remaining

erroneous blobs are eliminated and all correctly detected contacts are

maintained and classified as one contact. The inner workings of the

Morphological Operations subsystem are presented in Figure 13.

Figure 13. Simulink Block Diagram of Morphological Operations Subsystem

1. Quadrant Operation

Due to the wide-angle camera used in the CAVIAR data [3], the average

size of a contact in the bottom right quadrant of the video is somewhat larger

than the average size of a contact in the top left quadrant of the video. In order

to provide flexibility for the erosion and dilation operations depending on a blob’s

location in the scene, each frame was split into overlapping quadrants. Further

flexibility could have been obtained by again splitting each quadrant into smaller

quadrants. However, such a step was deemed unnecessary given the size of the

frames in this study and the relatively small difference in contact size within a

primary quadrant. The block diagram of the Quadrant Operation subsystem is

presented in Figure 14.

 22

Figure 14. Simulink Block Diagram of Quadrant Operation Subsystem

One issue with splitting the data into quadrants is the possibility that at any

time a blob may reside in more than one quadrant. In the extreme case where

the blob is resting in all four quadrants, it is likely that erosion could eliminate the

partial-blob from each quadrant and the contact would be lost. As a result, each

quadrant overlapped the lines of horizontal and vertical symmetry by ten pixels to

prevent this situation from occurring. This amount of overlap was found to be

sufficient to ensure that contacts were not lost with the selected 4-pixel wide

erosion block described later in this chapter. Figure 15 presents the four sub-

frames at the output of the Quadrant Operation block to be used in the Erosion

and Dilation block. The frame which generated these sub-frames is found in

Figure 12.

 23

Figure 15. Segmented Frame Split into Four Quadrants at the Output of the

Quadrant Operation Subsystem

2. Erosion and Dilation

The Erosion and Dilation subsystem performs tailored erosion and dilation

of each sub-frame by using optimal structuring elements on each sub-frame

(Figure 16.) Optimal erosion is achieved when the structuring element used

keeps at least the remnants of a blob for all correct contacts. If a sub-optimal

structuring element is used for the erosion operation, a valid contact could be lost

completely, or an erroneous blob could be tracked. Both of these errors create

significant barriers to optimal dilation, and, consequently, Kalman filter tracking.

Optimal dilation is obtained when the structuring element used merges all

remnants of a single blob into one contact. If a sub-optimal structuring element is

 24

used for dilation, one contact could be viewed as multiple contacts or multiple

contacts could be viewed as one contact. Again, both of these errors create

significant issues for Kalman filter tracking.

Figure 16. Simulink Block Diagram of Erosion and Dilation Subsystem

Next, each quadrant was processed with a unique set of structuring

elements to allow for optimal morphological processing (Figure 17)..

Note that the optimal structuring elements to be used in each quadrant

were derived empirically by processing a group of ten random frames from the

CAVIAR data [3]. These frames were split into quadrants. Next, resulting sub-

frames were grouped according to their quadrant, and each group of quadrant

specific sub-frames eroded using a square structuring element of edge-length

varying from two to five. At that point, the eroded sub-frames were compared to

the corresponding original frames and a decision was made on the optimal

structuring element size via visual inspection.

Figure 17. Simulink Block Diagram of a Erosion and Dilation Subsystem for a

Particular Quadrant
 25

 26

After an optimal structuring element for erosion was determined, each

group of sub-frames was eroded using said structuring element. Determination

of the optimal structuring element for dilation was similar to that of erosion. Each

group of sub-frames was dilated with a square structuring element of edge-length

which varied from five to nineteen. The dilated sub-frames were compared to the

corresponding frames and a decision was made on the optimal structuring

element size via inspection.

Quadrant
Erosion Edge-Length

(pixels)
Dilation Edge-Length

(pixels)

Top Left 4 11

Top Right 4 14

Bottom Left 4 14

Bottom Right 4 15

Table 1. Optimal Edge-Length for Square Structural Elements

The optimal edge-lengths for the structural elements in each quadrant are

presented in Table 1. For simplicity, only square structuring elements were used

in this tuning process. An infinite number of possibilities exist for size and shape

of structuring elements. Depending on the data used, the size and shape of the

optimal structuring element could vary significantly from quadrant to quadrant.

3. Video Concatenation

Before the morphed frames can enter the Blob Analysis subsystem

(Figure 4) the sub-frames must be concatenated to form a complete frame again.

Since each quadrant overlapped the adjacent quadrants, some pre-processing

was necessary before concatenation. The subsystem used for concatenation is

presented in Figure 18.

Figure 18. Simulink Block Diagram of Video Concatenation Subsystem

Four Submatrix blocks are used prior to horizontal concatenation of the

top left and top right quadrants, as well as the bottom left and bottom right

quadrants. These blocks return sub-frames that contain no overlap such that

concatenation will result in frames which are of the same size as the original.

Following the horizontal matrix concatenation, the resulting sub-frames are half

of the original frame size. These sub-frames are concatenated vertically to

create a full frame. Next, a Compare to Constant block is applied at the output of

the Video Concatenation subsystem to ensure the frame is a binary image

containing Boolean values of zero and one.

 27

Figure 19. Sample Frame after Morphological Operations

A sample frame at the output of the Morphological Operations subsystem

is presented in Figure 19. Comparing this frame to the frame it was generated

from (Figure 12) shows that the erosion operation removed one of the areas of

detected motion, thus deeming it not a contact. Further dilation has created solid

blobs out of the other two areas of detected motion and these two blobs will be

tracked as contacts.

E. BLOB ANALYSIS

The Blob Analysis block (Figure 4) processes the binary frames at the

output of the Morphological Operations subsystem for use in both system

monitoring and Kalman filter tracking. Several parameters are set in the Blob

Analysis block to improve system functionality: minimum blob size and maximum

number of blobs.

 28

 29

The minimum blob size provides an added level of protection against

erroneous blobs by specifying a minimum size that a blob must be in order to be

tracked. Thus, any blob smaller than the minimum size requirements is not

tracked. The minimum blob size was set to approximately 250% of the size of

the largest dilation structural element (225 pixels) or 560 pixels.

The maximum number of blobs provides a bound on the number of

contacts that can be tracked by the system. For this study the maximum number

of contacts was set to ten. This number was low enough so as not to be

unwieldy, yet high enough to allow for the tracking of multiple contacts. This

number was also used to determine the maximum number of Kalman filters to

make available for tracking in the Kalman Filter Tracking Implementation

discussed in Chapter IV.

1. System Monitoring

As a debugging tool, the output of the Optical Flow Analysis subsystem

(Figure 1) is a convenient place to analyze how the system is performing. The

Blob Analysis block has an option which when selected produces the coordinates

of a bounding box around each blob on a frame by frame basis. By selecting this

option, these bounding boxes can be superimposed on the video sequence and

the user has a simple method of monitoring system performance. The details of

this monitoring process will be explained further in Chapter V. A sample frame

with bounding boxes superimposed is presented in Figure 20.

Figure 20. Sample Frame with Bounding Boxes Superimposed

2. Kalman Filter Tracking

The output of the Blob Analysis block is also used as an input to the

Kalman Filter Implementation (Figure 1.) The Blob Analysis block has two

options that were selected for use in the Kalman Filter Implementation. The

number of blobs found is provided as the input count to the Kalman Filter

Implementation. The location of the center of mass of each blob is also provided

as the measurement input z to the Kalman Filter Implementation. The exact

implementation of the Kalman filter algorithm will be discussed next in Chapter

IV.

 30

 31

IV. KALMAN FILTER IMPLEMENTATION

Aside from post-processing, there are two main blocks in the Simulink

Block Diagram in Figure 1. The second of these blocks, the Kalman Filter

Implementation block, will be analyzed in this section. The purpose of the

Kalman Filter Tracking Implementation is two-fold: to correctly assign a tracking

filter to each of the measurements entering the system from the Optical Flow

Analysis block and to alert the user when a contact has been lost (a significant

event has occurred.)

A. OVERVIEW

An Embedded MATLAB Function block was used in the Simulink Block

Diagram shown in Figure 1, to implement the Kalman Filter Tracking algorithm.

This type of block is often used when the function to be performed is more easily

expressed in MATLAB’s symbolic language than in Simulink’s graphical

language [8]. While most of the functionality present in MATLAB can be utilized

in an Embedded MATLAB Function, there are some limitations to its use. Two

types of limitations of interest are limitations on defining the type and size of

variables and limitations on indexing operations.

1. Imbedded MATLAB Functions Constraints

Embedded MATLAB functions require that the type and size of a variable

must be defined prior to being called for the first time [8]. In short this means that

a variable can never be defined as an empty matrix. It also required that careful

thought be given to how to handle the data in this thesis. That is, even though at

any given time we may be tracking less than ten contacts, which is the maximum

number of contacts assumed to exist in the video at a given time, the Embedded

MATLAB Function must be written in such a way that it can accommodate the

maximum number of possible contacts. As a result, ten filters were created in

 32

the function and the number of necessary filters to access in a given frame was

determined based on the number of contacts at the output of the Optical Flow

Analysis subsystem.

The limitations on indexing operations are related to the limitations on the

type and size of variables. In short, Simulink requires that the indices of a

variable be defined explicitly when it is indexed within a loop.. That is, this

variable must be defined in such a way that a known quantity of memory can be

allocated to it prior to execution of the loop. This constraint sometimes created

the need for workaround techniques when indexing certain variables in this

thesis. These workaround techniques may appear as inefficient when looking at

the code present in the Appendix. However, throughout this chapter, the reasons

behind these workarounds will be conspicuously documented to benefit the

reader.

The rest of this chapter presents the details of each section of the tracking

algorithm. Figure 21 presents a flow diagram which illustrates the progression of

the code for each frame. This flowchart and the code present in the Appendix

should be used as references when reading the remainder of this chapter.

Figure 21. Flow Diagram for Embedded MATLAB Function Kalman Filter

Implementation

 33

B. INITIALIZATION

The initialization portion of the Kalman Filter Tracking function first

includes the definition of several persistent variables. Persistent variables are

variables which are local to the function in which they are defined. However,

their value is retained between calls to the function. This functionality gracefully

complemented the reliance of the Kalman Filter on the position estimates from

the previous frame. Persistent variables allowed for a type of feedback system

that operated within the constraints of the Embedded MATLAB Function block.

Thus, the algorithm checks whether one of these persistent variables is

empty prior to processing each frame Note that persistent variables are empty

only when the algorithm first starts, i.e. when the first frame of data is processed.

In such a case, initial conditions must be set for several variables. The rest of

this section will be devoted to discussing the specific initial conditions set for

each variable of interest.

1. State Estimates

The state estimates for each of the ten Kalman filters are referred to as

the variable XHAT. XHAT is defined as a matrix of size six by ten, where each

column corresponds to a specific state estimate for a given filter. The first two

rows of the column vector represent the coordinates (row, column) of the position

estimates. The next two rows are the velocity estimates, and the last two rows

are the acceleration estimates. Thus, a one-filter XHAT has the form

row position
column position

row velocity
column velocity
row acceleration

column acceleration

XHAT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. (15)

 34

Note that the initial positions were centered in the middle of the frame, so

as not to bias initial conditions. Thus, the initial row and column positions for

each filter were set to 144 and 192, respectively, for a frame size of 288 pixels by

384 pixels. Velocity and acceleration pixels were set to small non-zero values of

0.1. Thus, after initialization, the initial six-by-ten matrix, XHAT, took the form

144 144 ... 144
192 192 ... 192
0.1 0.1 ... 0.1

.
0.1 0.1 ... 0.1
0.1 0.1 ... 0.1
0.1 0.1 ... 0.1

XHAT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (16)

2. State Covariance Matrices

In addition to state estimates, each filter is defined by its own state

covariance matrix of size six by six. The matrix PP implemented in the algorithm

is a side-by-side concatenation of ten of these covariance matrices to form a

matrix of size six by sixty. Each of these matrices is a diagonal matrix, as

defined in Chapter II. The first two elements on the diagonal correspond to the

covariance of the position estimate. The next two elements correspond to the

covariance of the velocity estimate. The last two elements correspond to the

covariance of the acceleration estimate.

The initial conditions for each of these matrices are set arbitrarily. Given

the position of the contacts are known with greater accuracy than both the

velocity and acceleration, the values increase along the diagonal. If we assume

the position of the contact is known within three pixels, the position covariance

was initialized at or nine. Similarly, assuming the velocity is known within five

pixels per second and the acceleration is known within seven pixels per second

23

 35

squared, we obtain covariance values for velocity and acceleration of 25 and 49,

respectively. After initialization, the six by sixty covariance matrix, PP, takes the

form

 (17)

9 0 0 0 0 0 ...9 0 0 0 0 0
0 9 0 0 0 0 ...0 9 0 0 0 0
0 0 25 0 0 0 ...0 0 25 0 0 0

.
0 0 0 25 0 0 ...0 0 0 25 0 0
0 0 0 0 49 0 ...0 0 0 0 49 0
0 0 0 0 0 49...0 0 0 0 0 49

PP

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Throughout the operation of the algorithm, these covariance matrices will

be updated to reflect a more accurate representation of the covariance of the

state estimates.

3. Number of Contacts Vector

The number of contacts in each frame needs to be monitored in order to

keep track of changes in the contact behavior. However, changes cannot be

accurately monitored on a frame-by-frame basis because of the fluctuations in

the number of contacts at the output of the Optical Flow Analysis block. As a

result, it was necessary to monitor the number of contacts over several frames

and monitor trends in the number of contacts over those frames. The number of

contacts was monitored over the last second of video (25 frames) in order to

provide enough data to monitor these trends.

A vector used to monitor the number of contacts in the present frame and

the 24 previous frames was created and referred to as numbin. Appropriate

initial values for numbin must be set when the initial frame is processed. Thus,

each value of numbin was set equal to the number of contacts in the first frame,

num, to allow for tracking of all contacts found in the first frame. In other words,

upon initialization, numbin is a vector of length 25 with all 25 values in the vector

equal to num.

 36

4. Median Number of Contacts

The median number of contacts in the last frame is a variable created to

aid in the identification of lost contacts. It is referred to as lastmed. Note that

there is no previous frame from which to obtain a value for lastmed when the

algorithm processes the first frame of video. As a result, the parameter lastmed

is initialized to the value of the number of contacts in the first frame, num.

5. Indexing Vector

An indexing vector index is used to keep incoming measurement values,

i.e., locations, (z), state estimates (XHAT) and state covariance matrices (PP)

properly associated. The indexing vector, index, of size ten by one is set to

 []'1 2 3 4 5 6 7 8 9 10index = (18)
to ensure each initial location is assigned a different filter.

C. CONTACT MONITORING

In this section we will discuss how contact behavior is monitored by the

algorithm. The first sub-section will discuss how the algorithm determined how

many filters to activate based on the number of contacts at the output of the

Optical Flow Analysis Block. The second sub-section will discuss how each of

these filters is assigned to the correct contact. The last sub-section will discuss

how the algorithm handles a lost contact.

1. Median Filter

Despite the copious amounts of tuning discussed in Chapter III, the

number-of-contacts output (num) of the Optical Flow Analysis block is

susceptible to some degree of fluctuation. Note that these fluctuations are

normally of no more than one contact in either direction, and usually do not last

much longer than one frame. A persistent increase (or decrease) in the number

of contacts indicates a gain (or loss) of contact. A change in the number of

 37

 38

contacts reflects an anomaly in the data at the output of the Optical Flow

Analysis block when the behavior is not persistent. As such, a median filter of

length 25 was designed to monitor the behavior of num over the current and the

previous 24 frames to minimize the impact due to temporary fluctuations. The

median filter allows temporary fluctuations due to anomalies in the Optical Flow

Analysis block to be ignored and only persistent changes in the number of

contacts to be tracked. The output of the median filter was also used to

determine the number of Kalman filters needed for each frame of video.

The median operation was chosen instead of a traditional mean for two

reasons. First, recall that the input and outputs to the median filter are always

integer values. This behavior was desired as the output of the filter is used as an

indexing operator for various loops throughout the function. The median filter

allowed for correct indexing without the implementation of a rounding function.

Second, the median operation ensured that there was no need to prioritize

which contacts would be tracked. The benefit of this behavior may be

overlooked at first, however it proved quite powerful. As an example, assume

that for 25 successive frames only one contact was present in the video. Next

assume that for the next 25 successive frames nine contacts were present in the

video. A simple moving-window average of length 25 over this length of time

would yield values spanning from one to nine. For the time when the moving-

window average filter yielded an output of five, for example, an undesirable result

is produced. The algorithm must decide to which five of the nine contacts to

assign a filter. A median filter over the same length of time would only have two

possible outputs, either one or nine. The median filter eliminates the decision of

which contacts to track by tracking either the initial contact, or the subsequent

nine. While the example presented here is highly unlikely given the constraints

of the problem, the same example can be shown to be true for smaller

differences in the number of contacts (e.g. two and four).

Initializing this filter at the start of the algorithm is done by selecting each

coordinate of the vector numbin to be equal to the value of num at the first frame.

 39

This choice was made as it allowed for the median to be calculated at the first

frame without error. For each subsequent frame, the last 24 entries in the vector

are copied to the first 24 entries in the vector and the value of num for the current

frame is inserted as the last value. The median value of the newly updated

numbin is calculated as the parameter mednum. As mentioned, mednum is used

later to determine the number of Kalman Filters needed in each frame.

2. Filter Indexing

After the initialization step is complete, the algorithm must assign a filter to

each of the contacts in the measurement vector (z). This step is accomplished

by comparing each incoming position in z to the previous estimated position

values present in XHAT which have remained persistent from the last frame. It

should be noted that throughout the function, it is assumed that the number of

contacts from frame to frame changes by at most one in either direction. This

assumption was deemed acceptable given the low contact density of the data

used and the high frame rate of the video (25 fps).

a. Number of Contacts is Equal to the Median Number of
Contacts Over the Last 25 Frames

No further indexing is necessary when the estimated variable num

is equal to mednum, due to the initial conditions discussed above and the

behavior of the Blob Analysis block (Figure 4). Note that a distinct filter is

assigned to each contact because the parameter index was initially defined to

include ten distinct values.

Note that the correct filter is still matched to the correct input

measurement when values in index change from their initial conditions, because

the Blob Analysis block (Figure 4) always orders its outputs in increasing order

by row coordinate. Keeping the values in index constant in this case makes the

assumption that one contact does not leave the scene at exactly the same time

as another contact enters it. Given the frame rate of the data as 25 fps, the

 40

likelihood of this event is negligible and this assumption is deemed acceptable.

In the unlikely event that this assumption is false, the Kalman filter is flexible

enough that it will equilibrate to the state of the new contact within a nominal

amount of frames.

b. Number of Contacts is Greater than the Median Number
of Contacts Over the Last 25 Frames

Indexing becomes necessary when num is found to be greater than

mednum. While the added contact will not be immediately tracked due to the

Median Filter described above, it is important that the new contact be identified

and only the contacts present in the last frame be assigned filters. Thus, each

measurement in the vector z is individually compared to all of the previous

estimated positions in XHAT to assign the correct incoming measurement to the

correct filter. This step is accomplished by calculating the vector norm of the

difference between each measurement in z and all previous position estimates in

XHAT. Next, the index of the estimate corresponding to the minimum norm, and

consequently the index of the filter used to determine said estimate, is

determined.

Given a contact will not realistically move more than a few pixels in

the time between two frames, each of the previous position estimates will be

correctly matched to the corresponding incoming measurement via the vector

norm minimization calculation. For the situation where N contacts increase to

N+1 contacts, the new contact is assigned the filter of index N+1. This filter is

defined by initial conditions described above. If this contact remains in the scene

long enough for mednum to increase to N+1, the new contact will be tracked

using the filter of index N+1 under the conditions described in Subsection 2.a.

above.

c. Number of Contacts is Less than the Median Number of
Contacts Over the Last 25 Frames

Indexing also becomes necessary when num is smaller than

mednum, which reflects a temporary loss of contact. As a result, the number of

active filters is larger than the number of incoming measurements. Indexing

occurs for the N-1 measurements by computing the vector norm between each

measurement and the N position estimates as described above.

Next the incoming measurements vector, z, is redefined to include

a measurement for the contact which has been lost in the frame. In effect, the

incoming measurement matrix of size two by N-1 is redefined as a matrix of size

two by N. The added measurement is obtained by copying the position estimate

from the previous frame which corresponds to the lost measurement. This

procedure results in the filter being continually updated if the contact is only lost

for one or a few frames. If the loss of contact is persistent, (in this case for more

than 13 frames in a 25 frame span of time) the contact is deemed lost and

mednum assumes the value of N-1. Further processing of the lost contact will be

described in the following sub-section.

3. Permanent Contact Loss

If a loss in contact is persistent for 13 out of 25 consecutive frames, the

parameter mednum decreases to a value of one less than lastmed. This change

is deemed a significant event and thus an alert will be sent to the user. In

practical application, this situation could indicate that a contact has left the room,

hidden behind an occlusion, or stopped moving. In order for the user to have

some indication of which behavior has led to the loss of contact, the last known

position of the contact will be marked on the current video frame. In the worst

case scenario, this will be the position of the contact 13 frames ago, or

approximately 0.5 seconds ago. By visually inspecting the current video

/ 25

 41

 42

sequence the user should be able to identify which of the above behaviors has

caused the contact to be lost.

The index of the lost contact is obtained via the method described above.

The last position estimate which corresponds to this index is copied to the

variable LCpos. This variable is used to create a mark on the video sequence

corresponding to the lost contact in a process which will be described in Chapter

V. Since the contact has now been lost, the filter corresponding to the lost

contact is reset to its initial conditions. Finally, whether or not a contact has been

lost, lastmed is set to the value of medcount so that it can be used in the

processing of the next frame of video.

D. KALMAN TRACKING UPDATES

Before the Kalman tracking updates can be applied to each filter, the

indexing vector is utilized to obtain the desired state estimates and covariance

matrices from XHAT and PP respectively. A “for loop” was used to update each

Kalman filter individually, where the vector index is used to access the correct

state estimate in XHAT. Note that each column of the correct covariance matrix

in PP is assigned separately to work around some of the indexing issues with

Embedded MATLAB Functions as discussed above.

The individual state estimates and covariance matrices are assigned the

variable-names xhat and P, respectively. Next, the Kalman equations are

implemented, as described in Chapter II using the values xhat and P. After all

equations are implemented, the updated values of xhat and P are copied to their

corresponding locations in the variables XHAT and PP. Again to combat issues

with indexing, the values copied to PP are copied one column at a time.

E. OUTPUT

The only relevant outputs from the Kalman Filter Implementation are the

position estimates present in XHAT and the position of any lost contacts, lcpos,

in this thesis. As such, the output of the Embedded MATLAB Function

implementation consists of two variables. At each frame a two-by-ten matrix of

position vectors (xhatOut) is produced. For N contacts, the first N position

vectors in the matrix xhatOut correspond to the position of the N contacts. The

remaining position vectors correspond to the initial position conditions as

defined earlier in this chapter.

10 N−

Also present at the output is a position vector of length two corresponding

to the position of a lost contact. When there is no lost contact, lcpos assumes

the value []'0 0 . When a contact has been lost, lcpos assumes the value of the

position vector corresponding to the last known location of the contact. The post-

processing of these two output variables will be discussed further in Chapter V.

In theory the persistent variables defined earlier are also outputs of the Kalman

Filter Implementation block. These outputs however are of no practical use to

the user and are only accessed by the algorithm upon processing of the next

frame of video.

 43

 44

THIS PAGE INTENTIONALLY LEFT BLANK

V. POST-PROCESSING/RESULTS

In this chapter post-processing techniques used to monitor system

performance are described. Results which describe the performance are also

presented.

A. POST-PROCESSING

Aside from the two blocks discussed in Chapters III and IV, the final block

in the subsystem created was the Post-Processing/Video Output Subsystem

(Figure 1.) This block was used to process the outputs from both the Optical

Flow Analysis and Kalman Filter Tracking Implementation blocks and verify

correct behavior of said blocks.

Figure 22. Simulink Block Diagram of Post-Processing Subsystem

Figure 22 presents a view of the inner workings of the Post-

Processing/Video Output Subsystem. The first video output block is simply an

output of the input video in the intensity color-space. The rest of this section will

be dedicated to describing the task performed by each of the remaining video

viewers.

 45

 46

1. Optical Flow Analysis

The second video viewer shown in Figure 22 is the Optical Flow Video

Viewer. This video viewer takes four inputs. The first three inputs are the input

video in RGB color-space. The last of these inputs is labeled Pts (Bbox). This

input is identical to the BBox output shown in Figure 4. The Blob Analysis Block

shown in Figure 4 produces coordinates for a bounding box around every blob in

each frame. The Draw Rectangles block in Figure 22 draws rectangles on the

video frame as defined by these coordinates.

In short, the Optical Flow Video Viewer allows the user to ensure that the

Optical Flow Analysis subsystem is operating properly. The user can see in real-

time which contacts in the video are being sent to the Kalman Filter Tracking

Implementation block by monitoring the Optical Flow Video Viewer. If bounding

boxes are not consistently surrounding obvious contacts in the image, then the

Optical Flow Video Viewer serves as an indication that the Optical Flow Analysis

subsystem is not working properly for the data being used. On the contrary, the

user can deduce that the Optical Flow Analysis subsystem is working as desired

when contacts are consistently surrounded by bounding boxes. Figure 20 shows

a sample frame output of the Optical Flow Video Viewer with bounding boxes

superimposed on contacts in the scene.

2. Kalman Filter Tracking

The third video viewer shown in Figure 22 is the Kalman Filter Tracking

Video Viewer. This video viewer takes four inputs as well. The first three inputs

are the input video in RGB color-space. The last of these inputs is labeled Pts

(Tracks). This input is identical to the xhatOut port at the output of the Kalman

Filter Tracking Implementation. This output is a matrix of size two by ten where

each column is a position vector corresponding to either the position of a contact

 47

or the initial conditions set at the center of the frame. The Draw Markers block in

Figure 22 draws ten circular marks on the video frame as defined by each of

these ten position vectors.

 In short, the Kalman Filter Tracking Video Viewer allows the user to

ensure that the Kalman Filter Tracking algorithm is operating properly. The user

can see in real-time which contacts in the video are being tracked by the Kalman

Filter Tracking Implementation block via markers drawn on the video frames.

The Kalman Filter Tracking Video Viewer serves as an indication that the Kalman

Filter Tracking Implementation subsystem is not working properly when markers

are not consistently following obvious contacts in the image. On the contrary, the

user can deduce that the Kalman Filter Tracking Implementation subsystem is

working as desired when contacts are consistently tracked by markers.

Figure 23 shows a sample frame of the Kalman Filter Tracking Video

Viewer output. The marker drawn at the middle of the frame (indicated by an

arrow) corresponds to the initial conditions of the eight inactive filters. Although

only one marker is visible, in actuality there are eight markers overlapping each

other at this position. The other two markers are correctly tracking contacts in

the scene.

Figure 23. Sample Frame of Kalman Filter Tracking Video Viewer

3. Lost Contact Notification

The last video viewer shown in Figure 22 is the Lost Contact Video

Viewer. This video viewer takes four inputs as well. The first three inputs are the

input video in RGB color-space. The last of these inputs is labeled lcpos. This

input is identical to the lcpos port at the output of the Kalman Filter Tracking

Implementation. This output is a position vector which takes either the value

[0,0]' or the position of a lost contact. Given the lost contact position is only

produced for the frame in which the contact is lost, some processing is necessary

before it can be sent to the Draw Markers block. The Delay and Sum Filter sums

the value of lcpos over the last 50 frames. It is assumed here that two contacts

are not lost within two seconds (50 frames) of each other. Given when no

 48

 49

contact is lost the output is simply a vector of zeros, the filter allows the position

of the lost contact to be sent to the Draw Markers block for 50 consecutive

frames.

B. RESULTS

This section is devoted to discussing the results of the three major areas

investigated in the Post-Processing/Video Output subsystem. The first sub-

section describes the results of Optical Flow Analysis. The second sub-section

describes the results of Kalman Filter Tracking. The third sub-section describes

the results of Lost Contact Notification.

1. Optical Flow Analysis

Results for the Optical Flow Analysis portion of this thesis were subjective

in nature. The goal of the Optical Flow Analysis subsystem was to segment the

video sequence into binary frames containing blobs which could be tracked as

contacts. Jacinto C. Nascimento and Jorge S. Marques [9] have presented

metrics for performance evaluation of object detection algorithms. This field is

very underdeveloped, and little information is available on how to monitor the

performance of algorithms like the Optical Flow Analysis subsystem. As such,

the point of the results for this subsystem was simply to provide a proof of

concept. That is, the Optical Flow Analysis subsystem did provide a consistent

stream of contacts to be tracked by the Kalman Filter Tracking algorithm. The

process of objectively defining results of the Optical Flow Analysis will be left for

further study.

2. Kalman Filter Tracking

In order to determine how well the Kalman Filter tracked contacts

throughout the scene it was necessary to create a ground truth to compare

against the Kalman Filter Tracking algorithm output. To achieve this, several

artificial videos were created. These videos consist of one or more white blobs

 50

moving through a black background. These videos simulate the video sequence

found at the output of the Optical Flow Analysis block under ideal conditions.

Results for both single contacts and multiple contacts are presented in the

following sub-sections.

a. Single Contact

A single contact was tracked under three different conditions. The

first condition was that of constant direction and speed. The second condition

was that of constant direction and varying speed. Finally the contact was tracked

under constant speed and varying direction.

For each condition, two figures are shown. The first plots the

vector norm of the difference between the known position (z) and the Kalman

Filter estimate (xhat) plotted against time. The second is a three-dimensional

plot showing the position of the contact (z) as well as the position of the track

(xhat) against time. In all three cases the first plot shows that the norm

approaches zero in much less than a second. This is reflected in the fact that the

second plot for all three cases shows overlapping tracks for z and xhat after a

nominal amount of frames. The output from the Kalman Filter Tracking Video

Viewer is available at www.nps.navy.mil/faculty/fargues/theses/dsemko/.

0 1 2 3 4 5 6 7 8
−10

0

10

20

30

40

50

60

70

80

t (sec)

||x
ha

t−
z|

|

Figure 24. Vector Norm Plot for One Contact (Constant Speed and Direction)

 51

0
2

4
6

8

0

100

200

300
0

50

100

150

200

250

V
er

tic
al

 C
om

po
ne

nt

time(sec)Horizontal Component

z
xhat

Figure 25. Position Track for One Contact (Constant Speed and Direction)

 52

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−10

0

10

20

30

40

50

60

70

80

t (sec)

||x
ha

t−
z|

|

Figure 26. Vector Norm Plot for One Contact (Varying Speed and Constant

Direction)

 53

0

0.5

1

1.5

2

0

50

100

150

200

250
0

50

100

150

200

250

V
er

tic
al

 C
om

po
ne

nt

time(sec)Horizontal Component

z
xhat

Figure 27. Position Track for One Contact (Varying Speed and Constant

Direction)

 54

0 1 2 3 4 5 6 7 8
−10

0

10

20

30

40

50

60

70

t (sec)

||x
ha

t−
z|

|

Figure 28. Vector Norm Plot for One Contact (Constant Speed and Varying

Direction)

 55

0

2

4

6

8

0

50

100

150

200
10

20

30

40

50

60

70

V
er

tic
al

 C
om

po
ne

nt

time(sec)Horizontal Component

z
xhat

Figure 29. Position Track for One Contact (Constant Speed and Varying

Direction)

 56

 57

b. Multiple Contacts

Three separate contacts were tracked simultaneously. One of

these contacts had a constant speed and constant direction. The second contact

had a constant speed and a variable direction. The third contact had a variable

speed and a constant direction. Again, a plot of the vector norms of each of the

known locations (zk) and the estimated positions (xhatk) are shown in Figure 30.

Each subplot corresponds to the norm vector between the known location and its

respective estimated position. As in the case of a single contact, the value of this

norm approaches zero within a nominal number of frames. As in the case of a

single contact, the position track plot shown in Figure 30 concurs with the vector

norm plots as the tracks for both the known locations and their respective

estimated positions overlap after a nominal amount of frames. The output from

the Kalman Filter Tracking Video Viewer is available at

www.nps.navy.mil/faculty/fargues/theses/dsemko/.

0 1 2 3 4 5 6
−2

0

2

4

6
Track 1

||x
ha

t−
z|

|

0 1 2 3 4 5 6
−2

0

2

4

6
Track 2

||x
ha

t−
z|

|

0 1 2 3 4 5 6
−2

0

2

4

6
Track 3

t (sec)

||x
ha

t−
z|

|

Figure 30. Vector Norm Plot for Multiple Contacts Under Various Conditions

 58

0
1

2
3

4
5

6

0

50

100

150

200

250

300
0

50

100

150

200

250

300

V
er

tic
al

 C
om

po
ne

nt

time(sec)Horizontal Component

z1
z2
z3
xhat1
xhat2
xhat3

Figure 31. Position Tracks for Multiple Contacts under Various Conditions

 59

 60

3. Lost Contact Notification

Again, the results for the Lost Contact Notification behavior were very

subjective in nature. Proof of concept was obtained by creating artificial data (as

discussed in the previous sub-section) and visually determining whether the lost

contact notification operated properly. Two videos (from the Kalman Filter

Tracking Video Viewer and the Lost Contact Video Viewer) showing the correct

behavior of this portion of the algorithm are available at

www.nps.navy.mil/faculty/fargues/theses/dsemko/. These videos show correct

tracking of a contact until it is deemed permanently lost, at which point the lost

contact notification appears on the video.

4. CAVIAR Data Results

In addition to the artificial data constructed for analysis in the previous two

subsections, the algorithm was used on the data from the CAVIAR study [3]. A

sample video showing the behavior of the algorithm under actual conditions can

be found at www.nps.navy.mil/faculty/fargues/theses/dsemko/. While, as

expected, the algorithm does not perform as well as the case with artificial data,

tracking of contacts is maintained somewhat consistently throughout the video.

 61

VI. CONCLUSIONS

The problem of tracking objects in a scene hinges on two main factors: the

speed to process the video in real-time and the accuracy to distinguish between

contacts moving in the scene. In this thesis we have shown that through use of

Optical Flow Analysis algorithms as well as Kalman Filter Tracking algorithms it

is possible to track contacts through a scene in real-time and identify some basic

contact behaviors.

The Optical Flow Analysis algorithms used in this thesis presented the

largest barrier to fast and accurate operation. Because the Optical Flow Analysis

is an iterative process to determine the best approximation to the optical flow

between video frames, there is an inevitable trade-off between accuracy and

speed. In order to accurately distinguish contacts moving in a scene, the

computational time of the algorithm must be increased to allow for more

iterations. If the required increase in processing time is too large, the algorithm

cannot possibly operate in real-time.

The Kalman Filter Tracking algorithm implemented in this thesis was novel

in its ability to process more than one contact at a time and assign the correct

filter to its respective contact. Using artificial data simulating ideal output from

the Optical Flow Analysis, the algorithm developed performed encouragingly.

The algorithm was able to correctly track contacts moving under a variety of

conditions and notify the user when a contacts track had been lost. Using real

data, in conjunction with the Optical Flow Analysis algorithm, the Kalman Filter

Tracking algorithm was able to track contacts with moderate consistency. Due to

the success with artificial data, any inconsistencies in tracking can be traced to

the fluctuations in performance of the Optical Flow Analysis algorithm.

Finally, the Lost Contact Notification algorithm was able to correctly

identify the last known location of a contact and provide a visible alert to the user.

This behavior was admittedly simple, but did indicate a possibility for further

 62

advancement. It is conceivable that further work could lead to more complex

notification systems that would further ease the workload placed on the user

when viewing the surveillance video.

Future research in the area of surveillance video processing should be

focused in two directions. First, due to the fluctuation in performance of the

Optical Flow Analysis algorithm, significant work should be done to determine an

objective measure of performance for this algorithm. The question of whether or

not Optical Flow is the proper algorithm to use for segmentation should also be

examined. Other algorithms may exist that could be better suited to accurate,

real-time processing of video. These algorithms could provide similar outputs to

be used in conjunction with the Kalman Filter Tracking algorithm presented in this

thesis which has shown much promise.

Second, research should be focused in the area of determining contact

behavior. While we have shown the ability to detect a loss of a contact, there are

many more ways to classify significant behavior. For example, future research

could explore areas such as the merging of contacts into groups and also the

dividing of groups of contacts into separate contacts. Building off of the work in

this thesis, there are a number of different ways to classify contact behavior

which could further benefit the user and should be explored.

 63

APPENDIX: KALMAN FILTER TRACKING CODE

%kalman_10
%The following code processes the output measurements from the Optical
%Flow Analysis block (z) and the number of contacts (num) at the output
%of the same block and performs a Kalman Filter Tracking operation on
%each measurement to determine an estimated position (xhatOut). The
%code also monitors changes in the number of contacts and produces the
%last known location of a contact (lcpos) if a contact is lost.

function [lcpos, xhatOut]=kalman_10(z,num)

%The following variables are set as persistent in order to make them
%available frame after frame.
persistent XHAT
persistent PP
persistent lastmed
persistent numbin
persistent P
persistent index
persistent XHATtemp

%Initial conditions for various variables are set here for use throughout
%the embedded MATLAB function
if isempty(PP)
 XHAT = 0.1*ones(6,10); %Estimated pos./vel/accel.
 XHAT(1,:)=144*ones(1,10); %Estimated pos. (row)
 XHAT(2,:)=192*ones(1,10); %Estimated pos. (column)
 pp = diag([9 9 25 25 49 49]); %Initial P-covariance matrix (6x6)
 PP=[pp pp pp pp pp pp pp pp pp pp];%10 P matrices side by side
 numbin=num*ones(25,1); %Bin tracks num over succ.frames
 lastmed=num; %Bin median
 P=pp; %Initial value for P
 index=[1:10]'; %Index vector for filter assignment
 XHATtemp=zeros(6,10); %Temporary estimated pos.
end

%Numbin is continually updated to include information from the current
%frame and 24 previous frames. Median value for number of contacts (num)
%is calculated as mednum.
numbin(1:24,1)=numbin(2:25,1);
numbin(25,1)=num;
mednum=median(numbin);

 64

%Each measurement (z) is compared to the position estimates which have
%remained persistent from last frame. Each measurement is paired with
%its closest position estimate and the index of said estimate is recorded.
%Two “for loops” are used to ensure that no two successive measurements are
%matched with the same filter and position estimate. The first loop
%calculates the index for the first measurement and the second calculates
%it for all subsequent measurements.
if mednum~=num
 normMIN=10e10;
 for j=1:lastmed
 normCALC=norm(z(:,1)-XHAT(1:2,j));
 if normCALC<normMIN
 index(1,1)=j;
 normMIN=normCALC-eps;
 end
 end

 for k=2:num
 normMIN=10e10;
 for j=1:lastmed
 normCALC=norm(z(:,k)-XHAT(1:2,j));
 if normCALC<normMIN && index(k-1)~=j
 index(k,1)=j;
 normMIN=normCALC-eps;
 end
 end
 end
end

%The measurements are adjusted here to account for the possibility that
%a contact was lost or gained for less than 13 frames. Any measurement
%that is missing is replaced with the position estimate from the previous
%frame.
ztemp=XHAT(1:2,:);
for i=1:num
 ztemp(:,index(i,1))=z(:,i);
end
z=ztemp;

 65

%If lastmed is greater than mednum, then a contact has been missing for
%13 out of the past 25 frames and the contact is deemed lost. The index
%of that contact is determined and subsequently the position corresponding
%to that index is sent to the post-processing block. The filter which
%corresponded to the lost contact is re-set to the initial conditions.
%*If LCindex is less than or equal to zero then there is an error in the
%index assignments and no lost contact information is sent to the post-
%processing block.
if lastmed>mednum
 sumSOME=0;
 sumALL=0;
 for i=1:mednum
 sumSOME=sumSOME+index(i,1);
 end
 for j=1:lastmed
 sumALL=sumALL+j;
 end
 LCindex=sumALL-sumSOME;
 if LCindex>0
 LCpos=XHAT(1:2,LCindex);
 for i=1:10
 XHATtemp(:,i)=XHAT(:,index(i,1));
 end
 XHAT=XHATtemp;
 XHAT(:,num+1)=[144;192; 0.1; 0.1; 0.1; 0.1];
 index=[1:10]';
 else
 LCpos=[0;0];
 end
else
 LCindex=0;
 LCpos=[0;0];
end

%lastmed is updated for use in the processing of the next frame of video.
lastmed=mednum;

 66

%The Kalman filter is implemented based on the number of adjusted data
%points that are present at the input of the block. Each data point is
%processed separately and filterindex is used to index the correct pos.
%estimates and covariance matrices.
for i=1:mednum
 if index(i,1)>0
 filterindex=index(i,1);
 else
 filterindex=10;
 end
 xhat=XHAT(:,filterindex);
 low=filterindex*6-5;
 P(:,1)=PP(:,low);
 P(:,2)=PP(:,low+1);
 P(:,3)=PP(:,low+2);
 P(:,4)=PP(:,low+3);
 P(:,5)=PP(:,low+4);
 P(:,6)=PP(:,low+5);

 % 1. Compute Phi, H, Q, and R
 Phi = [1 0 1 0 0.5 0; 0 1 0 1 0 0.5; 0 0 1 0 1 0; 0 0 0 1 0 1; 0 0 0 0 1 0; 0 0 0 0 0 1];
 H=zeros(2,6);
H(1:2,1:2)=diag(ones(1,2));H(1:2,3:4)=diag(ones(1,2));H(1:2,5:6)=0.5*diag(ones(1,2));
 Q =diag(0.5*ones(1,6));
 R =diag(ones(1,2));

 %2. Compute Kalman Gain and Update State Covariance
 K=P*H'*((H*P*H'+R)^-1);
 P = (eye(6,6)+K*H)*P;

 % 3. Propagate the track estimate::
 xhat = xhat+K*(z(:,i)-H*xhat);
 xhat=Phi*xhat;

 % 4. Update Covariance Matrix
 P = Phi*P*Phi'+Q;

 % 5. Refill filter bank
 XHAT(:,filterindex)=xhat;
 PP(:,low)=P(:,1);
 PP(:,low+1)=P(:,2);
 PP(:,low+2)=P(:,3);
 PP(:,low+3)=P(:,4);
 PP(:,low+4)=P(:,5);
 PP(:,low+5)=P(:,6);

end

 67

%Updated position estimates and lost contact position (if any) are sent to
%the post-processor.
lcpos=LCpos;
xhatOut=XHAT(1:2,:);

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

LIST OF REFERENCES

[1] Wei Niu, Long Jiao, Dan Han and Yuan-Fang Wang, “Real-Time Multi-person
Tracking in Video Surveillance,” Proceedings of the 4th International Conf. on
Information, Communications and Signal Processing, Singapore, December
2003.

[2] Weiming Hu, Tieniu Tan, Liang Wang and Steve Maybank, “A survey on
Visual Surveillance of Object Motion and Behaviors,” IEEE Trans. on Systems,
Man, and Cybernetics, Vol. C-34, No. 3, pp. 334-352, 2004.

[3]”CAVIAR: Context Aware Vision using Image-based Active Recognition,”
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ [website], Last Accessed: June 2007.

[4] B.K.P. Horn and B.G. Schunk, "Determining optical flow." Artificial
Intelligence, vol 17, pp. 185-203, 1981.

[5] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,"
Transactions of the ASME - Journal of Basic Engineering, Vol. 82, pp. 35-45,
1960.

[6] Robert Grover Brown and Patrick Y.C. Hwang, Introduction to Random
Signals and Applied Kalman Filtering, Third edition, John Wiley & Sons, New
York, 1997.

[7] Conrado Aparacio, “Implementation of a Quaternion-Based Kalman Filter for
Human Body Motion Tracking using MARG Sensors,” Master’s Thesis, Naval
Postgraduate School, Monterey, California, 2004.

[8] “Simulink Help,”
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index.html?/ac
cess/helpdesk/help/toolbox/simulink/slref/embeddedmatlabfunction.html
[website], Last Accessed: June 2007.

[9] Jacinto C. Nascimento and Jorge S. Marques, “Novel Metrics for Performance
Evaluation of Object Detection Algorithms,” Proceedings of the 6th IEEE
International Workshop on Performance Evaluation of Tracking and Surveillance,
Prague, Czech Republic, 2004.

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index.html?/access/helpdesk/help/toolbox/simulink/slref/embeddedmatlabfunction.html
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/index.html?/access/helpdesk/help/toolbox/simulink/slref/embeddedmatlabfunction.html

 70

THIS PAGE INTENTIONALLY LEFT BLANK

 71

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Jeffery B. Knorr
Chairman, Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Monique P. Fargues
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Roberto Cristi
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

	A. VIDEO SURVEILLANCE
	B. OBJECTIVE
	C OVERVIEW
	A. OPTICAL FLOW
	B. KALMAN FILTER
	A. OVERVIEW
	B. SEGMENTATION
	1. Color Space Conversion
	2. Optical Flow
	3. Compare to Constant

	C. MEDIAN FILTER
	D. MORPHOLOGICAL OPERATIONS
	1. Quadrant Operation
	2. Erosion and Dilation
	3. Video Concatenation

	E. BLOB ANALYSIS
	1. System Monitoring
	2. Kalman Filter Tracking

	A. OVERVIEW
	1. Imbedded MATLAB Functions Constraints

	B. INITIALIZATION
	1. State Estimates
	2. State Covariance Matrices
	3. Number of Contacts Vector
	4. Median Number of Contacts
	5. Indexing Vector

	C. CONTACT MONITORING
	1. Median Filter
	2. Filter Indexing
	a. Number of Contacts is Equal to the Median Number of Conta
	b. Number of Contacts is Greater than the Median Number of C
	c. Number of Contacts is Less than the Median Number of Cont

	3. Permanent Contact Loss

	D. KALMAN TRACKING UPDATES
	E. OUTPUT
	A. POST-PROCESSING
	1. Optical Flow Analysis
	2. Kalman Filter Tracking
	3. Lost Contact Notification

	B. RESULTS
	1. Optical Flow Analysis
	2. Kalman Filter Tracking
	a. Single Contact
	b. Multiple Contacts

	3. Lost Contact Notification
	4. CAVIAR Data Results

