
Sensor Placement in Active Multistatic Sonar Networks

Emily M. Craparo ,1 Mumtaz Karatas,2 Tobias U. Kuhn3

1Operations Research Department, Naval Postgraduate School, Monterey, California

2Department of Industrial Engineering, Turkish Naval Academy, Tuzla, Istanbul 34940, Turkey

3Operations Research Analyst, 10th Armored Division, German Army, Veitshöchheim, Germany

Received 7 December 2016; revised 24 February 2017; accepted 8 June 2017
DOI 10.1002/nav.21746

Published online 28 June 2017 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: The idea of deploying noncollocated sources and receivers in multistatic sonar networks (MSNs) has emerged as a
promising area of opportunity in sonar systems. This article is one of the first to address point coverage problems in MSNs, where
a number of points of interest have to be monitored in order to protect them from hostile underwater assets. We consider discrete
“definite range” sensors as well as various diffuse sensor models. We make several new contributions. By showing that the convex
hull spanned by the targets is guaranteed to contain optimal sensor positions, we are able to limit the solution space. Under a definite
range sensor model, we are able to exclude even more suboptimal solutions. We then formulate a nonlinear program and an integer
nonlinear program to express the sensor placement problem. To address the nonconvex single-source placement problem, we develop
the Divide Best Sector (DiBS) algorithm, which quickly provides an optimal source position assuming fixed receivers. Starting with
a basic implementation of DiBS, we show how incorporating advanced sector splitting methods and termination conditions further
improve the algorithm. We also discuss two ways to use DiBS to find multiple source positions by placing sensors iteratively or
simultaneously. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 287–304, 2017

Keywords: undersea sensing; multistatic sonar; point coverage; sensor network optimization

1. INTRODUCTION

Active sonar systems have long constituted an important
sensing mechanism aboard submarines and ships in anti-
submarine warfare. In a typical sonar system, a ping is sent
out and the echo yields information about other objects in the
area. Recently, however, the idea of deploying noncollocated
sources and receivers has emerged as a promising area of
opportunity in sonar systems. Despite extensive use in prac-
tical applications, there are relatively few formal results in
the literature to guide deployment of such systems.

A multistatic sonar network (MSN) consisting of a num-
ber of noncollocated sources and receivers carries a number
of advantages. Reference [11] states that “countermeasure
tactics are greatly complicated if the target does not know
the position of the receivers.” This is justified by the fact
that receivers do not send out pings and thus do not reveal
their locations. Beyond that, recent procurement records of
the United States Navy (USN) demonstrate that sources can

Correspondence to: Emily M. Craparo (emcrapar@nps.edu)

cost up to seven times as much as receivers [41]. Thus,
deploying more receivers than sources might significantly
reduce costs without sacrificing performance. Also, a “mul-
tistatic system can employ different platforms for sources and
receivers. A ship might be the source, while the receivers are
sonobuoys” [43]; such flexibility can greatly aid deployment
efforts in practice. On top of this, a ping might be received
by multiple receivers, thus improving accuracy. References
[9] and [38] discuss how to merge multiple detections into
a single alert that is more precise and eliminates some of
the false alarms that occur on traditional (monostatic) sonar
systems.

However, these benefits come at a cost. The performance
of a bistatic sonar system, that is, an MSN with exactly
one source and one receiver, is significantly more difficult
to model than a monostatic sonar system, leading to chal-
lenges in optimal deployment and usage. The primary reason
for these challenges lies in the differences of the geometry
of both systems. In a monostatic sonar system, the detec-
tion probability is mainly related to the distance between
the sonar device and the potential target. This relationship

© 2017 Wiley Periodicals, Inc.

http://orcid.org/0000-0003-1654-868X

288 Naval Research Logistics, Vol. 64 (2017)

Figure 1. Geometry of a bistatic sonar system—a bistatic sonar
system is composed of a noncollocated source and receiver pair.
The detection probability for target t depends on both target-
source and target-receiver distances. [Color figure can be viewed
at wileyonlinelibrary.com.]

is more complicated in a bistatic model, where the detec-
tion probability depends on the product of the target-source
and target-receiver distances. Moreover, the analytical chal-
lenges are exacerbated by MSNs involving multiple sources
and receivers. The geometry of an example bistatic sonar sys-
tem and the source-target-receiver distances are displayed in
Fig. 1.

Three main types of problems occur in the sonar literature:
barrier search, area search, and point coverage. This article
is one of the first to focus on the point coverage problem, in
which the goal is to place a finite number of sensors (sources
and receivers) so as to best cover a set of stationary points
of interest (PoIs). These PoIs may correspond to strategic
friendly locations that must be kept under surveillance, such
as the vicinity surrounding oil platforms, aircraft carriers,
ports, or other high value assets; or they may simply repre-
sent a discretization of a barrier or area coverage problem. If
the goal is to detect an intruding enemy, we may have some
prior knowledge of where the enemy is likely to be found, or
there may be greater consequences for failing to detect the
enemy in some locations than in others. In such cases, it is
straightforward to associate with each PoI a weight reflecting
its relative importance. To be in accordance with the termi-
nology of other literature, we will refer to PoIs as “targets,”
and instead of “covering” these targets, we “detect” them.
However, we emphasize that in this article, a “target” is a
location in space that we wish to monitor.

In the course of this study, we use two sensor models.
The first is a simple definite range sensing model, sometimes
called a “cookie cutter” sensor. In this sensor model, a target is
detected with probability 1 if it is within the detection range of
the sensor network, and otherwise it is not detected. We also
utilize more sophisticated sensor models in which the prob-
ability of detection varies between zero and one depending
on the configuration of the sensor network and the location

of the target. Much of this work was documented in the mas-
ter’s thesis of the third author [31]; additional details and
computational experiments appear there.

This article is organized as follows. In Section 2, we review
a selection of prior work relating to multistatic systems.
Section 3 describes our assumptions and the aspects of MSN
performance modeling relevant to our work. Our new contri-
butions appear in Sections 4 and 5. In Section 4, we develop
some general observations about point coverage sensing with
MSNs. We prove that a convex hull encasing the targets con-
tains optimal sensor locations. Furthermore, we show the
importance of various geometric constructs in definite range
sensor models. We show that these constructs can be used
to derive performance bounds for MSNs. In Section 5, we
first formulate a nonconvex nonlinear program (NLP) and
a nonconvex integer nonlinear program (INLP) to express
the sensor placement problem. Next, we focus on the devel-
opment and enhancement of the Divide Best Sector (DiBS)
algorithm to find the optimal position for a single source,
assuming fixed targets and receivers in place. This algo-
rithm takes advantage of problem structure to find a globally
optimal position for the source without solving a noncon-
vex optimization problem. We investigate many details of
the algorithm and assess methods and means to improve it.
Finally, Section 6 contains a summary of our findings.

2. LITERATURE REVIEW

Sonar system research belongs to a wide field with diverse
subcategories. There are a number of studies in the litera-
ture that consider the problems of multistatic performance
prediction and sensor placement. For example, Refs. [17]
and [40] apply a genetic algorithm to determine the loca-
tions of multistatic sensors for maximizing area coverage.
Reference [34] uses a particle swarm optimization technique
for the same objective. Reference [39] utilizes game theory
to select positions for multistatic sensors with the goal of
detecting transiting intelligent agents. Reference [23] uses a
simulation-based methodology for multistatic search and res-
cue missions. Reference [7] studies the connectivity problem
in a mobile multistatic radar network containing unmanned
air vehicles. They develop a metric that provides for a balance
between the performance and connectivity of the network.
Reference [18] studies the barrier coverage problem, in which
sensors are deployed on a line segment. They determine
the optimal placement order and spacing of sensors which
minimizes the vulnerability of the network against intrud-
ers. Reference [21] analyzes the performance of a MSN by
using a combined Monte Carlo simulation and Bayesian inte-
gration technique. They use this methodology to account for
uncertainties such as enemy behavior and probable locations.
Reference [4] develops a multistatic performance prediction

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 289

methodology which can be used to assess the detection per-
formance of a MSN as a function of source and receiver
densities. Reference [42] computes the expected detection
probability of a given track in a MSN field where all sources
and receivers are distributed uniformly at random.

The Australian Defence Science and Technology Organi-
sation (DSTO) analyzes multiple scenarios. Reference [14]
compares a field of monostatic sonar systems with that of a
field of similar sonars operated multistatically, where sources
and receivers are collocated. The direct comparison of the two
modes of operation reveals that the correct choice of sensor
models affects the outcome. Using a definite range sensor
model, the researchers find no advantage to the MSN. How-
ever, using the exponential model, the researchers achieve
comparable sensing capabilities in an MSN with about one
quarter the number of sensors as required in a monostatic
setup. This finding is important since it reduces the number
of pings in a given field. As soon as a ping is sent out, a hostile
submarine knows the location of the source and will depart,
which consequently makes it harder to detect. Another rea-
son to reduce the number of pings is the artificial stress for
sea dwellers produced by sonar systems. In another study,
Ref. [35] studies the area coverage problem and analyzes the
coverage performance of 27 MSN layouts to determine the
most cost-effective pattern.

There are different approaches to quantify the effectiveness
of the deployment and usage of multistatic sensors. A strate-
gic rather than a tactical approach is analyzed in Ref. [44].
The authors consider a randomly deployed MSN and develop
an analytic theory that measures the coverage of the net-
work as a function of source and receiver densities. The most
interesting aspect about this approach is the fact that it does
not need to consider the geometric arrangement of the sen-
sors. Using some analytical results from Ref. [44], studies
Refs. [25] and [26] use Monte Carlo simulation to test the
effect of the direct blast zone and mobile searchers on the
performance of a MSN, respectively.

The aforementioned studies only consider the area cover-
age, barrier coverage, and tracking performance of a MSN.
In contrast, Ref. [13] engages the point coverage problem
for MSNs. The authors assume fixed PoIs and receivers
and discuss various approaches to optimally place multiple
sources.

3. ASSUMPTIONS AND PRELIMINARIES

3.1. Assumptions

We consider a set of sources S, a set of receivers R, and a
set of targets T. Each target is associated with a point in the
two-dimensional Euclidean plane with homogeneous envi-
ronmental conditions. We consider the problem of placing
both types of sensor (sources and receivers), as well as the

special case in which receivers are already deployed and we
only wish to select locations for the sources. The direct blast
zone is the area where targets cannot be detected because their
echoes arrive at nearly the same time as the ping from the
source (see Refs. [11, 14], and [25] for details). This effect
can be greatly reduced by pulse compression as shown by
Ref. [14]; thus, in this study direct we assume it is negligible.

3.2. Multistatic Detection Theory

Multiple authors describe the geometry of MSNs. Ref-
erence [11] analyzes the relationship between monostatic
and bistatic active sonars. The author derives that a detec-
tion probability contour, that is, a contour consisting of all
locations for a target t with the same detection probability, is
defined by the constant product:

dt ,s × dt ,r = ρ2
t ,s,r (1)

where ρt ,s,r is a constant known as the equivalent monosta-
tic range, and dt ,s and dt ,r are the distances from a target
t to a source s and to a receiver r, respectively (see Fig. 1).
Those contours are geometric figures known as Cassini ovals,
shown in Fig. 2. In Fig. 2, ρ0 is the range of the day, defined
as the distance from a monostatic sensor to a target where the
detection probability is 50%.

There are multiple ways to model Pt ,s,r , the probability
of detecting target t ∈ T with source s ∈ S and receiver
r ∈ R, as displayed in Fig. 3. The simplest is the definite
range sensor model, which defines Pt ,s,r as

Pt ,s,r =
{

1 if 0 ≤ ρt ,s,r ≤ ρ0

0 otherwise.
(2)

Then, the total detection probability for target t, Pt , consid-
ering all pairs of sources and receivers, is

Pt = max
(s,r)∈S×R

Pt ,s,r . (3)

This means that if at least one pair of sensors detects target
t, then Pt = 1, and otherwise Pt = 0. Although Eqs. (2) and
(3) form an analytically convenient model, this model lacks
some features of real sensors such as a gradually decreasing
Pt ,s,r with increasing ρt ,s,r . Hence, the DSTO team proposes
two diffuse sensor models in Ref. [14]. The first is the Fermi
function, defined here for a model that neglects the direct
blast zone:

Pt ,s,r =
{

1
1+10(ρt ,s,r /ρ0−1)/b if ρt ,s,r ≥ 0

0 otherwise.
(4)

Naval Research Logistics DOI 10.1002/nav

290 Naval Research Logistics, Vol. 64 (2017)

Figure 2. Examples of Cassini ovals—Cassini ovals are shown with respect to source and receiver distance ds,r where ρ0 denotes the range
of the day. If source and receiver are collocated, then the Cassini oval is a circle that corresponds to a monostatic sensor. Increasing the distance
changes the shape from oval to two separate egg shapes. [Color figure can be viewed at wileyonlinelibrary.com.]

Figure 3. Sensor models—the probability curves for three sensor models: definite range, Fermi, and exponential. Range is expressed as
multiples of the range of the day ρ0. For b > 0, all models have Pt ,s,r = 0.5 at ρt ,s,r /ρ0 = 1 to be consistent with the definition of the range of
the day. In this figure, the “blind zone” denotes the range at which the direct blast effect occurs.

The diffusivity parameter b determines how rapidly proba-
bility values change with ρt ,s,r . As b→ 0, the Fermi function
approaches the definite range model.

The second model is the exponential function

Pt ,s,r =
{

10−0.30103ρt ,s,r /ρ0 if ρt ,s,r ≥ 0

0 otherwise.
(5)

Here, the exponent is chosen such that if ρt ,s,r/ρ0 = 1 the
detection probability Pt ,s,r = 0.5.

For diffuse sensor models such as these, we define a more
general version of Eq. (4) to compute Pt . Assuming all

probabilities are independent, we have

Pt = 1 −
∏

(s,r)∈SxR

(1 − Pt ,s,r). (6)

In order to account for the relative importance of differ-
ent targets, we introduce vt as the value of target t. Hence,
we denote the expected reward for target t as vtPt . If all tar-
gets have the same value, we simplify the expected reward
for target t by using Pt . Based on this, we can define mul-
tiple objective functions depending on the chosen sensor
model. While maximizing the total expected reward is our
only objective when using a definite range model, we can

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 291

Table 1. Objective functions—different objective functions are possible depending on the user’s goal and chosen sensor model, where vt

denotes the value or weight of target t

Objective Sensor model Formula

Maximize total (or average) expected reward Definite range or diffuse max
∑
t∈T

vtPt or max
∑
t∈T

vtPt/|T |
Maximize minimum expected reward Diffuse max min

t∈T
vtPt

also choose to maximize the minimum expected reward. The
objective functions are summarized in Table 1.

4. OBSERVATIONS ON POINT COVERAGE
SENSING

This section analyzes the point coverage scenario and
makes some fundamental observations about the perfor-
mance of a multistatic sonar system. These observations help
to limit the solution space and exclude some infeasible and
suboptimal solutions from consideration. We also show how
to apply the gained insights to judge whether a particular out-
come justifies utilizing a proposed method. Specifically, we
consider the following questions:

– Is the convex hull spanned by the targets guaran-
teed to contain the optimal locations of sources and
receivers?

– Are there other ways to exclude suboptimal solu-
tions?

4.1. The Convex Hull

A simple approach to limit the set of potential sensor loca-
tions would be defining a rectangle that contains all targets.
Even though this can easily be implemented, we want to
exclude as many locations as possible. A more sophisticated
approach involves looking at the convex hull spanned by the
targets. As vividly described in Ref. [3], one can imagine the
targets as nails sticking out of the plane. If we hold a rubber
band around the nails and release it so that it stretches taut
against the nails, the enclosed area will be the convex hull.

4.1.1. Properties of the Convex Hull

The example in Fig. 4 shows a convex hull for a set of
targets T. It also shows that a target could reside at the ver-
tex, along an edge or inside the convex hull of the resulting
polygon. We define the set C as C = {t ∈ T : t is a vertex of
the convex hull of the T}.

The convex hull Conv(T) is defined as the smallest con-
vex set that contains all targets in T. It is easy to see that
Conv(T) = Conv(C). If all nails that are not vertices are

Figure 4. Convex hull example—a convex hull covering a set of
targets. Its vertices are T 7, T 6, T 8, T 10, and T 1.

removed in the previously mentioned example, the rubber
band would still enclose the same area. Alongside this pic-
turesque description of a convex hull, there also exists a
mathematical definition. Each point p ∈ Conv(C) with coor-
dinates (xp, yp) can be written as a convex combination of
the vertices in C. This is shown in Eq. (7), where 0 ≤ λt ≤ 1
for all t ∈ C.

xp =
∑
t∈C

λtxt ,

yp =
∑
t∈C

λtyt ,

1 =
∑
t∈C

λt . (7)

Theorem 1 describes the relationship between the convex
hull and the detection probability for sensor p, where Pt (p)
denotes Pt ,p,r if p is a source and Pt ,s,p otherwise. For sim-
plicity, we use the symbols p and p′ to refer to both sensor
and its position.

Naval Research Logistics DOI 10.1002/nav

292 Naval Research Logistics, Vol. 64 (2017)

Figure 5. Theorem 1 proof—there exist two cases for the closest position p /∈ Conv(C) to p. The left figure displays p′ on an edge of the
convex hull, while p′ is collocated with a vertex on the right. In both cases, all targets t ∈ T are right of the dashed line, which is perpendicular
to the line from p to p′ and crosses p′.

THEOREM 1: For every potential sensor position
p /∈ Conv(C), there exists a position p′ ∈ Conv(C) such
that Pt (p′) ≥ Pt (p)∀t ∈ T

PROOF: Assume sensor position p /∈ Conv(C). Let
p′ ∈ Conv(C) denote the position inside the convex hull with
the shortest distance to p. Then p′ is either on an edge of the
convex hull, or collocated with one of its vertices as shown
in Fig. 5. In both cases, the convex hull and with it all targets
t ∈ T lie beyond an imaginary line perpendicular to the line
from p to p′ crossing that line at p′. Otherwise, there would
be another p′ that is closer to p, which is a contradiction.

Let t be a target inside the convex hull. Without loss of
generality, we assume that p and p′ are lying on a line paral-
lel to the x axis. Then the horizontal distance between p and
t is |xp − xt | = |xp − xp′ | + |xp′ − xt |, and we derive

d2
t ,p = (xp − xt)

2 + (yp − yt)
2

= (|xp − xp′ | + |xp′ − xt |)2

+ (|yp − yp′ | + |yp′ − yt |)2

≥ (xp′ − xt)
2 + (yp′ − yt)

2 = d2
t ,p′

∴ d2
t ,p ≥ d2

t ,p′ .

Let ρt (p) denote ρt ,p,r or ρt ,s,p if p is a source or receiver,
respectively. Thus, the equivalent monostatic range for p′ is
ρt (p

′) = √
dt ,p′dt ,x ≤ √

dt ,pdt ,x = ρt (p), where x is the
second type of sensor needed in an MSN. It follows that
Pt (p′) ≥ Pt (p) for all sensor models that are monotonically
nonincreasing with distance, as shown in Fig. 3. �

Theorem 1 implies that we can place all sources and
receivers inside the convex hull of the targets without sac-
rificing optimality. We now describe a method to construct
the convex hull.

4.1.2. Finding Vertices of the Convex Hull

Finding the vertices of a convex hull is a fundamental prob-
lem in computational geometry. There are several algorithms
in literature; some of the most popular include: Graham scan
[19], gift wrapping (sometimes called Jarvis march) [22],
Andrew’s monotone chain [1], quickhull [2], Chan’s algo-
rithm [8], divide and conquer [36], incremental convex hull
[24], and the ultimate planar convex hull [29].

In this study, we adopt the Graham scan algorithm
described in Ref. [19]. The algorithm runs in time
O(|T | log |T |). It starts by finding t0 ∈ T , the target with
the smallest value for yt . If there are multiple targets that
share the smallest yt , we pick the one with the smallest xt out
of the candidates. Next, we compute the angles θt each target
t ∈ T makes with t0 and the x axis using the formula

θt = atan2(yt − yt0 , xt − xt0) (8)

Sorting the targets by θt from smallest to largest, the algo-
rithm now considers each target as possible vertex. At each
step, it determines whether the current target t and its two
predecessors t − 1 and t − 2 make a turn clockwise or
counterclockwise by calculating

c = (xt−1 − xt−2) × (yt − yt−2) − (yt−1 − yt−2)

× (xt − xt−2). (9)

If the result is positive, the points make a counterclockwise
turn and the next target in the ordered list is considered. If
c < 0, then the turn is clockwise and the middle target t − 1
is identified as non-vertex. If c = 0, then all three targets are
collinear; target t − 1 is also discarded in this case. Figure 6
displays the working of the Graham scan algorithm.

The low complexity of the Graham scan is a result of the
simple formula in Eq. (9) to detect clockwise and counter-
clockwise turns. Note that the Graham scan also outputs the
vertices of the convex hull in a counterclockwise order; we
exploit this fact in Section 5.2.4.

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 293

Figure 6. Graham scan—targets are considered in order of the angle they make between the lowest indexed target and the x axis. In this
example, that order is T 2, T 4, T 5, T 3, then T 1. Step 1 shows the algorithm in progress, with only counterclockwise turns detected thus
far. The algorithm detects a clockwise turn in step 2 and thus discards the middle target (T 3) in step 3. [Color figure can be viewed at
wileyonlinelibrary.com.]

4.2. Range of the Day Circles

This section analyzes the relationship between the range
of the day, ρ0, and the definite range sensor model. We have
seen Eq. (2) that a target is detected if and only if its equiv-
alent monostatic range ρt ,s,r ≤ ρ0. Building upon this fact,
we introduce range of the day circles (RDCs). Each RDC is
centered at a target and has radius ρ0 as shown in Fig. 7. In the
remainder of this section, we discuss methods to use RDCs to
bound certain aspects of the sensor placement problem. Even
though we develop these methods for definite range sensor
models, they can also be extended to problems where we have
to meet a particular detection probability goal.

4.2.1. Properties

An important observation is the relationship between
sensor positions relative to RDCs and a target’s detection
probability.

LEMMA 1: A target t cannot be detected if no sensors are
within t’s RDC.

PROOF: To arrive at a contradiction, we assume all sen-
sors are located outside the RDC of target t and Pt ,s,r = 1
for some s ∈ S and r ∈ R. Then, dt ,s > ρ0, ∀s ∈ S and
dt ,r > ρ0, ∀r ∈ R. It follows that

ρt ,s,r = √
dt ,s × dt ,r

>
√

ρ0 × ρ0 = ρ0

But then according to Eq. (2), Pt ,s,r = 0, which is a contradic-
tion. �

This, however, does not mean that we can find an optimal
sensor placement by solely looking at positions inside RDCs.
The left plot in Fig. 8 demonstrates a counterexample where
the optimal position for the source is located outside any
RDCs. Moving this source inside an RDC results in losing
coverage of targets.

A reasonable heuristic may involve choosing to place
receivers within as many RDCs as possible and letting the

Figure 7. Range of the day circles (RDCs)—assuming a definite
range sensor model, RDCs determine bounds for the problem. Each
circle is centered at a target and has radius ρ0.

sources be placed outside RDCs, thus “connecting” disparate
elements of the MSN. However, the intuition that optimal
receiver positions can only be found within maximal RDC
intersections is fallacious, as illustrated by the right plot in
Fig. 8. Receiver R1 cannot be moved into the intersection
of T 1’s and T 2’s RDCs without sacrificing coverage of T 1.
Doing so would require moving the source closer to T 1, but
this results in a loss of coverage of targets T 3 and T 4.

4.2.2. Clusters

We have shown that we cannot restrict our sensors to
occupy RDCs without potentially sacrificing optimality. Nev-
ertheless, we can use RDCs and their intersections to assist
our analysis. To do this, we introduce the notion of clusters.
A cluster G ⊆ T is a maximal set of targets, where the RDCs
of all targets t ∈ G mutually cover at least one point. Since

Naval Research Logistics DOI 10.1002/nav

294 Naval Research Logistics, Vol. 64 (2017)

Figure 8. RDCs properties—the left plot illustrates that an optimal placement can be found by placing the source S1 outside RDCs. Forcing
the S1 inside the RDCs results in losing coverage of one or more targets. The right plot shows an example where an optimal receiver position
is outside RDC intersections. Here, it is not possible to cover all targets by placing all receivers into RDC intersections.

Figure 9. Clusters special case—the targets in the left plot form
exactly one cluster. The targets on the right, however, form the three
clusters {T1, T2} , {T2, T3}, and {T1, T3} since the three targets do not
have a single point in common.

we require a cluster to be maximal, it is not possible to add
another target to a cluster. In our example from Fig. 7, we
can find the clusters

G1 = {T1} , G2 = {T3, T7} , G3 = {T2, T6, T9} ,

G4 = {T4, T5, T10} , G5 = {T4, T8} .

We make some observations about clusters. First of all,
each target t ∈ T occurs in at least one cluster. If there are no
intersections with circles from other targets, a target forms
its own cluster, for example, T 1 is the only element of G1.
Additionally, it is possible that a target is a member of multi-
ple clusters, for example, T4 ∈ G4 and T4 ∈ G5. Moreover, it
is important to notice that even though at first glance it looks
like the clique of targets on top of Fig. 7 (T 4, T 5, T 8, and T 10)
all belong together, they actually form two separate clusters
since T 8’s RDC is only connected to T 4’s RDC, not those of
T 5 and T 10.

Figure 9 shows an interesting case: the left plot forms
exactly one cluster, while the right plot forms three clus-
ters {T1, T2} , {T2, T3}, and {T1, T3} since the three targets do
not have a single point in common, even though the targets’
RDCs mutually intersect.

Based on this, we define a minimal set of clusters G̃ as
the smallest set of clusters that contains all targets t ∈ T .
For the right plot in Fig. 9, three minimal sets of clusters
are G̃ = {{T1, T2}, {T2, T3}}, G̃ = {{T1, T2}, {T1, T3}}, and

G̃ = {{T1, T3}, {T2, T3}}. Furthermore, we formulate the
following theorem.

THEOREM 2: A lower bound on the number of sensors
required to detect all targets is |G̃|.

PROOF: To arrive at a contradiction, we assume that all tar-
gets are covered with |G̃|−1 sensors. It follows from Lemma
1 that at least one sensor has to be inside each target’s RDC.
Since the RDCs of each cluster have at least one point in
common, putting a sensor on that point results in having a
sensor in each RDC of this cluster. Moreover, since clusters
are maximal, we cannot add another target to any cluster.
Hence, one cluster and therefore at least one target remains
without a sensor in its RDC. �

As a result of Theorem 2, we can define |G̃| as a lower
bound for the number of sensors required to detect all tar-
gets. By the same token, we are able to find an upper bound
on the number of targets we can cover with a given number
of sensors n by choosing n sets from G̃, such that the number
of contained targets is maximized.

5. OPTIMIZING SENSOR PLACEMENTS

We now investigate methods to select sensor locations
in MSNs. First, we formulate two mathematical program-
ming models that select locations for a set of sources S
and a set of receivers R. The first model, MSN-NLP, is an
NLP that uses an arbitrary detection probability function
f (xt , yt , xs , ys , xr , yr). This function represents the probabil-
ity of detecting target t with source s and receiver r, with
the target located at coordinates (xt , yt), the source located
at coordinates (xs , ys), and the receiver located at coordi-
nates (xr , yr). Assuming each source and receiver pair detects
each target independently of all other source and receiver
pairs, MSN-NLP maximizes the expected value of the tar-
gets detected, where each target is associated with a weight
reflecting either the importance of the location to be mon-
itored, or the probability that a hostile enemy is present at
the location. In the second model, MSN-INLP, we address

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 295

the special case of a definite range sensor model using an
INLP. Both MSN-NLP and MSN-INLP are nonconvex and
thus may not prescribe a globally optimal solution.

In Section 5.2, we consider the problem of placing a single
source in a network of fixed receivers. Although this prob-
lem is nonconvex, we are able to use the special structure of
the problem to develop an algorithm that returns a provably
near-optimal solution.

5.1. Mathematical Programming Formulations

Our mathematical models start from the premise that we
have already found the set of vertices of the convex hull of
the targets, C. They then select positions for a set of sources
and receivers with the goal of maximizing the weighted
probability of detection for the set of targets.

5.1.1. Model MSN-NLP

Indices and Sets:
t ∈ T targets
C ⊆ T vertex set, C = {t ∈ T |t is a vertex}
r ∈ R receivers
s ∈ S sources
p ∈ P = S ∪ R all sensors (sources and receivers)

Data:
xt x coordinate of target t
yt y coordinate of target t
vt weight of target t

Decision Variables:
λ

p
t weight of vertex t when defining sensor p’s position

xp x coordinate of sensor p
yp y coordinate of sensor p

Objective function:

max
λ,x,y

∑
t∈T

vt

(
1 −

∏
s∈S, r∈R

(1 − f (xt , yt , xs , ys , xr , yr))

)

(10)

Constraints:

xp =
∑
t∈C

λ
p
t xt ∀p ∈ P (11)

yp =
∑
t∈C

λ
p
t yt ∀p ∈ P (12)

1 =
∑
t∈C

λ
p
t ∀p ∈ P (13)

λ
p
t ≥ 0 ∀t ∈ C, p ∈ P (14)

MSN-NLP forces the positions of the sources and receivers
to be inside the convex hull by defining them as convex com-
binations of the vertices in Eqs. (11)–(14). The objective
function (10) calculates sum of the overall probabilities of
detecting each target t, weighted by t’s relative value.

5.1.2. Model MSN-INLP

For the case of a definite range sensor model, we have
f (xt , yt , xs , ys , xr , yr) as a step function, which may be prob-
lematic for many solvers. Thus, we propose model MSN-
INLP, which uses binary decision variables to implement the
sensor model. First, we introduce binary decision variables
ht ,s,r . For each target t , ht ,s,r specifies whether t is detected by
source s and receiver r (ht ,s,r = 1) or not detected by source s
and receiver r (ht ,s,r = 0). Equation (19) ensures that ht ,s,r does
not indicate a detection for any combination of target, source,
and receiver that does not satisfy the requirement stated in the
definite range sensor model. The target can only be denoted
as detected (ht ,s,r = 1) if

√
dt ,s × dt ,r ≤ ρ0. If the target is not

detected, then a large number M t is added to the range of
the day, ρ0, in order to satisfy the constraint. We then use
binary decision variables kt to specify whether each target t
is detected by any source and receiver. Equation (20) ensures
that if a target t is not detected by any source and receiver
(ht ,s,r = 0 for all s and r), then kt = 0. Otherwise, kt is allowed
to take on value 1. Equations (16)–(18) and (21) are identi-
cal to Eqs. (11)–(14); again, they ensure that the sources and
receivers are placed within the convex hull of the targets.

Additional Data:
ρ0 range of the day
M t constant sufficiently large to satisfy Eq. (19)

Additional Decision Variables:
ht ,s,r binary; equal to 1 if target t is detected using source s
and receiver r, 0 otherwise
kt binary; equal to 1 if target t is detected using any source
and receiver, 0 otherwise

Objective function:

max
λ,x,y,h,k

∑
t∈T

vtkt (15)

Constraints:

xp =
∑
t∈C

λ
p
t xt ∀p ∈ P (16)

yp =
∑
t∈C

λ
p
t yt ∀p ∈ P (17)

1 =
∑
t∈C

λ
p
t ∀p ∈ P (18)

Naval Research Logistics DOI 10.1002/nav

296 Naval Research Logistics, Vol. 64 (2017)

ρ0 + Mt(1 − ht ,s,r)

≥ (√
(xt − xs)

2 + (yt − ys)
2

×
√

(xt − xr)
2 + (yt − yr)

2) 1
2

∀t ∈ T , s ∈ S, r ∈ R (19)

kt ≤
∑

s∈S, r∈R

ht ,s,r ∀t ∈ T (20)

λ
p
t ≥ 0 ∀t ∈ C, p ∈ P (21)

kt , ht ,s,r ∈ {0, 1} ∀t ∈ T , s ∈ S, r ∈ R (22)

Reference [6] shows that tight parameters such as M t reduce
the time a solver needs to find an optimal solution. In order
to make sure the INLP is always feasible, the left-hand side
of Eq. (19) has to be equal to the largest product of distances
possible for each target. Since the largest distance from a tar-
get position to a point in a convex hull is to one of its vertices,
we can set M t to its square. We can also subtract ρ0 since it
is already added on the left-hand side. Thus, we have

Mt = max
t ′∈C

d2
t ,t ′ − ρ0. (23)

Note that although both MSN-NLP and MSN-INLP are rel-
atively easy to specify, they are quite difficult to solve to
optimality. Both are highly nonconvex, and even in the sim-
ple bistatic case where |S| = 1 and |R| = 1, there is always
more than one optimal solution. First of all, interchanging the
source and receiver in a bistatic environment does not change
the outcome; the Cassini ovals are unchanged by reversing
the sensor types. In the case of a definite range sensor, if a
sensor is moved slightly in one direction, it may still detect
the same targets. Indeed, there often exist infinitely many
optimal solutions, as well as many suboptimal local maxima.

While the problem of placing multiple sources and
receivers is quite difficult, the special case in which the
receiver positions are already fixed and we only wish to place
a single source is more tractable. Although this simpler prob-
lem is still nonconvex, we now develop an algorithm that is
guaranteed for find a location for which the objective value is
within a predetermined ε > 0 of the global optimal objective
value, where ε is chosen by the user.

5.2. DiBS Algorithm

In this section, we consider the optimal placement of a
single source in a network of fixed receivers. In an oper-
ational setting, it often occurs that receiver sonobuoys have
been deployed throughout a field by plane or ship, and source
pings are to be conducted one at a time via helicopter dips.
In this setting, it is useful to consider the best location for the
next (and possibly only) ping.

Figure 10. DiBS’ problem statement—we wish to find the optimal
source position, given fixed target, and receiver locations. Our goal
is to maximize the average detection probability across all targets.
The z axis represents the average detection probability assuming a
source is deployed at the respective position. Multiple local maxima
indicate nonconvexity.

5.2.1. Problem Statement

We consider the following scenario: there is a set T of fixed
target locations that have to be monitored. Furthermore, there
is a set R of receivers with fixed and known positions. The
objective is to find the optimal position for a single source. We
do not assume a particular sensor model; rather, we discuss a
method that works with all sensor models of the form shown
in Fig. 3, that is, those in which the detection probability is
nonincreasing with the equivalent monostatic range.

Figure 10 shows a generic scenario with fixed targets and
receivers. For each position (x, y), the vertical axis represents
the average detection probability (averaged over all targets) if
a single source is deployed at position (x, y). More generally,
we can easily incorporate the target weights vt to calculate
an objective value for each location. Multiple local maxima
in this plot show that the problem is nonconvex. Nonethe-
less, we now develop an algorithm guaranteed to solve this
problem to near global optimality.

5.2.2. Algorithm Development

In this section, we develop the DiBS algorithm. DiBS par-
titions the area of possible source locations into sectors. For
each sector, we calculate an upper bound on the objective
value that could be obtained if a source were to be placed
within that sector. This upper bound is generally loose, but it
provides an (optimistic) estimate of the best objective value
that can be obtained by placing a source within the sector. We
can also determine a lower bound on the optimal objective
value by considering any feasible solution, for example, by
placing the source at the center of a sector. In each iteration,
the sector with the highest upper bound is divided into mul-
tiple smaller sectors, and we calculate an upper bound for

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 297

Figure 11. Determine upper bound—for each target t there exists
a hypothetical source position inside sector γ that has the shortest
distance dt ,γ to the target. This distance determines the highest pos-
sible detection probability with a source position inside γ . Using
the probabilities for all targets, we can calculate an upper bound for
the objective value if the source is placed inside γ .

each of these smaller sectors. These upper bounds are gener-
ally tighter than the bound obtained from a larger sector. In
this way, we perform more and more detailed examinations
of the most promising sector. This process continues until we
meet some termination criterion. For instance, we may wish
to stop when we have a feasible solution with an objective
value that is “close enough” to our current best upper bound
on the optimal objective value.

The DiBS algorithm can be categorized as a divide-and-
conquer algorithm. Divide-and-conquer type algorithms are
commonly used in sorting [30], multiplying large numbers
[27], Eigen decomposition of symmetric tridiagonal matri-
ces [20], finding the closest pair of points [37], construction
of Voronoi diagrams [28], and computing the discrete Fourier
transform [16]. Such algorithms are generally developed to
solve large or difficult problems. They work by recursively
reducing the problem into smaller and smaller sub-problems,
until the sub-problems are small enough to be solved (con-
quered) directly. These solutions are then combined into the
solution for the original problem [10].

In Section 4.1, we showed that optimal sensor positions
can always be found inside the convex hull spanned by the
targets. As a practical matter, we slightly relax this condition
to the smallest rectangle with edges parallel to the x and y
axes that contains all targets. This way we can easily divide
the area of possible source locations into smaller sectors by
slicing horizontally as well as vertically.

Let � denote the set of sectors in which the source may
be placed. In each iteration of DiBS, each sector γ ∈ �

is evaluated with respect to an upper bound, uB(γ), for the
objective value. This is the heart of DiBS and is illustrated in
Fig. 11. Since receivers and targets occupy fixed positions in
this scenario, each target-receiver distance dt ,r is constant.

Thus, the equivalent ranges ρt ,s,r and subsequently the
detection probability Pt only depend on the target-source dis-
tance dt ,s . Hence, for every target, we determine the hypothet-
ical source position that is closest to the target but still inside
γ . These hypothetical source positions are either on the edge
of the sector or the target position itself, as seen in Fig. 11.

With the shortest distance dt ,γ from target t to its respective
hypothetical source position inside sector γ , we can compute
the highest possible detection probability Pt , assuming the
source location is inside γ . Having done this with all targets,
we compute the upper bound, uB(γ), according to Table 1.
The following pseudocode finds the upper bound for a given
sector γ , where xmin

γ (ymin
γ) is the lowest and xmax

γ (ymax
γ) the

highest x (y) coordinate for γ .

1: procedure UPPER.BOUND(γ)
2: for all t ∈ T do
3: xs ← min(max(xmin

γ , xt), xmax
γ)

4: ys ← min(max(ymin
γ , yt), ymax

γ)

5: dt ,γ ←
√

(xt − xs)
2 + (yt − ys)

2

6: compute Pt � use chosen sensor model
7: end for
8: compute objective value Z � use chosen objective
9: return Z
10: end procedure

In a next step, we pick the sector γ ∈ � in which uB(γ) is
maximized and divide it into smaller sectors with respective
upper bounds. Consistently repeating this method results in
smaller sectors and subsequently tighter upper bounds until a
termination condition is met. Various termination conditions
are conceivable, such as a maximum sector size, optimality
range, etc. The following pseudocode shows the workings of
DiBS.

1: procedure DiBS
2: create initial �

3: optimal ← FALSE
4: while ¬ optimal do
5: select γ ∈ � such that UPPER.BOUND(γ) is

maximized
6: if termination condition is met then

� use chosen termination condition
7: optimal ← TRUE
8: else
9: �′ ← split γ into smaller sectors
10: � ← �′ ∪ �\ {γ }
11: end if
12: end while
13: return γ

14: end procedure

Naval Research Logistics DOI 10.1002/nav

298 Naval Research Logistics, Vol. 64 (2017)

Figure 12. DiBS example—a scenario with 10 targets and three receivers as given in Fig. 10. On the left, we see the objective value as a
function of source position. Note that there are two main areas of good objective value: the upper center and the lower right. A large number
of targets coincides with a receiver in each of these locations. On the right, we see the final state of DiBS. Note that DiBS has performed a
thorough search of the two promising areas, while leaving less promising areas relatively unexplored. The green diamond denotes DiBS’ final
solution.

Figure 12 shows the end state of an instance where example
from Fig. 10 is solved with DiBS. It vividly illustrates how
sectors with a low upper bound are ignored while promising
areas are further explored. In the remainder of this section,
we examine various details of DiBS and give recommenda-
tions on how to use it most efficiently. We end with a brief
computational study examining DiBS’ computation time.

5.2.3. Termination Conditions

First, we wish to verify that the algorithm eventually fin-
ishes when it meets a specific condition. This section dis-
cusses various termination conditions based on sector size
and optimality gap.

Termination by Sector Size. There are two natural ways to
define the size of a rectangular sector: by its area and by its
edge lengths. A small area, however, can be the result of a
very narrow but long rectangle. This metric is not very use-
ful, because detection probabilities can change greatly along
a line, as well as in a long rectangle. Thus, even if a sector
with small area has a high upper bound, a sensor placed in
this sector may perform badly. Additionally, telling a decision
maker to place the source in a 0.01 × 10,000 foot rectangle
is likely not useful in practice.

On the other hand, using a maximum edge length strongly
constrains possible source locations. Choosing a maximum
edge length of ten feet, for example, results in a final sector
that has size of at most 10 × 10 feet, a sufficient precision for
helicopter dips. Moreover, the change in detection probabil-
ities in such a region is very limited. Therefore, for the rest

Table 2. Optimality gap methods—these methods look for a spe-
cific source position inside a sector in order to determine the optimal-
ity gap. The last method, Targets, has to be used in conjunction with
one of the other methods since there may exist sectors containing no
targets

Method Positions Remarks

Center 1 Uses sector’s center point
Corners 4 Uses sector’s vertices
Corners + Center 5 Combines Corners and Center
Targets up to |T| Uses target positions inside sector

of this section, “Termination by Sector Size” denotes termi-
nation when the length of the longest edge of the sector with
the highest upper bound is sufficiently small.

Termination by Optimality Gap. Though simple and useful,
it turns out that termination by sector size has a drawback. If
we request a sector with very short edges, DiBS may expend
considerable computation time in order to obtain a negligible
gain in objective value. Hence, we now consider a termination
condition with a technique used by many mathematical pro-
gramming solvers: we introduce a tolerable optimality gap,
ε. That is, we allow DiBS to stop as soon as it finds a feasible
sensor position s′ that has an objective value within ε percent
of the upper bound. The effectiveness of the optimality gap,
turn, depends on which position we choose for s′.

Table 2 contains a number of methods for finding a fea-
sible source position from which to create a lower bound.
The first method, Center, places the source at the center of
the most promising sector. It does not require high computa-
tional power, but it generally produces a looser bound than

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 299

Figure 13. Optimality gap example—while the number of evaluated sectors for the baseline case without optimality gap feature
increases with higher demanded precision, the algorithm terminates earlier when using an optimality gap. [Color figure can be viewed
at wileyonlinelibrary.com.]

the other methods. If we consider five positions with Cor-
ners + Center, we generally obtain a tighter bound but with
increased run time. The last method, Targets, is an add-on for
the previous ones: in addition to any previously considered
position it also considers placing the source so as to coincide
with any targets in the sector. The idea is that the detection
probability for a single target is maximized if at least one
sensor is at the target’s position. Since there are sectors that
do not contain any targets, it can only be used in conjunction
with another method.

The example in Fig. 13 shows how an optimality gap lim-
its the number of created and evaluated sectors and thus the
run time. In this particular problem instance, DiBS creates
more than 16,000 sectors to terminate with a sector size
of 0.001. Utilizing an optimality gap of ε = 0.05, however,
DiBS terminates after about 200 created sectors with only a
minor difference between Center and Corners. Overall, we
recommend using a termination condition based on an opti-
mality gap rather than a sector size. In our experience, such
a termination condition significantly reduces the number of
created and evaluated sectors, especially for high precision
calculations. Even though the run time per iteration slightly
increases, the total run time can be reduced to a fraction of the
run time required to achieve similar accuracy using a sector
size criterion, regardless of the choice of method for finding
the feasible source position s [31].

Utilizing Lower Bounds Recall that the methods described
in the previous section provide a lower bound, lB(γ). This
section discusses whether we can use lower bounds to dis-
regard sectors. Additionally, we examine the performance of
DiBS using lower bounds in this manner.

Consider discarding a hypothetical sector γ ′ with upper
bound uB(γ ′) that is less than or equal to the lower bound
lB(γ) of another sector γ . Interestingly, this is not neces-
sary. Since lB(γ) is the objective value for a feasible source
position in sector γ , it is always included in one sector of

γ ’s subsectors following a division. Hence, there is always a
subsector of γ that has a higher upper bound than γ ′. Thus, γ ′
will never be chosen as the best sector, and therefore, discard-
ing it does not reduce the total number of sectors created. It
does, however, reduce the number of sectors in a list that has
to be searched for the highest upper bound. However, the cost
of this operation is negligible compared to other operations
in DiBS.

Nevertheless, we can use the lower bound to indirectly
measure the tightness of the upper bound. A tight upper bound
is important for faster identification of a solution. Figure 14
illustrates the evolution of the gap between the upper and
lower bounds throughout the execution of DiBS. Here, the
left plot shows the overall trend of a decreasing gap the
longer the algorithm runs. Jumps to lower values for the lower
bound occur when the next sector with highest upper bound
is much larger than the previous sector and therefore can pro-
vide a bigger gap between lower and upper bound. (The lower
bound at each iteration is that resulting from the current sector
under consideration, not the greatest lower bound found so
far.) The right plot verifies our suspicion that smaller sectors
yield smaller gaps and therefore tighter upper bounds.

5.2.4. Implementation Issues: Plane Rotation

Various practical issues arise when implementing DiBS.
Here, we examine the setup of the initial set of sectors. Ref-
erence [31] describes an approach for handling rectangular
sectors that are not squares.

The DiBS algorithm starts by finding the smallest rectangle
with edges parallel to the x and y axes that contains all targets.
We know from Section 4.1 that the optimal sensor position
lies inside the convex hull spanned by the targets. Hence, it is
possible that the resulting rectangle contains a large overhang
that is subject to being evaluated unnecessarily. This section
discusses the use of the minimum-area rectangle containing

Naval Research Logistics DOI 10.1002/nav

300 Naval Research Logistics, Vol. 64 (2017)

Figure 14. DiBS goodness—with increasing iterations the gap between the upper and lower bounds decreases (left plot). Steep drops in
lower bound values occur in iterations where DiBS begins to evaluate a large sector. Overall, however, the bounds become closer together as
the iterations proceed, reflecting the increasing fidelity of DiBS’ approximation of the objective function. The right plot shows the relationship
between longest sector edge length (expressed as a multiple of the longest initial edge length) and gap size. Again, smaller sectors yield tighter
upper bounds. [Color figure can be viewed at wileyonlinelibrary.com.]

Figure 15. Minimum-area rectangle example—the plot shows the
original rectangle as well as two rectangles that have one side
collinear with one side of the convex hull. The T 6− T 8 rectangle is
the minimum-area rectangle that encases all targets. [Color figure
can be viewed at wileyonlinelibrary.com.]

all targets and how to rotate the plane such that our original
implementation of DiBS still can be applied.

Reference [15] proves that the minimum-area rectangle
encasing a convex hull has a side collinear with one of the
edges of the convex hull, as seen in Fig. 15. Hence, we choose
the rectangle with smallest area out of the |C| possible rectan-
gles we could form. Using the Graham scan to find C has the
advantage that the vertices are already ordered. Therefore,
we can use this output to easily construct the edges of the
convex hull.

The example in Fig. 15 shows the original rectangle pro-
duced by DiBS as well as the rectangles with the smallest
and the largest area that have one side collinear with one of

the edges of the convex hull. The respective areas in square
units are

original : 636, T6 − T8 : 505.375, T10 − T1 : 619.420.

This example shows that using the minimum-area rectan-
gle can greatly reduce the overhang. Having determined the
minimum-area rectangle, we need to rotate the plane such
that the edges of the rectangle are parallel to x and y axes.
An efficient way to do this is applying a linear transformation
to the sets of target and receiver locations [32]. Let t0– t1 be
the edge that is collinear with the minimum-area rectangle.
Then, the linear transformation is represented by the matrix

A =
[

cos θ sinθ

− sin θ cosθ

]
, where θ = tan−1

(
yt1 − yt0

xt1 − xt0

)
.

The matrix multiplication AX provides the new coordinates
for targets and receivers, where the first and second row of X
holds the x and y coordinates, respectively.

Although plane rotation can have a huge impact on the
size of the overhang, this may not necessarily result in a
corresponding increase in DiBS iterations, since the over-
hang may be largely devoid of targets. Nevertheless, since
the preprocessing required to choose a small rectangle is not
very time-consuming, one should consider executing this step
before running DiBS.

5.2.5. Finding Multiple Sensor Locations

In some applications, it is desirable to optimize the posi-
tions of more than one source, for example, when placing
multiple sonobuoys. This section investigates an iterative

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 301

method as well as a simultaneous approach for accomplishing
this.

Placing Sources Iteratively. We consider a set S of sources
that has to be optimally deployed in a scenario with fixed tar-
gets and receivers. Furthermore, we assume a definite range
sensor model in this section, although other models are pos-
sible. We choose the position for the first source by running
DiBS without modifications. In a next step, we remove all
targets that are detected in the first iteration and run DiBS
again with the remaining targets to choose the second sensor
position. We repeat those until either all targets are detected or
all sources are placed. The following pseudocode illustrates
the iterative method.

1: procedure ITERATIVE.METHOD
2: while |T | > 0 and |S| > 0 do
3: select s ∈ S
4: run DiBS
5: T ← T \ {detected targets}
6: S ← S \ {s}
7: end while
8: end procedure

Since we place sources in a greedy manner, the resulting
solution generally is not optimal. Nevertheless, this algorithm
reveals some information about the optimal solution. First
of all, if all targets are detected by this method, the solu-
tion indeed is optimal. Otherwise, we can use the outcome to
define lower and upper bounds on the optimal objective value
for this problem by noting that the objective value achieved by
DiBS is a submodular function [33] of the set of source loca-
tions selected. This property is easiest to see in the context of
a definite range sensor model, so we continue our discussion
in that setting. However, a similar argument applies in the
case of a continuous sensor.

If � is a set, a function g: 2� → R is submodular if and
only if

g(X ∪ {j , k}) − g(X ∪ {k}) ≤ g(X ∪ {j}) − g(X)

∀ X ⊆ � and j , k ∈ �\ X.

In the multistatic sonar setting, let � be the (infinite)
set of possible locations for sources, and let D(X) denote
the set of all targets detected as a function of the set X
of source locations selected. Recall that the set of targets
detected by a source placed at location j depends only on
the locations of the receivers and not on the presence or
location of any other sources. Thus, given an initial set of
locations X, adding a new source at location j might add
several new targets to the detectable set. If sensor loca-
tion k is added before j, some of the targets added by j
might have already been added by k. Therefore, we have

D(X ∪ {j , k})\ D(X ∪ {k}) ⊆ D(X ∪ {j})\ D(X). Because
g(X) = |D(X)|, this implies that g is a submodular function.
As shown in Refs. [12] and [33], an iterative greedy algorithm
has an optimality gap of at most 1− e−1 ≈ 0.632 when max-
imizing a submodular function. Hence, we define the lower
bound, lB, as the objective value achieved by the iterative
approach and the upper bound as uB = 1B

1−e−1 ≈ 1.582 × 1B.
We conclude that even though the iterative method does not
guarantee an optimal solution, it is a quick way to get an
estimate of the quality of other solutions. Combined with our
observations from Section 4.2, we are able to narrow down
the optimal solution even more.

Placing Sources Simultaneously. In contrast to the iterative
method, one might also consider placing multiple sources
simultaneously. One simple method would involve placing
each source in an arbitrary sector and calculating an upper
bound on the objective value by assuming that all sources are
as close as possible to each target, within the bounds of their
respective sectors. In order to exhaust all possible solutions,
one could evaluate all combinations of sectors, taking into
account the fact that multiple sources might occupy the same
sector. In this case, the number of possible combinations is
calculated by combinations of multisets [5] as(|S| + |�| − 1

S|
)

= (|S| + |�| − 1)!
|S|!(|�| − 1)! (24)

where |S| is the number of sources and |�| the number of sec-
tors in a particular iteration. The base case with one source
represents the original DiBS where the number of combi-
nations equals the number of sectors, that is, we consider
placing the source in each sector. With two sources and four
sectors, we have the following 10 combinations.

1 : {γ1, γ1} 2 : {γ1, γ2} 3 : {γ1, γ3} 4 : {γ1, γ4}
5 : {γ2, γ2} 6 : {γ2, γ3} 7 : {γ2, γ4} 8 : {γ3, γ3}
9 : {γ3, γ4} 10 : {γ4, γ4}

Clearly, the number of combinations grows very rapidly with
the number of sectors and sources. While placing just a few
sources simultaneously in this manner might be manage-
able, using this approach with many sensors quickly becomes
impossible. This is aggravated by the fact that selecting and
dividing multiple sectors per iteration increases the number
of sectors and subsequently the number of combinations even
more quickly. A future study might find ways to reduce that
number or find another method to deal with multiple sources.

5.2.6. Computation Time of DiBS

We now conduct computational experiments to assess the
performance of DiBS in terms of computing time. We use
R (x64) version 3.3.1 to generate 100 problem instances

Naval Research Logistics DOI 10.1002/nav

302 Naval Research Logistics, Vol. 64 (2017)

Figure 16. (a) Best-case CPU times, (b) average CPU times, (c) worst-case CPU times—the average computation time for DiBS increases
with both the number of receivers and the number of targets, but remains less than three minutes for all problem sizes. Note that each plot
uses a different vertical axis scale.

for each problem size we consider. We consider problem
instances with varying number of receivers and targets, rang-
ing from (|R|, |T |) = (10, 20) to (|R|, |T |) = (60, 120). For each
instance, we generate receiver and target locations uniformly
at random in a 10 × 10 unit two-dimensional area. Next, we
solve the source placement problem with the DiBS algorithm
using the “center” gap method with a 5% optimality gap, and
we choose ρ0 = 1 and b = 0.25. All experiments are run on a
computer with two Intel® Xeon® CPU E5-2687W 3.10 GHz
processors and 128 GB RAM.

The computation time results are shown graphically in
Fig. 16. Figure 16a–16c display the best-case, average, and
worst-case CPU times (in seconds) of DiBS for all problem
sizes. The figure indicates that the computation time of DiBS
increases with the number of receivers and targets. For exam-
ple, DiBS can solve a small problem with (|R|, |T |) = (30, 30)
in less than 10 seconds (with an average of 8 seconds), a
medium-sized problem with (|R|, |T |) = (40, 90) in less than
125 seconds (with an average of 57 seconds), and a rela-
tively large problem with (|R|, |T |) = (60, 120) in less than
330 seconds (with an average of 131 seconds). All of these
computation times are acceptable in many practical appli-
cations. Moreover, both number of receivers and number of
targets have similar impact on the computing time of DiBS.

6. CONCLUSIONS

This article considers the problem of optimally placing
multistatic sonar sensors. Although such sensors enjoy exten-
sive use in practical applications, they appear only infre-
quently in the published literature. We first develop some
novel insights that help bound the problem. In particular, we
show that placing sensors inside the convex hull that encases
all targets results in detection probabilities as least as good as

any placements outside the convex hull. This important obser-
vation limits the area where we have to search for optimal
sensor positions regardless of the sensor model we use.

Assuming a definite range sensor model, we show that
we can utilize clusters of RDCs to bound our equipment
requirements. The number of elements in the minimal set
of clusters, G̃, represents a lower bound on the number of
sensors required to cover all targets. In addition, with a fixed
number of sensors, n, we are able to determine an upper bound
on the number of targets covered by selecting n clusters from
G̃, such that the number of covered targets is maximized.

In a subsequent step, we formulate two mathematical pro-
gramming models to find optimal positions for a set of sources
and receivers. These nonconvex formulations do not yield
provably good solutions, even if the positions of one type
of sensor are fixed. Hence, we develop the new DiBS algo-
rithm. Assuming fixed receiver positions, this algorithm is
the first in the literature to provide a near-optimal solution
to the nonconvex single-source placement problem, and our
computational results indicate that it is also quite efficient for
solving realistically-sized problems.

ACKNOWLEDGMENTS

The authors thank Prof. Craig Rasmussen of the Naval
Postgraduate School for many helpful discussions. Prof.
Craparo is funded by the Office of Naval Research.

REFERENCES

[1] A.M. Andrew, Another efficient algorithm for convex hulls in
two dimensions, Inf Process Lett 9 (1979), 216–219.

[2] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa, The Quickhull
algorithm for convex hulls, ACM Trans Math Softw 22 (1996),
469–483.

Naval Research Logistics DOI 10.1002/nav

Craparo, Karatas, and Kuhn: Active Multistatic Sonar Networks 303

[3] M.D. Berg, M. Van Kreveld, M. Overmars, and O.C.
Schwarzkopf, Computational geometry, Springer, Berlin Hei-
delberg, 2000.

[4] J.I. Bowen and R.W. Mitnick, A multistatic performance pre-
diction methodology, Johns Hopkins APL Tech Dig 20 (1999),
424–431.

[5] R.A. Brualdi, Introductory combinatorics, 5th ed., Prentice
Hall, Upper Saddle River, NJ, 2010.

[6] J.D. Camm, A.S. Raturi, and S. Tsubakitani, Cutting big M
down to size. Interfaces 20 (1990), 61–66.

[7] D.W. Casbeer, A.L. Swindlehurst, and R. Beard, “Connectiv-
ity in a UAV multi-static radar network,” in: Proc. American
Institute of Aeronautics and Austronautics Guidance, Naviga-
tion, and Control Conference and Exhibit, Keystone, Colorado,
2006, pp. 1–8.

[8] T.M. Chan, Optimal output-sensitive convex hull algorithms in
two and three dimensions, Discrete Comput Geom 16 (1996),
361–368.

[9] A.C. Coon, Spatial correlation of detections for impulsive
echo ranging sonar, Johns Hopkins APL Tech Dig 18 (1997),
105–112.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Intro-
duction to Algorithms (3rd ed.), MIT Press, Cambridge, MA,
2009.

[11] H. Cox, “Fundamentals of bistatic active sonar,” in: Y.
Chan (Editor), Underwater acoustic data processing, Kluwer,
Springer Netherlands, 1989, pp. 3–24.

[12] E.M. Craparo, J.P. How, and E. Modiano, Throughput opti-
mization in mobile backbone networks, IEEE Trans Mob
Comput 10 (2011), 560–572.

[13] E.M. Craparo and M. Karatas, Sensor optimization in multi-
static underwater sensor networks, working paper, manuscript
available on request (2016).

[14] M.P. Fewell and S. Ozols, Simple detection-performance
analysis of multistatic sonar for anti-submarine warfare, Tech-
nical Report, DSTO-TR-2562, Defence Science and Technol-
ogy Organisation, Edinburgh, South Australia, 2011.

[15] H. Freeman and R. Shapira, Determining the minimum-area
encasing rectangle for an arbitrary closed curve, Commun
ACM 18 (1975), 409–413.

[16] W.M. Gentleman and G. Sande, “Fast Fourier Transforms:
For fun and profit,” in: Proc. ACM Fall Joint Computer
Conference, Boston, MA, 1966, pp. 563–578.

[17] C. George and D.R. DelBalzo, “Tactical planning with genetic
algorithms for multi-static active sonobuoy systems,” in: Proc.
19th International Congress on Acoustics, Madrid, Spain,
2007, pp. 1–6.

[18] X. Gong, J. Zhang, D. Cochran, and K. Xing, “Barrier coverage
in bistatic radar sensor networks: Cassini oval sensing and opti-
mal placement,” in: Proc. 14th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, Bangalore,
India, 2013, pp. 49–58.

[19] R.L. Graham, An efficient algorithm for determining the con-
vex hull of a finite planar set, Inf Process Lett 1 (1972),
132–133.

[20] M. Gu and S.C. Eisenstat, A divide-and-conquer algorithm for
the symmetric tridiagonal eigenproblem, SIAM J Matrix Anal
Appl 16 (1995), 172–191.

[21] B.I. Incze and S.B. Dasinger, “A Bayesian method for man-
aging uncertainties relating to distributed multistatic sensor

search,” in: Proc. 9th International Conference on Information
Fusion, Florence, Italy, 2006, pp. 1–7.

[22] R.A. Jarvis, On the identification of the convex hull of a finite
set of points in the plane, Inf Process Lett 2 (1973), 18–21.

[23] M. Kalkuhl, W. Wiechert, H. Nies, and O. Loffeld, “Simulation
based optimization of bi-and multistatic SAR-missions,” in:
Proc. 7th European Conference on Synthetic Aperture Radar
(EUSAR), Friedrichshafen, Germany, 2008, pp. 1–4.

[24] M. Kallay, The complexity of incremental convex hull algo-
rithms in Rd , Inf Process Lett 19 (1984), 197.

[25] M. Karatas and E.M. Craparo, “Evaluating the direct blast
effect in multistatic sonar networks using Monte Carlo simu-
lation,” in: Proc. IEEE Winter Simulation Conference (WSC),
Huntington Beach, CA, USA, 2015, pp. 1184–1194.

[26] M. Karatas, M.M. Gunal, and E.M. Craparo, “Performance
evaluation of mobile multistatic search operations via simula-
tion,” in: Proc. 49th Annual Simulation Symposium, Society
for Computer Simulation International, Pasadena, CA, USA,
2016, pp. 110–115.

[27] A. Karatsuba and Y. Ofman, Multiplication of many-digital
numbers by automatic computers, Dokl Akad Nauk SSSR 145
(1962), 293–294. Translat Phys Dokl 7 (1963), 595–596.

[28] D.G. Kirkpatrick, “Efficient computation of continuous skele-
tons,” in: Proc. 20th Annual IEEE Symposium on Foundations
of Computer Science, San Juan, Puerto Rico, 1979, pp. 18–27.

[29] D.G. Kirkpatrick and R. Seidel, The ultimate planar convex
hull algorithm, SIAM J Comput 15 (1986), 287–299.

[30] D.E. Knuth, The art of computer programming: Sorting and
searching, Vol. 3, Addison Wesley Publishing Company,
Reading, MA, 1973.

[31] T.U. Kuhn, Optimal sensor placement in active multistatic
sonar networks, Master’s Thesis, Naval Postgraduate School,
Monterey, CA, 2010.

[32] S.J. Leon, Linear algebra with applications, 8th ed., Prentice
Hall, Upper Saddle River, NJ, 2010.

[33] G.L. Nemhauser and L.A. Wosley, An analysis of approxi-
mations for maximizing submodular set functions – I, Math
Program 14 (1978), 265–294.

[34] P.N. Ngatchou, W.L. Fox, M. El-Sharkawi, “Multiobjective
multistatic sonar sensor placement,” in: Proc. IEEE Congress
on Evolutionary Computation (CEC), Vancouver, BC, Canada,
2006, pp. 2713–2719.

[35] S. Ozols and M.P. Fewell, On the design of multistatic
sonobuoy fields for area search, Technical Report, DSTO-
TR-2563, Defence Science and Technology Organisation,
Edinburgh, South Australia, 2011.

[36] F.P. Preparata and S.J. Hong, Convex hulls of finite sets of
points in two and three dimensions, Commun ACM 20 (1977),
87–93.

[37] M.I. Shamos and D. Hoey, “Closest point problems,” in: Proc.
16th Annual Institute of Electrical and Electronic Engineers
Symposium on the Foundations of Computer Science, IEEE
Computer Society, Berkeley, CA, 1975, pp. 151–162.

[38] S. Simakov, Localization in airborne multistatic sonars, IEEE
J Ocean Eng 33 (2008), 278–288.

[39] C. Strode, “Optimising multistatic sensor locations using
path planning and game theory,” in: Proc. IEEE Sympo-
sium on Computational Intelligence for Security and Defense
Applications (CISDA), Paris, France, 2011, pp. 9–16.

[40] R. Tharmarasa, T. Kirubarajan, and T. Lang, “Joint path
planning and sensor subset selection for multistatic sensor

Naval Research Logistics DOI 10.1002/nav

304 Naval Research Logistics, Vol. 64 (2017)

networks,” in: Proc. IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA),
Ottawa, ON, Canada, 2009, pp. 1–8.

[41] Signal Online. 2017. http://www.afcea.org/content/?qtaxo
nomy/term/1258, AFCEA.

[42] M.J. Walsh and T. Wettergren, “Search performance pre-
diction for multistatic sensor fields,” in: Proc. IEEE

Oceans Conference and Exhibition, Kobe, Japan, 2008, pp.
1–8.

[43] A.R. Washburn, A multistatic sonobuoy theory, Technical
Report, NPS-OR-10-005, Naval Postgraduate School, Mon-
terey, CA, 2010.

[44] A.R. Washburn and M. Karatas, Multistatic search theory,
Military Oper Res 20 (2015), 21–38.

Naval Research Logistics DOI 10.1002/nav

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

