III.C - Linear Transformations: Optimal Filtering

FIR Wiener Filter

- [p. 3] Mean square signal estimation principles
- [p. 4] Orthogonality principle
- [p. 7] FIR Wiener filtering concepts
- [p. 8] Filter coefficients computation
- [p. 10] MMSE computation
- [p. 14] Examples
- [p. 38] FIR Weiner filter and error surfaces
- [p. 44] Applications to channel equalization
- [p. 49] Applications to noise cancellation
- [p. 54] Applications to spatial filtering (antennas)
- [p. 60] Appendices
- [p. 64] References

1

***** Optimal Filtering Problem:

- How to estimate one signal from another.
- In many applications desired signal is not observable directly (convolved with another signal or distorted by noise).
- Examples:
 - Information signal transmitted over channel gets corrupted with noise.
 - Image recorded by system is subject to distortions.
 - Directional antenna array is vulnerable to string jammers in other directions due to sidelobe leakage, etc.

In this course:

- Emphasis on least square techniques to estimate/recover signal (i.e., case $\|\cdot\|_2$).
- Other types of norms could be used to solve problems

* Mean Square Signal Estimation

Distorted received signal

Transmitted signal

Possible procedure:

Mean square estimation, i.e., minimize $\xi = E \left\{ \left| s - \hat{d} \left(\underline{x} \right) \right|^2 \right\}$

leads to $\hat{d}(\underline{x}) = E[s | \underline{x}]^{\prime}$

(proof given in Appendix A)

best estimate of transmitted signal s (as a function of received signal x)

Optimal processor

• conditional mean!, usually nonlinear in \underline{x} [exception when \underline{x} and s are jointly normal Gauss Markov theorem]

• Complicated to solve,

•Restriction to Linear Mean Square Estimator (LMS), estimator of *s* is **forced** to be a linear function of measurements \underline{x} : $\rightarrow \hat{d} = \underline{h}^H \underline{x}$

•Solution via Wiener Hopf equations using orthogonality principle

***** Orthogonality Principle

Use LMS Criterion: estimate *s* by $\hat{d} = \underline{h}^H \underline{x}$ where weights $\{h_i\}$ minimize MS error:

$$\sigma_e^2 = E\left\{ \left| \underline{s} - \hat{d} \left(\underline{x} \right) \right|^2 \right\}$$

Theorem: Let error $e = s - \hat{d}$

<u>*h*</u> minimizes the MSE quantity σ_{e}^{2} if <u>*h*</u> is chosen such that $E\left\{ex_{i}^{*}\right\} = E\left\{x_{i}^{*}e\right\} = 0, \ \forall_{i} = 1, \dots, N$

i.e., the error *e* is orthogonal to the observations x_i , i = 1..., N used to compute the filter output.

Corollary: minimum MSE obtained: $\sigma_{e_{\min}}^2 = E\{se^*\}$ where *e* is the minimum error obtained for the optimum filter vector.

(Proof given in Appendix B)

P = 2 $\hat{d}(n) = h_0 x(n) + h_1 x(n-1)$

Typical Wither Fintering Frobelins							
	Problem	Form of Observations	Desired Signal				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	Filtering of signal in noise	x(n) = s(n) + w(n)	d(n) = s(n)				
$\frac{n}{n_0} \frac{d(n)}{d(n)} \xrightarrow{p} n+p$	Prediction of signal in noise	x(n) = s(n) + w(n)	d(n) = s(n+p); p > 0				
$n_0 n-q q d(n)$	Smoothing of signal in noise	x(n) = s(n) + w(n)	d(n) = s(n-q); q > 0				
n_0 n_{-+1}	Linear prediction	x(n) = s(n-1)	d(n) = s(n)				

Typical Wiener Filtering Problems

***** FIR Wiener Filtering Concepts

• Filter criterion used: minimization of mean square error between d(n) and $\hat{d}(n)$.

We want to design a filter (in the generic sense can be: filter, smoother, predictor) so that:

$$\hat{d}(n) = \sum_{k=0}^{P-1} h^*(k) x(n-k)$$

How d(n) is defined specifies the operation done:

- filtering:
$$d(n) = s(n)$$

- predicting: d(n)=s(n+p)
- smoothing: d(n)=s(n-p)

***** How to find h_k ?

Minimize the MSE:
$$E \left\{ \left| d(n) - \hat{d}(n) \right|^2 \right\}$$

$$\sum_{k=0}^{P-1} h_k^* x(n-k) = \underline{h}^H \underline{x}$$

$$\underline{h} = \begin{bmatrix} h_0, \quad h_{P-1} \end{bmatrix}^T, \quad \underline{x} = \begin{bmatrix} x(n), \quad x(n-P+1) \end{bmatrix}^T$$

Wiener filter is a linear filter \Rightarrow orthogonality principle applies

$$\Rightarrow E\left\{x(n-i)e^{*}(n)\right\} = 0, \quad \forall i = 0, ..., P-1$$
$$E\left\{x(n-i)\left[d(n) - \sum_{k=0}^{P-1} h_{k}^{*}x(n-k)\right]^{*}\right\} = 0, \quad \forall i = 0, ..., P-1$$
$$\Rightarrow r_{xd}(-i) - \sum_{k=0}^{P-1} h_{k}R_{x}(k-i) = 0, \quad \forall i = 0, ..., P-1$$

$$r_{dx}^{*}(i) = \sum_{k=0}^{P-1} h_k R_x(k-i), \quad \forall i = 0, ..., P-1$$

Matrix form:

$$\begin{array}{l} i=0 \Rightarrow \begin{bmatrix} r_{dx}^{*}(0) \\ r_{dx}^{*}(1) \\ \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} R_{x}(0) & R_{x}(1) & \cdots & R_{x}(P-1) \\ R_{x}(-1) & R_{x}(0) & \cdots & R_{x}(P-2) \\ \vdots & & & \\ R_{x}(-P+1) & & R_{x}(0) \end{bmatrix} \begin{bmatrix} h_{0} \\ h_{1} \\ \vdots \\ h_{P-1} \end{bmatrix}$$

Note: different notation than in [Therrien, section 7.3]!

✤ Minimum MSE (MMSE)

obtained when \underline{h} is obtained from solving WH equations.

For best \underline{h} obtained:

$$\sigma_{e_{\min}}^{2} = E\left\{\left|e_{\min}\right|^{2}\right\} = E\left\{\left(d(n) - \hat{d}(n)\right)e_{\min}^{*}\right\}$$
$$= E\left\{d\left(n\right)e_{\min}^{*}(n)\right\}$$
$$= E\left\{d\left(n\right)\left(d\left(n\right) - \sum_{k=0}^{P-1}h_{k}^{*}x(n-k)\right)^{*}\right\}$$
$$= R_{d}\left(0\right) - \sum_{k=0}^{P-1}h_{k}r_{dx}\left(k\right)$$
$$\overline{\sigma_{e_{\min}}^{2}} = R_{d}\left(0\right) - \underline{h}^{T}\underline{r}_{dx}$$

Summary: FIR Wiener Filter Equations

• FIR Wiener filter is a FIR filter such that:

$$\hat{d}(n) = \sum_{k=0}^{P-1} h_k^* x(n-k)$$

where $\sigma_e^2 = E\left[\left|d(n) - \hat{d}(n)\right|^2\right]$ is minimum.

• How *d*(*n*) is defined **specifies** the specific type of Wiener filter designed:

filtering:

smoothing:

predicting:

• W-H eqs:
$$\begin{cases} R_x \underline{h} = \underline{r}_{dx}^* \Longrightarrow \underline{h}_{opt} = R_x^{-1} \underline{r}_{dx}^* \\ \sigma_{e_{\min}}^2 = R_d(0) - \underline{h}_{opt}^T \underline{r}_{dx} = R_d(0) - \underline{r}_{dx}^T \underline{h}_{opt} \end{cases}$$

***** Example 1: Wiener filter (filter case: d(n) = s(n) & white noise)

Assume x(n) is defined by

Filter	Filter coefficients	MMSE	
length			
2	[0.405, 0.238]	0.81	
3	[0.382, 0.2, 0.118]	0.76	
4	[0.377, 0.191, 0.01, 0.06]	0.7537	
5	[0.375, 0.188, 0.095, 0.049, 0.029]	0.7509	
6	[0.3751, 0.1877, 0.0941, 0.0476, 0.0249, 0.0146]	0.7502	
7	[0.3750, 0.1875, 0.0938, 0.0471, 0.0238, 0.0125, 0.0073]	0.7501	
8	[0.3750, 0.1875, 0.038, 0.049, 0.0235, 0.0119, 0.0062, 0.0037	0.75	

Example 2: Application to Wiener filter (filter case: d(n) = s(n) & colored noise)

s(n), w(n) uncorrelated, and zero-mean

w(n) noise with $R_w(n) = 2 (0.5)^{|n|}$

s(*n*) signal with $R_s(n) = 2 (0.8)^{|n|}$

Filter	Filter coefficients	MMSE	
length			
2	[0.4156, 0.1299]	0.961	
3	[0.4122, 0.0750, 0.0878]	0.9432	
4	[0.4106, 0.0737, 0.0508	0.9351	
	0.0595]		
5	[0.4099, 0.0730, 0.0499, 0.0344, 0.0403]	0.9314	
6	[0.4095, 0.0728, 0.0495, 0.0338, 0.0233, 0.0273]	0.9297	
7	[0.4094, 0.0726, 0.0493, 0.0335, 0.0229, 0.0158, 0.0185]	0.9289	
8	[0.4093, 0.0726, 0.0492, 0.0334, 0.0227, 0.0155, 0.0107, 0.0125]	0.9285	

Example 3: Application of Wiener filter to one-step linear prediction

- tracking of moving series
- forecasting of system behavior
- data compression
- telephone transmission
- <u>W-H equations</u>

$$\underline{\underline{h}}_{opt} = R_x^{-1} \underline{\underline{r}}_{dx}^*$$
where $\hat{d}(n) = \sum_{\ell=0}^{P-1} h_\ell^* x(n-\ell)$
 $d(n) = ?$

• <u>Geometric interpretation</u>: Assume a filter of length 2

e(n) is the error between true value x(n+1) and predicted value for x(n+1) based on x(n) and x(n-1)

→ represents the new information in x(n+1) which is not contained in x(n) and x(n-1)

 $\rightarrow e(n)$ is called the **innovation process** corresponding to x(n)

• <u>Geometric interpretation</u>: Assume x(n+1) only has **NO** new information (i.e., information in x(n+1) is that already contained in x(n) and x(n-1). Filter of length 2.

Plot $x(n+1), \hat{d}(n), e(n)$

• <u>Geometric interpretation</u>: Assume x(n+1) only has new information (i.e., information in x(n+1) is **NOT** contained at all in x(n) and x(n-1)). Filter of length 2.

```
Plot x(n+1), \hat{d}(n), e(n)
```


* 1-step ahead predictor scenario

RP x(n) defined as x(n) = x(n-1) + v(n) |a| < 1

v(n) is white noise. 1-step predictor of length 2.

***** Link between Predictor behavior & input signal behavior

1) Case 1:
$$s(n)$$
 = process with correlation
 $R_s(k) = \delta(k) + 0.5\delta(k-1) + 0.5\delta(k+1)$

Investigate performances of N-step predictor as a function of changes N

2) Case 2: s(n) = process with correlation

 $R_{s}(k) = a^{|k|}, |a| < 1$

Investigate performances of predictor as a function of changes in a

1) Case 1: s(n) = wss process with $R_s(k) = \delta(k) + 0.5\delta(k-1) + 0.5\delta(k+1)$

% EC3410 - MPF % Compute FIR filter coefficients for % a 1-step ahead predictor of length 2 % for correlation sequence of type $R(k)=a^{\{|k|\}}$ % Compute and plot resulting MMSE value A=[-0.9:0.1:0.9]; for k0=1:length(A) a=A(k0); for k=1:3 $rs(k)=a^{(k-1)};$ end Rs=toeplitz(rs(1:2)); rdx=[rs(2);rs(3)]; $h(:,k0)=Rs\rdx;$ mmse(k0)=rs(1)-h(:,k0)'*rdx;end stem(A,mmse) xlabel('value of a') ylabel('MMSE(a)') title('MMSE(a)for1-step predictor of length 2, ... for $R_s(k) = a^{\{|k|\}'\}}$

***** Example 4:

s(n) = process with

w(n) = white noise, zero mean

s(n), w(n) uncorrelated

Design the 1-step ahead predictor of length 2. Compute MMSE.

$$R_{s}(n) = 2(0.8)^{|n|}$$
$$R_{w}(n) = 2\delta(n)$$

	Filter		
Length	Coefficients	MMSE	Filter MMSE
2	[0.3238, 0.1905]	1.2381	0.81
3	[0.3059, 01.6, 0.0941]	1.2094	0.76
4	[0.3015, 0.1525, 0.0798, 0.0469]	1.2023	0.7537
5	[0.3004, 0.1506, 0.0762, 0.0762, 0.0762, 0.04, 0.0234]	1.2006	0.7509
6	[0.3001, 0.1502, 0.0753, 0.0381, 0.0199, 0.0199]	1.2001	0.7502
7	[0.3, 0.15, 0.0751, 0.0376, 0.0190, 0.001, 0.0059]	1.2	0.7501
8	[0.3, 0.15, 0.075, 0.0375, 0.0188, 0.0095, 0.0050, 0.003]	1.2	0.75

	Filter			
Length	1-step ahead MMSE	2-step ahead MMSE	Filter MMSE	
2	1.2381	1.5124	0.81	
3	1.2094	1.494	0.76	
4	1.2023	1.4895	0.7537	
5	1.2006	1.4884	0.7509	
6	1.2001	1.4881	0.7502	
7	1.2	1.4880	0.7501	
8	1.2	1.4880	0.75	

***** Example 5:

 $R_s(n) = 2(0.8)^{|n|}$ $R_w(n) = 2(0.5)^{|n|}$

s(n) = process with

w(n) = wss noise, zero mean

s(n), w(n) uncorrelated

- Design the 1-step ahead predictor of length 2
- Design 1-step back smoother of length 2

1-step ahead predictor (Col. Noise)					
Length	Coefficients	MMSE			
2	[0.3325, 0.1039]	1.3351			
3	[0.3297, 0.06, 0.0703]	1.3237			
4	[0.3285, 0.0589, 0.0406, 0.0476]	1.3185			
5	[0.3279, 0.0584, 0.04, 0.0275, 0.0322]	1.3161			
6	[0.3276, 0.0582, 0.0396, 0.0270, 0.0186, 0.0218]	1.315			
7	[0.3275, 0.0581, 0.0394, 0.0268, 0.0183, 0.0126, 0.0148]	1.3145			
8	[0.3275, 0.0581, 0.0394, 0.0267, 0.018, 0.0124, 0.0085, 0.0100]	1.3142			

Longth	MMSE (Col. Noise)								
Lengtn	N-step ahead Predictor			N-step back Smoother			Filton		
	1-step	2-step	3-step	4-step	1-step	2-step	3-step	4-step	ritter
2	1.3351	1.5744	1.7276	1.8257	0.961	1.3351	1.5744	1.7276	0.961
3	1.3237	1.5672	1.7230	1.8227	0.925	0.9432	1.3237	1.5672	0.9432
4	1.3185	1.5638	1.7208	1.8213	0.9085	0.9085	0.9351	1.3185	0.9351
5	1.3161	1.5623	1.7199	1.8207	0.9009	0.8926	0.9009	0.9314	0.9314
6	1.315	1.5616	1.7194	1.8204	0.8975	0.8853	0.8853	0.8975	0.9297
7	1.3145	1.5613	1.7192	1.8203	0.8959	0.8819	0.8781	0.8819	0.9289
8	1.3142	1.5611	1.7191	1.8202	0.8952	0.8804	0.8748	0.8748	0.9285

Comments

***** Example 6:

 $s(n) = cos(\omega_0 n + \phi), \phi \sim U[0, 2\pi]$

- Design the 1-step ahead predictor of length 2, and associated MMSE
- Design 1-step back smoother of length 2, and associated MMSE

Weiner Filters and Error Surfaces

Recall \underline{h}_{opt} computed from

$$R_x \underline{h}_{\rm opt} = \underline{r}_{dx}^*$$

$$\sigma_e^2 = E\left\{ \left| d\left(n\right) - \underline{h}^H \underline{x} \right|^2 \right\} = E\left\{ \left(d\left(n\right) - \underline{h}^H \underline{x} \right) \left(d\left(n\right) - \underline{h}^H \underline{x} \right)^* \right\}$$
$$= R_d \left(0 \right) + \underline{h}^H E\left\{ \underline{x} \underline{x}^H \right\} \underline{h} - 2 \operatorname{Real}\left(\underline{h}^T \underline{r}_{dx} \right)$$

└→ for real signals d(n), x(n)

$$\sigma_e^2 = R_d(0) + \underline{h}^T R_x \underline{h} - 2\underline{h}^T \underline{r}_{dx}$$

using the fact that

$$\left(\underline{h}^{H} \underline{x}\right)^{*} = \underline{x}^{H} \underline{h}$$
$$d(n)\underline{h}^{H} \underline{x} = \underline{h}^{H} d(n)\underline{x}$$

EC3410.SuFY14MPF - Section IIIC - FIR

$$\sigma_e^2 = R_d(0) + \underline{h}^T R_x \underline{h} - 2\underline{h}^T \underline{r}_{dx}$$

 $\Box \quad \underline{\text{For filter length 1}} \quad \underline{h} = h_0 \quad \underline{x} = x(n)$ $\longrightarrow \quad \overline{\sigma_e^2} = R_d(0) + h_0^2 R_x(0) - 2h_0 r_{dx}(0)$

$$\sigma_{e}^{2} = R_{d}\left(0\right) + \underline{h}^{T}R_{x}\underline{h} - 2\underline{h}^{T}\underline{r}_{dx}$$

 $\Box \quad For filter length P = 2$

$$\underline{h} = [h_0, h_1]^T; \ \underline{x} = [x(n), x(n-1)]^T$$

$$\sigma_e^2 = R_d \left(0 \right) + \underline{h}^T R_x \underline{h} - 2\underline{h}^T \underline{r}_{dx}$$

$$= R_d \left(0 \right) + \begin{bmatrix} h_0, h_1 \end{bmatrix} \begin{bmatrix} R_x \left(0 \right) & R_x \left(1 \right) \\ R_x \left(1 \right) & R_x \left(0 \right) \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \end{bmatrix}$$

$$- 2 \begin{bmatrix} h_0, h_1 \end{bmatrix} \begin{bmatrix} r_{dx} \left(0 \right) \\ r_{dx} \left(1 \right) \end{bmatrix}$$

$$\Rightarrow \sigma_{e}^{2} = A_{0}h_{0}^{2} + A_{1}h_{1}^{2} + A_{2}h_{1} + A_{3}h_{0} + A_{4}h_{0}h_{1} + R_{d}(0)$$

$$\sigma_{e}^{2} = R_{d} (0) + \underline{h}^{T} R_{x} \underline{h} - 2\underline{h}^{T} \underline{r}_{dx}$$

$$\frac{\partial \sigma_{e}^{2}}{\partial h} = 2R_{x} \underline{h} - 2\underline{r}_{dx}$$

- R_x : specifies shape of $\sigma_e^2(\underline{h})$
- \underline{r}_{dx} : specifies where the bowl is in the 3-d plane but

doesn't change the shape of the bowl

 $R_d(0)$: moves bowl up and down in 3-d plane but doesn't change shape or location of bowl

 ${}^{*}_{x}\underline{h} = \underline{r}_{dx}$

Eigenvector Directions for 2×2 Toeplitz Correlation Matrix

$$R_{x} = \begin{bmatrix} R_{x}(0) & R_{x}(1) \\ R_{x}(1) & R_{x}(0) \end{bmatrix} \xrightarrow{\text{normalize}} \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}$$

eigenvalues of R_x $(1-\lambda)^2 - a^2 = 0 \implies \lambda = \begin{cases} 1-a \\ 1+a \end{cases}$

eigenvectors

$$\begin{pmatrix} 1-\lambda & a \\ a & 1-\lambda \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{12} \end{pmatrix} = 0$$

$$\Rightarrow \quad (1-\lambda)u_{11} + au_{12} = 0$$

$$\lambda_1 = 1-a \quad \Rightarrow \quad (\not 1 - \not 1 + a)u_{11} + au_{12} = 0$$

$$\Rightarrow \quad u_{11} = -u_{12} \quad \Rightarrow \quad \underline{u}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\lambda_2 = 1 + a \quad \Rightarrow \quad \underline{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Error surface shape and eigenvalue ratios

a=-0.5

* Application to Channel Equalization

• Information Available:

$$x(n) = z(n) + v(n)$$

channel output additive noise due to sensors

d(n) = s(n-D) s(n): original data samples

• <u>Assumptions</u>: 1) v(n) is stationary, zero-mean, uncorrelated with s(n).

2)
$$v(n) = 0 \& D=0$$

Assume: $W(z) = 0.2798 + z^{-1} + 0.2798z^{-2}$

Questions:

Assume v(n) = 0 & D=0. Identify the type of filter (FIR/IIR) needed to cancel channel distortions. Identify resulting H(z)
 Identify whether the equalization filter is causal and stable.
 Assume v(n) = 0 & D≠0. Identify resulting H₂(z) in terms of H(z).

Assume D≠0

***** Application to Noise Cancellation

<u>Goal</u>: Recover s(n) by compensating for the noise distortion while having only access to the related noise distortion signal v(n)(applications in communications, control, etc.)

Assume: v(n) = av(n-1) + w(n), a = 0.6, w(n) white noise with variance σ_w^2 $s(n) = \sin(\omega_0 n + \phi)$, $\phi \sim U[0, 2\pi]$

Compute the FIR Wiener filter of length 2 and evaluate filter performances

Results Interpretation

* Application to Noise Cancellation (with information leakage)

Results Interpretation

* Application to Spatial Filtering

 Information Available: snapshot in time of received signal retrieved at two antennas & reference signal

* <u>Assumption</u>: $v_1(n)$, $v_2(n)$ zero mean wss white noise RPs independent of each other and of s(n). ✤ <u>Goal</u>: Denoise received signal

***** Application to Spatial Filtering, cont'

Application to Spatial Filtering, cont' Did we gain anything by using multiple receivers?

* <u>Assumption</u>: v(n) zero mean *RP* independent of s(n).

✤ <u>Goal</u>: Compute filter coefficients, filter output, and MMSE.

Example: Gain Pattern at filter output

Appendices

Appendix A: Derivation of proof for Mean Square estimate derivation (p. 3)

Proof: $\xi = E\left\{ \left| s - \hat{d} \left(\underline{x} \right) \right|^{2} \right\}$ $= E\left\{ \left(s - \hat{d} \left(\underline{x} \right) \right) \left(s - \hat{d} \left(\underline{x} \right) \right)^{T} \right\}$ Define $L\left(s, \hat{s} \left(\underline{x} \right) \right)$: loss function $\xi = \iint L\left(s, \hat{d} \left(\underline{x} \right) \right) f\left(s | \underline{x} \right) f\left(\underline{x} \right) d \underline{x}^{M} ds, \text{ Bayes Rule}$ $= \int \left[\int L\left(s, \hat{d} \left(\underline{x} \right) \right) f\left(s | \underline{x} \right) ds \right] \underbrace{f\left(\underline{x} \right)}_{\geq 0} d^{M} \underline{x}$

 ξ is minimized if *K* is minimized for each value of \underline{x} Problem: find $\hat{d}(\underline{x})$ so that *K* is minimum

$$\frac{\partial K}{\partial \hat{d}} = \frac{\partial}{\partial \hat{d}} \left[\int \left(s - \hat{d} \left(\underline{x} \right) \right)^2 f\left(s | \underline{x} \right) ds \right]$$
$$= -2 \int \left(s - \hat{d} \left(\underline{x} \right) \right) f\left(s | \underline{x} \right) ds$$
$$\frac{\partial K}{\partial \hat{d}} = 0 \implies \int \left(s - \hat{d} \left(\underline{x} \right) \right) f\left(s | \underline{x} \right) ds = 0$$
$$\implies \int s f\left(s | \underline{x} \right) ds = \int \hat{d} \left(\underline{x} \right) f\left(s | \underline{x} \right) ds$$
$$\implies \int s f\left(s | \underline{x} \right) ds = \hat{d} \left(\underline{x} \right) \int f\left(s | \underline{x} \right) ds$$
$$\implies \int s f\left(s | \underline{x} \right) ds = \hat{d} \left(\underline{x} \right) \int f\left(s | \underline{x} \right) ds$$
$$\implies \int s f\left(s | \underline{x} \right) ds = \hat{d} \left(\underline{x} \right)$$

For a minimum we need:
$$\frac{\partial^2 K}{\partial \hat{d}^2} > 0$$

Note:

$$\frac{\partial^2 K}{\partial \hat{d}^2} = (-2) \partial \left(\int \left(s - \hat{d} \left(\underline{x} \right) \right) f\left(s | \underline{x} \right) ds \right) / \partial \hat{d}$$
$$= (-2) \int -f\left(s | \underline{x} \right) ds$$
$$= (2) \times 1 > 0$$

Appendix B: Proof of corollary of orthogonality principle Proof:

$$e = \underbrace{s - \underline{h}^{H} \underline{x}}_{\widehat{a}} = s - \left(\underline{h} + \underline{\hat{h}} - \underline{\hat{h}}\right)^{H} \underline{x}$$

where \underline{h} is the weight vector defined so that the orthogonality principle holds. Resulting error is called $\hat{e} = s - \hat{\underline{h}}^H \underline{x}$

$$\begin{split} \sigma_{e}^{2} &= E\left\{\left|e\right|^{2}\right\} = E\left\{\left(s - \underline{\hat{h}}^{H} \underline{x} + \left(\underline{\hat{h}} - \underline{h}\right)^{H} \underline{x}\right)\left(\begin{array}{c}\right)^{H}\right\} \\ &= E\left\{\left(\hat{e} + \left(\underline{\hat{h}} - \underline{h}\right)^{H} \underline{x}\right)\left(\begin{array}{c}\right)^{H}\right\} \\ &= E\left\{\left|\hat{e}\right|^{2} + \left(\underline{\hat{h}} - \underline{h}\right)^{H} \underline{x}\hat{e}^{H} + \left|\left(\underline{\hat{h}} - \underline{h}\right)^{H} \underline{x}\right|^{2} + \hat{e}\underline{x}^{H} \left(\underline{\hat{h}} - \underline{h}\right)\right\} \\ &= E\left\{\left|\hat{e}\right|^{2}\right\} + \left(\underline{\hat{h}} - \underline{h}\right)^{H} \underline{x}\left(\underline{x}\underline{e}^{H}\right) + E\left\{\left|\left(\underline{\hat{h}} - \underline{h}\right)^{H} \underline{x}\right|^{2}\right\} + E\left\{\underline{e}\underline{x}^{H}\right\}\left(\underline{\hat{h}} - \underline{h}\right) \\ &= E\left\{\left|\hat{e}\right|^{2}\right\} = E\left\{\left(s - \underline{\hat{h}}^{H} \underline{x}\right)\hat{e}^{H}\right\} = E\left\{s\hat{e}^{H}\right\} - \underline{\hat{h}}^{H} E\left\{\underline{x}\underline{e}^{H}\right\} \\ &= E\left\{s\hat{e}^{H}\right\} = E\left\{s\hat{e}^{*}\right\} \end{split}$$

References

[1]: Discrete Random Signals and Statistical Signal Processing, C. Therrien, Prentice Hall, 1992
[2]: Statistical and Adaptive Signal Processing, D. Manolakis, V. Ingle & S. Kogon, Artech House, 2005

[3]: Adaptive Filters, 2nd Ed., S. Haykin, Prentice Hall, 1991