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Part A: 
Continuous-Time Systems

307/08/2013 EO2402.SuFY13/MPF Section 4



4

 System Representation

x

- System is a mathematical model of a process

- Useful to     Analyze            Actual devices
Model
Represent

System  y S x
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 System Representation: Static / Dynamic

( )u t

STATIC
- Can not store energy
- Can not remember its states
- System output depends on input 

at present time only
- Input/output equation represented 

by algebraic equations

DYNAMIC
- Can share energy
- Can remember its states
- System output depends on inputs 

other than present time only
- Input/output equation represented 

by differential/difference equation
( )i t

R





( )u t

( )i t




• Circuits excited by current ( )i t

( )i t S ( )u t
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System Representation: Static / Dynamic, cont’

( )u t

( )i t

R





( )u t

( )i t




( ) ( )u t R i t

C

1( ) ( )u t i t d t
C
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 System Classification: Lumped / Distributed

LUMPED PARAMETER 
SYSTEM

- Disturbance at any point in 
system propagates to every point 
instantaneously

We can ignore the time it takes 
for signals to propagate around 
the system

DISTRIBUTED PARAMETER 
SYSTEM

- Disturbance at any point in system 
takes some time to propagate to 
other points of the system

V R
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DISTRIBUTED PARAMETER 
SYSTEM

- System has non perfect conductor 
wires 

OR
- Is used at high frequencies where 

wavelength approaches physical 
dimension of system.
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System Classification: Lumped / Distributed, cont’

LUMPED PARAMETER 
SYSTEM

- System physical dimensions are 
small as compared to system 
operating wavelength

- Application: Microwave 
engineering rule-of-thumb

- To be considered lumped: no 
feature of the system can exceed 
1/10 of wavelength at the 
maximum operating frequency.   

Resistor, capacitor up to 100GHZ 

Makes Sense When
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ACTIVE
- Can deliver energy to outside 

world

- EXAMPLE: (op amp)
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 System Classification: Active / Passive

PASSIVE
- Unable to deliver energy to 

outside world

- EXAMPLES:

V 

The image part with relationship ID rId6 was not found in the file.

S
V 

S
V 

The image part with relationship ID rId6 was not found in the file.+
-
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WITH MEMORY

- Output at any time may depend on 
previous, present, and/or past 
values of the input.
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 System Classification: With Memory / Without Memory

WITHOUT MEMORY

- Output at any time depends only 
output at same time

( ) ( )y t R x t
1( ) ( )

t

y t x d
C
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NON CAUSAL

- Output at time to depends on 
future values of input

11

CAUSAL

- Output at time to depends only on 
present and/or past value of input. 

( ) ( ) ( 2 )y t x t x t   ( ) ( 1)y t x t 

NOTE: Memoryless causal

 System Classification: Causal / Non Causal
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EXAMPLE:

 System Classification: Stable

1

2

( ) ( 1)
( ) ( )

y t x t
y t tx t

 


- Definition: A system is said to be stable if any bounded input x(t)
leads to a bounded output y(t)
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 System Classification: Feedback

- Definition: A system in which output signal is fed-back 
and added to system

( )x t S ( )y t+
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 Continuous-Time Systems Building Blocks

Impulse response to system S

( )x t System
S

 ( ) ( )y t S x t

( ) ( )x t t S  ( ) ( )h t S x t
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- Mathematical Definition

- System impulse response

( )x t S ( )y t

• Ideal Delay

( ) ( )dy t x t T 

( ) ( ) ( ) ( )
                         =

x t t y t h t  
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- Mathematical Definition

- System impulse response

( )x t S ( )y t

• Integrator

( ) ( )
t

y t x d 


 

( ) ( )
( )

x t t
h t
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- Assume: 
- Find

EXAMPLE: Integrator Output
0 .8( ) ( )tx t e u t
 ( ) ( )y t S x t
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- Mathematical Definition: 

EXAMPLE: Differentiator Output

• Differentiator

 0 .8( ) ( )      F in d :   ( ) ( )tx t e u t y t S x t 

( )( ) d x ty t
d t



( )x t S ( )y t
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V-I Diagram for a
Linear Resistor
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 Linearity

     1 2 1 2( ) ( ) ( ) ( )S x t x t S x t S x t     

( )x t System

- Definition: A system is linear iff for inputs x1(t) and x2(t) and 
any constants  and  we have

Many real systems are non-linear because the relationship between 
excitation amplitude and response amplitude is non-linear
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V-I Diagram for a Diode
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Linearity, cont’

EXAMPLES:
1

2

3

4

2
5

6

( ) 2 ( )
( ) 2 ( ) 1

1( ) ( )

( ) ( )

( ) ( )
( ) c o s ( ( )) ,      ( )  

t

t T

y t x t
y t x t

y t x d
T

y t x t

y t x t
y t x t x t f in ite

 



 











( )x t System
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 Invertibility

EXAMPLES:
1

2

( ) s in ( ( ))
( ) | ( ) |

y t x t
y t x t




( )x t System ( )y t

Definition: A system is invertible if knowledge of the output 
y(t) allows to uniquely determine the input x(t). 
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 Time-Invariance

EXAMPLES:
1

2

3

( ) 2 ( )
( ) ( 2 )
( ) ( )

y t x t
y t x t
y t x t D



 

( )x t System ( )y t

Definition: A system is time-invariant if a shift in the input 
x(t) produces the same shift in the output y(t)

LTI System Definition: When the system is linear AND 
time-invariant it is called LTI
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 Representation of Systems by Differential Equations

0

2

2

( ) 1( ) ( ) ( )

( ) ( ) ( ) 1 ( )

td i tv t R i t L i t d t
d t C

d v t d i t d i tR L i t
d t d t Cd t

  

  



• Introduction

( )v t

0t 





( )i t
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Assume: No initial energy 
stored in inductor or 
capacitor (at t=0, current in 
inductor and voltage in 
capacitor are equal to 0)

Input: i(t)
Output: v(t)
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( )( ) ( )

(0 ) o

d i tv t R i t L
d t

i I

  

 

0t 

0 1 0 1
( )( ) ( ) ( )( ) ... ( ) .. .

N
M

N MN M

d x td y t d y t d x ta y t a a b x t b b
d t d td t d t

     

Representation of Systems by Differential Equations, cont’

- Most continuous-time dynamic systems represented by ODEs
- Order of differential equation = number of elements which can   

store energy 

( )v t





( )i t

R

L

EXAMPLE:
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With
- N initial conditions

-

Leads to general solution:
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( ) 0   0x t t 

1 0 1
( ) ( ) ( ) ( )( ) ... ( ) ...

N M

N MN M

d y t d y t d x t d x ty t a a b x t b b
d t d td t d t

     

0

( )  0 , .. . , 1;
k

k
t

d y t fo r k N
d t



 

Representation of Systems by Differential Equations, cont’

(( )) ( ) hpy tt yy t 

Particular solution due to 
input x(t)

Homogeneous solution due only 
to initial conditions when input 

signal x(t)= 0
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Note: When initial conditions = 0, y(t) only depends on the input x(t) system is LTI
When initial conditions ≠ 0, when checking for linearity, only input gets changed

while initial conditions remain the same  system is nonlinear
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1. Form characteristic equation

2. Solve for roots si of equation:
poles, eigenvalues of system

3. For distinct roots 
Solution of homogeneous equation is given by:

0 1 ... 0N
Na a s a s   

1, ... ,i N

1 2
1 2( ) . .. Ns ts t s t

h Ny t c e c e c e   
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1

1

1
0 0

A ss u m e  ( ) 0
( ) ( )( ) ... 0

w ith   .    ( 0 ) ,  ( ) , .. . , ( )

N

N N

N

N
t t

x t
d y t d y ty t a a

d t d t
d di c y y t y t
d t d t




 



    

 How to Solve Differential Equations / Part 1: Homogeneous 
Equation (homogeneous solution)
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2

0 1 2 2

2
0 1 2

( ) ( )E x a m p le : A ssu m e     ( ) .. . 0

               C h a ra c te r is t ic  E q u a tio n :  0

d y t d y ta y t a a
d t d t

a a s a s

   

  

Special cases:   * Multiple roots: 2 equal and real roots:

* Complex conjugate roots:    

1 2s s s 

1 2( ) s t s t
hy t c e c te 

Homogeneous Equation, cont’
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*
1 2 1,s a jb s s  

 1 2
1 2 1 2

1 1 2 2 1 2

( ) cos sin
                                  w here ( )

s t s t at
hy t c e c e e a bt a bt

a c c a c c j
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1 0
( ) ( )( ) ( ) ... ( ) ...

N M

N MN M

d d y t d x ty t a y t a b x t b
dt dt dt

     

- Expression depends on specific input x(t)

 How to Solve Differential Equations/ Part 2: Non Homogeneous 
Equation (particular solution)

1 2

0

in p u t ( ) ( )

c o s ( ) c o s ( ) s in ( )

p

a t a t

n
n k

k
k

x t y t
A B

A e B e
A a t B a t B a t

A t B t
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Constraints: if any term of yp(t)
appears in yh(t), the specific 
common term in yp(t) gets 
multiplied by the smallest 
integral power of t large 
enough so that none of the 
resulting terms in yp(t) appear 
in yh(t)

Any unknown constant identified by replacing expression in differential equation



37

1 0
( ) ( )( ) ( ) ... ( ) ...

N M

N MN M

d d y t d x ty t a y t a b x t b
dt dt dt

     

Overall procedure to solve the differential equation:
1) Compute homogeneous solution yh(t) [assume RHS=0]

2) Identify particular solution yp(t) due to specific input x(t). Identify 
unknown constants (if any) by replacing yp(t) in differential equation

3) Form overall solution as y(t)=yh(t)+ yp(t)

4) Identify unknown constants present in y(t) by using initial 
conditions.

How to Solve Differential Equations, cont’
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2

02

3 2

0 02 2

( ) ( ) 2 ;   y (0 )= ( ) | 0

( ) ( )( ) s in ( ) ;   y (0 )= ( ) | | 0

t

t t

d y t d y t dt y t
d t d td t

d y t d d y ty t t y t
d td t d t



 

  

   

 How to Solve Differential Equations - Examples
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 How to Solve Differential Equations – Circuit Example 1

07/08/2013 EO2402.SuFY13/MPF Section 4

Assume R=1Ω, C=1F
Input voltage vin(t)=Au(t)
Initial voltage vout(0)=V0
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When no initial voltage and 
constant excitation are applied

When initial voltage V0 and no 
excitation are applied 

t>
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0

0

)  B = 1  1
)  B = 2 0

a I
b I




 How to Solve Differential Equations – Circuit Example 2

Find the expression for the current i(t) when

Initial current in induction: Io
v(t)=Bu(t)

( )v t

( )i t





1L H

1R  
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 Example
Compute the impulse response of the causal system described by:

( )            ( ) ( )dy t ay t x t
dt
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 Representing Systems: From Block Diagram to Differential 
Equations

( )x t


( )y t

a
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Representing Systems, cont’

( )x t ( )y t

a

b 
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 Representing Systems: From Differential Equations to Block 
Diagrams

2 ( )1)   ( ) ( ) ( )             2 )   ( ) ( )d d y ty t a y t x t a y t b x t
d t d t
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Part B: 
Discrete-Time Systems

5707/08/2013 EO2402.SuFY13/MPF Section 4



07/08/2013 EO2402.SuFY13/MPF Section 4 58

 Basic Discrete-Time System Characteristics

- Events occur at sample points in time but not between them. 

- Discrete-time example: digital computer Significant events 
occur at the end of each clock cycle.

- Similar block diagram configurations as for continuous system 
structures

- Discrete-time systems can be described by difference (not
differential) equations. 

Discrete
System[ ] ( )sx n x nT [ ] ( )sy n y nT

[ ] 0.8 [ 1] [ ]y n y n x n  
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- Solving can be done recursively using a computer

 Solving Difference Equations
:

       [ ] 0.8 [ 1] [ ],
       [0] 1, [ ] 0, 0

Example
y n y n x n
x x n n

  
  

[1] 1;
for k=2:N
   [ ] 0.8* [ 1];
end
stem(0:N-1,y)

y

y k y k



 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sample point n

y[
n]

y[n]=0.8y[n-1]+x[n], x[0]=1
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 Discrete-Time System Properties

Mostly derived in the same fashion as for continuous systems

Example: - Discrete system is linear if:

     1 2 1 2[ ] [ ] [ ] [ ]S ax n bx n aS x n bS x n  

- LTI Discrete system is stable if:

[ ]
k

h h




 



Appendix
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1. Form characteristic equation

2. Solve for roots si of equation:
poles, eigenvalues of system

3. For distinct roots 
Solution of homogeneous equation is given by:

0 1 ... 0N
Na a s a s   

1, ... ,i N

1 2
1 2( ) . .. Ns ts t s t

h Ny t c e c e c e   

1

1

1
0 0

( ) ( )( ) .. . 0

w ith   .    ( 0 ) ,  ( ) , . . . , ( )

N

N N

N

N
t t

d y t d y ty t a a
d t d t

d di c y y t y t
d t d t




 

   

 Differential Equations - Homogeneous Equation case

Why ?
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A few words on the characteristics of the solution:

Assume 1st order differential equation:

( ) ( ) 0dy t ay t
dt

 

( ) ( )dy t ay t
dt

  
y(t) and y’(t) must have same functional form
which is only possible when y(t)=eKt

More details about differential equations in Web Appendix D [Roberts Textbook]
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