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ABSTRACT 

The problem of determining effective allocation schemes of underwater sensors for surveillance, 
search, detection, and tracking purposes is a fundamental research area in military OR. Among the various 
sensor types, multistatic sonobuoy systems are a promising development in submerged target detection 
systems. These systems consist of sources (active sensors) and receivers (passive sensors), which need not 
be collocated. 

A multistatic sonobuoy system consisting of a single source and receiver is called a bistatic system. 
The sensing zone of this fundamental system is defined by Cassini ovals. The unique properties and unusual 
geometrical profile of these ovals distinguish the bistatic sensor allocation problem from conventional sonar 
placement problems. This study is aimed at supporting decision makers in making the best use of bistatic 
sonobuoys to detect stationary and mobile targets transiting through an area of interest. We use integral 
geometry and geometric probability concepts to derive analytic expressions for the optimal source and 
receiver separation distances to maximize the detection probability of a submerged target. We corroborate 
our analytic results using Monte Carlo simulation. Our approach constitutes a valuable “back of the 
envelope” method for the important and difficult problem of analyzing bistatic sonar performance. 
 
Keywords: Bistatic Sonar, Multistatic Sonar, Moving Target, Detection, Monte Carlo Simulation, Anti-
Submarine Warfare.  
 
1. INTRODUCTION 
 

The concept of countering submerged targets using multistatic sonobuoy systems in anti-submarine 
warfare (ASW) is of increasing interest. A multistatic sonobuoy network consists of sources and receivers 
which operate by emitting sound energy from a source into the water and listen for the reflected echoes 
returning across the receivers to detect targets. The source of energy can be an ASW ship with a hull-
mounted sonar device, a helicopter equipped to dip a sonar device, or an active sonobuoy dropped by a 
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maritime patrol aircraft. A sonobuoy is defined as an immobile, expendable sonar device that is dropped or 
ejected from an aircraft or ship for ASW or underwater acoustic research purposes. The receiver can be a 
passive sonar device attached to a ship, a passive sonobuoy, or a stationary hydrophone system (Washburn, 
2010).  
 

In a monostatic system the source and receiver are collocated, whereas in a multistatic system they may 
be separated by some distance. Each source-receiver pair in a multistatic system forms a bistatic system. In 
this paper, a “bistatic sonobuoy couple” describes a single source (active sonobuoy) and receiver (passive 
sonobuoy).  
 

Multistatic systems have several advantages over monostatic systems. One such advantage is 
covertness due to the passive nature of the receivers. As stated by Cox (1989), “countermeasure tactics are 
greatly complicated if the target does not know the position of the receivers.” In addition, multistatic 
systems enable multi-angle observations and therefore improve tracking accuracy. In their studies, Coon 
(1997) and Simakov (2008) consider merging data from multiple detections into a single alert and reducing 
false alarms to enable more precise localization in multistatic sonar networks. Multistatic sonar networks 
also allow multi-platform operations such as an airplane that deploys passive sonobuoys while a surface 
ship or a dipping helicopter deploys active sonar. The main disadvantage of multistatic sonar/sonobuoy 
systems is the increased system complexity and unusual sensing zones arising from the transmission losses 
(Karatas and Craparo 2015, Karatas et al, 2016; Craparo et al, 2017; Craparo et al, 2018, Craparo and 
Karatas 2018).  
 

The probability of detecting a target with a monostatic sonobuoy depends mainly on the distance 
between the sonobuoy and the target. However, in a bistatic systems this probability is a function of both 
the source-target and target-receiver distances. In particular, the detection probability depends on the 
product of these two distances as shown in Figure 1. For a certain environmental condition, the sensing 
zone of a bistatic system is determined by its geometry and is characterized by Cassini ovals. Thus, the 
problem of devising optimal sensor configurations for bistatic sonobuoy systems is significantly more 
complex than the problem in monostatic systems. A key question is: what is the best deployment geometry 
of the sensors to successfully detect a submarine threat in a field of interest? Additionally, the analytical 
challenges with respect to the deployment of bistatic sonobuoys are exacerbated if the target of interest is 
not stationary. 
 

This study is aimed at supporting ASW decision makers and planners in making the best use of bistatic 
sonobuoys during the search for stationary and mobile targets. In particular, we are interested in determining 
the optimal bistatic sonobuoy separation distance which maximizes the probability of detection (PoD) of 
(1) a target that is assumed to be stationary in the field of interest, and (2) a target that is assumed to be 
traversing the region of interest on a straight course. In addition to supporting practitioners who utilize 
bistatic sonobuoys, our results concerning this most fundamental multistatic system can serve as a 
foundation for future research efforts, including efforts to characterize and optimize other sensor systems. 
 

We define two different scenarios involving mobile targets. In the first scenario, we consider a target 
that is initially located outside the field of interest enters the field and transits on a straight line (without 
any course changes). To determine the optimal sonobuoy deployment scheme (i.e., source-receiver 
separation distance), we first map the bistatic sonobuoy deployment problem to a line-set intersection 
problem. Next, using integral geometry and geometric probability we derive analytic expressions for the 
detection probability of the target. In scenario two, we consider a target which is initially located inside the 
region prior to sensor deployment. We assume that its initial location is determined uniformly at random, 
and that it moves on a straight line inside the region throughout the search period. To determine optimal 
sensor allocation schemes for this scenario, we model the region as a two-dimensional Poisson field of 
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targets as implemented in Washburn (2010) and Washburn and Karatas (2015). Next, we determine optimal 
source-receiver separation distances for different target speeds and search period lengths. We confirm the 
accuracy of our proposed solutions for both scenarios via Monte Carlo simulation. 
 

Our primary goal is to demonstrate a method for using “back of the envelope” calculations to estimate 
bistatic sonar system performance. Although we do not address practical issues such as drifting of 
sonobuoys, tracking performance, energy management issues, multipath propagation, varying sensor and 
target depths, the deployment strategies proposed in this study can be used by designers to select key system 
parameters as well as to plan the geometry of the sonobuoys.  
 

The organization of the paper is as follows. In Section 2, we provide a literature review pertaining to 
the deployment of bistatic and multistatic sonobuoy systems. Section 3 contains some preliminaries on 
bistatic sonobuoy detection criteria and the properties of Cassini ovals. In Section 4, we develop our analytic 
theory to determine optimal source-receiver separation distances of bistatic sonobuoy systems to detect 
stationary and mobile submerged targets. The comparison of analytical estimates with Monte Carlo 
simulation experiments appears in Section 5. We discuss various ways practitioners might apply our results 
in Section 6. Finally, Section 7 provides our conclusions and a discussion of possible extensions of our 
work. 

 
2. RELATED WORK 

A number of works in literature study the performance of bistatic and multistatic systems by using 
different techniques and approaches. Craparo et al (2017, 2018) and Craparo and Karatas (2018) review 
several papers which address multistatic sonar localization, scheduling, and performance measurement 
problems. Among these studies, Washburn (2010), Karatas et al (2014) and Washburn and Karatas (2015) 
consider a field of randomly deployed multistatic sensors and derive analytic formulas for approximating 
the coverage performance and cost effectiveness of the sonar network. Ozols and Fewell (2011) analyze 
the coverage performance of a number of multistatic sensor layouts with the objective of determining the 
most cost effective geometry. Similarly, using sonar equations, Fewell and Ozols (2011) develop a method 
to compute the detection performance of multistatic sonar network by comparing its performance to that of 
a similar network of monostatic sonars. In Wakayama et al (2011), the authors propose a methodology for 
forecasting the probability of target presence in an area of interest using tracking results from multistatic 
sonar devices.  

 
Because of the analytical complexity associated with multistatic sonar systems, many researchers use 

heuristic methods to model detection probabilities and address sensor placement problems. For instance, 
Ngatchou et al (2006) use a particle swarm method to select the placement, number, and type of multistatic 
sonars to deploy, with the objective to maximizing area coverage. George and DelBalzo (2007) and 
Tharmarasa et al (2009) utilize a genetic algorithm to maximize area coverage and tracking performance of 
a multistatic sonar network. Similarly, Lei et al (2012) employ a genetic algorithm to determine optimal 
sensor placement for multistatic radar devices to detect moving targets. 

 
A number of studies use simulation to analyze the performance of multistatic sonar networks. For 

example, Kalkuhl et al (2008) use a simulation-based methodology to plan multistatic search and rescue 
missions. Grimmett et al (2011) develop a sonar modeling and contact simulation tool that produces realistic 
simulated active sonar contact measurements in heterogeneous fields of mixed multistatic sonar sensors. 
They propose using the simulation output for information fusion and target tracking algorithms. Karatas 
and Craparo (2015) use simulation to evaluate the effect of direct blast zone to performance of multistatic 
sonar systems. Karatas et al (2016) use simulation to test the performance of multistatic networks which 
include a mobile source. Incze and Dasinger (2006) measure the performance of a multistatic network by 
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using an integrated Monte Carlo simulation and Bayesian technique. With the help of this combined 
methodology the authors aim to account for uncertainties such as target behavior and target probability 
distribution. In their study, Karatas and Akman (2015) determine the optimal bistatic sonobuoys sensor 
separation distance for stationary targets and they use simulation to verify their results. They find out that 
co-locating source and receiver is the best strategy to maximize the coverage of bistatic sonobuoys couple. 

 
 Coon (1997), Coraluppi (2006), Grimmett and Coraluppi (2004, 2006), Coraluppi and Carthel (2005), 
Coraluppi et al (2006), Hempel (2006), Gerard et al (2006), Erdinc et al (2006), Coraluppi et al (2007), 
Carthel et al (2007), Been et al (2007), Lang and Hayes (2007), Erdinc et al (2008), Ehlers et al (2009), 
Orlando et al (2010), Simakov (2008), Ozols et al (2011), Habtemariam et al (2011), Georgescu and Willett 
(2012), Grimmett and Wakayama (2013), Yang et al (2016), Peters (2017), Ristic et al (2017), Shi et al 
(2017) and Qin et al (2018) approach the bi/multistatic sensor location problem from the perspectives such 
as data fusion, target tracking and localization. Some of these studies aim to eliminate or reduce false alarms 
by converting multiple measurements collected by different sensors into a single track estimate. Krout et al 
(2006), Saksena and Wang (2008), Krout et al (2009) and Angley et al (2017) study the problem of 
multistatic sonar ping scheduling and they analyze ping schedules that maximize target detection 
probability and coverage. Among those studies, Saksena and Wang (2008) employ a Partially Observable 
Markov Decision Process (POM-DP) to develop efficient power management strategies for sonar devices. 
This improves system lifetime while maintaining acceptable detection performance. Krout et al (2009) 
develop a ping scheduling formulation based on sonar performance prediction and a Bayesian update 
utilizing target detection information. They show that by selecting intelligent ping sequences, it is possible 
to enhance the sonar system performance compared to random or sequential ping sequencing strategies. In 
more recent studies, Angley et al (2017a, 2017b) develop efficient ping scheduling methodologies for 
multistatic sonars that seek to improve tracking performance. Some other studies that consider the ping 
scheduling problem for bistatic and multistatic sonar include Wakayama and Grimmett (2010), Wakayama 
et al (2012), and Suvorova et al (2014). 
 

In their study, Casbeer et al (2006) consider the connectivity issue for mobile multistatic radar networks 
which consist of unmanned air vehicles (UAVs). Strode (2011) also considers moving underwater targets 
and uses game theory to determine the positions of multistatic sonar devices to detect transiting underwater 
targets. The author also integrates his approach into a decision support tool called the Multistatic Tactical 
Planning Aid (MSTPA), developed at the Centre for Maritime Research and Experimentation (CMRE). 
Similarly, papers by Chen et al (2015), Gong et al (2016), and Wang et al (2016) consider mobile targets 
and approach the problem of developing efficient barriers against intruders by using bistatic radar. Walsh 
and Wettergren (2006) attempt to compute the detection probability of a mobile target moving on a straight 
line in a multistatic field of sources and receivers. The authors derive a model to approximate the detection 
probability of a target in terms of the location and orientation of its, track, the numbers of sources and 
receivers, and their location distribution functions. Wettergren (2008) considers the problem of detecting 
moving targets over large areas using a network of fixed sensor nodes and proposes the track-before-detect 
concept, which accounts for tracking information and multi-sensor data fusion. Lee et al (2017) propose a 
robust localization algorithm for bistatic sonar sensors that accounts for errors in the source position, 
receiver position, and sound speed. They use simulation to compare the performance of the algorithm with 
the conventional localization algorithms. Yang et al (2017) develop a closed form solution for localization 
of moving targets with multistatic sonars. The authors jointly use time delay, Doppler shift, and arrival 
angle measurement information, and they use simulation to confirm their results. 
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3. PRELIMINARIES 

3.1 Bistatic Detection  

In a bistatic sonar system detection occurs if the sound energy emitted by the source reflects off the 
target and generates an echo whose acoustic energy at the receiver exceeds the receiver’s acoustic energy 
threshold. This threshold, TH, depends on the sensitivity of the receiver, environmental conditions and 
detection and false alarm settings. Based on the results in (Urick, 1983), for a bistatic system detection 
happens if 
 
 1 2SL TL TL TH     (1) 
 
where SL is the source level and 1TL  and 2TL  are the transmission loss values from source to target and 
target to receiver, respectively, in decibels. If we further assume that the environment is homogeneous and 
the signal spreads in a spherical manner, the transmission loss between two points in the field follows a 
simple power law then for some constant 0m , and we can rewrite Equation (1) as  
 
 1 2log( ) log( )SL m R m R TH     (2) 

 
where 1R  and 2R  denote the ranges from source to target and target to receiver respectively (Walsh and 
Wettergren, 2006). A common convention is to define the equivalent monostatic detection range 

1 2b R R , which is the  geometric mean range of the system and represents the performance of a bistatic 

system when source and receiver are collocated (Willis, 2008; Washburn and Karatas, 2015). Solving 
Equation (2), we observe that detection occurs if 

 

 
1

( )2
1 2 10 .

SL TH
mR R b


    (3) 

 
Equation (3) is the well-known inequality that defines the interior of a Cassini oval as the detection 

region of a bistatic system (Cox, 1989). In this study, we use Equation (3) to model the detection region of 
a source-receiver couple, and we restrict our detection problem to two dimensions. Although we assume 
spherical spreading of the sonar signal, we also assume that the depth of potential targets is fixed and known. 
Thus, our sensor placement problem need only address detection at that depth. We now define some basic 
properties of Cassini ovals. 

3.2 Cassini Ovals  

Cassini ovals were first studied by Giovanni Domenico Cassini (1625–1712, aka Jean-Dominique 
Cassini) as a model for the orbit of the sun around the Earth (Ayoub, 1984). More recently, Cassini ovals 
have appeared in various scientific applications, including nuclear physics, acoustics, and the biosciences 
(Karatas, 2013). For example, researchers have used them in modeling human red blood cells (Mazeron 
and Muller, 1998; Di Biasio and Cametti, 2005), light scattering (Hellmers et al 2006), textile fabrics 
(Daukantiene et al 2003), population growth (Zong et al 2009), the evolutionary processes for 
morphogenetic sequences (Koenderink, 1990), the orbits of electrons (Beiser, 1997), and the cross-sectional 
area of a nuclear magnetic resonance coil (Allen et al 2002). 
 

In James and James (1992), a Cassini oval is defined as “the locus of the vertex of a triangle when the 
product of the sides adjacent to the vertex is a constant and the length of the opposite side is fixed.” Applying 
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this definition to the bistatic triangle in Figure 1, the vertex is at the target, 2b  denotes the constant, 1R
 and 

2R
 are the sides adjacent to the vertex, and the separation distance, 2a, between the source and receiver is 

the length of the opposite side.  
 

If the sensors are fixed at ( ,0)a , the Cassini ovals are defined by: 
 

   2 2 2 2 4( ) ( ) , , .x a y x a y b a b        (4) 

 

Figure 1. Bistatic triangle. 

The curve is symmetric with respect to both axes, and its shape depends on the ratio of a to b. The ovals 
take on four qualitative forms: 

 For 2 2a b   the curve is a single loop that looks like an ellipse and intersects the x axis at 

2 2x a b  . 

 For 2 2 1a b   the oval attains “dents” on its top and bottom.  

 When 1a b   the curve is a lemniscate of Bernoulli. 

 For 1a b   the curve splits into two ovals and there are two additional real x intercepts at 

2 2x a b  . 

Figure 2 illustrates the ovals for different values of a/b, where b is fixed to 1 for simplicity.  

x

y

1R
2R

2a

Source Receiver

Target
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Figure 2. A family of Cassini ovals for b=1 (from Washburn and Karatas (2015)). 

The area of a Cassini oval, denoted by AC, can be calculated via a single numerical integration as follows. 
Since the oval is symmetric with respect to both axes we can compute AC by multiplying the area of a 
quarter oval by four: 

 

 

2 2

2 2

2 2

0

4 ( ) , 1

4 ( ) , 1

a b

C

C
a b

C

a b

f x dx a b

A

f x dx a b







 
 
 





  (5) 

 

where 2 2 2 2 4( ) 4Cf x y a x x a b       after solving (4) for y. To compute AC one can also use the 

following approximation derived by (Willis, 2005): 
 

 

4 8
2

4 8

4 4 8 12

2 4 8 12

3
1 , 1

4 64

3 25
1 , 1.

2 8 64 1024

C

a a
b a b

b b
A

b b b b
a b

a a a a





  
    

   
        

  (6) 

 
Both the numerical integration (5) and the approximation (6) for AC, normalized with respect to the 

monostatic area, πb2, are plotted as a function of ratio a/b in Figure 3(i).  
 

To compute the perimeter of a Cassini oval, denoted by PC, we follow a similar approach by multiplying 
the arc length of a quarter oval by four. To do this, we use the infinitesimal calculus theorem which 
computes the arc length, S, of a function f(x) between lx x  and  ux x  by a single numerical integration 

(Weisstein, 2016) as: 
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  2
1 ( )

u

l

x

x

S f x dx    (7) 

 
where ( )f x  denotes the derivative of ( )f x . Applying (7) to our case, PC is computed as 

 

 

2 2

2 2

2 2

0

4 ( ) ,  1

4 ( ) ,  1

a b

C

C
a b

C

a b

g x dx a b

P

g x dx a b








 
 
 





  (8) 

where  

  
4 2 2 4

2 2 4 2 2

2

2 2 4

2 4

(4 )(

( )
( )

4 )
) 1 ( .C C

b x a b

x a b a x x a b

a
g x f x






 


 


  (9) 

 
Note that the area reaches its maximum value for a/b=0, whereas the perimeter is maximized when 

a/b=1. After the oval splits in two at a/b=1, the two parts continue shrinking in size as a/b increases, 
resulting in a steep decrease in perimeter (see Figure 3(ii)). 
 

 
Figure 3. (i) Normalized bistatic area computed with numerical integration and Willis approximation.  

(ii) Normalized bistatic perimeter computed with numerical integration. 
 
 

4. BISTATIC SONOBUOY DEPLOYMENT STRATEGIES 

In this section we seek the optimal bistatic sonobuoy deployment strategies for stationary and moving 
targets under two scenarios. For both target types our goal is to determine the a/b ratio that maximizes the 
PoD. In general, a planner cannot control b (but knows its value), and can control a as well as the 
dimensionless ratio a/b. 
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4.1 General Assumptions 

Assume that a bistatic sonobuoy couple with a monostatic detection range of 0b   is deployed within 

the field of interest  2F   where F is a connected and closed convex set with perimeter PF and area AF. 
The distance between the sensors (separation distance) is 2 0a  . The bistatic couple can only detect events 

within its sensing zone 2C    with perimeter PC and area AC, and a point in F is said to be covered if it 
is inside C (see Figure 4). Based on the geometric properties of Cassini ovals, when 1a b  , C becomes 

two disjoint ovals denoted by C  and C  with perimeters CP  and CP . Let ( )conv C  denote the convex 

hull of C when 1a b   and the convex hull of C C   when 1,a b  and denote the perimeter of ( )conv C  

by e
CP  . Following Santalo (1976), we define the internal cover of C  and C  as the outline produced by 

a closed elastic string drawn about C  and C  and crossing over at a point placed between C  and C  as 
in Figure 4(iii). We denote the internal cover by iC , with length i

CP . For simplicity we assume that 

F CA A .  
 

We now discuss optimal bistatic sonobuoy deployments strategies for both stationary and mobile 
targets that move along straight lines.   

 

4.2 Stationary Targets 

 First, we consider the problem of determining the optimal source-receiver separation distance to 
maximize the PoD of a stationary target. We assume that a stationary target is distributed uniformly at 
random over F. This assumption is reasonable for a scenario in which no prior information about the target 
location in the area exists. We wish to deploy a single bistatic source and receiver. We consider a definite 
range sensor model: if the target falls within the sensing zone C, it is detected with probability 1. Hence, 
the PoD of the target simply depends on the fraction of the area covered, i.e. PoD = AC / AF. Because AF is 
fixed, maximizing AC also maximizes the PoD.  
 
 Figure 3(i) reveals that the area AC is maximized when a/b = 0, i.e., when the Cassini oval is a circle. 
This result implies that co-locating the source and receiver is the optimal strategy for detecting stationary 
targets. In other words, for the stationary target case with a single source and receiver, monostatic is better 
than bistatic. The interested reader can also refer to Karatas and Akman (2015) for a more comprehensive 
discussion of stationary target detection with bistatic sonobuoys. 

4.3 Mobile Targets: Scenario 1 

We now assume that a target transits F equiprobably. (The exact process by which the target’s trajectory 
is generated appears in Section 5.2.) The target is detected with probability of 1 if T penetrates C, and 
otherwise it goes undetected. Lazos et al (2007) consider the problem of detecting mobile targets with 
monostatic sensors, where each sensor has an arbitrarily shaped sensing zone and all sensors are 
independent. They solve the problem by mapping it to a line-set intersection problem. We now use a similar 
approach. 

4.3.1 Line-Set Intersection Problem: 

We consider the following line-set intersection problem. Given a bounded set 2K    with perimeter 
L , we wish to compute the probability that line   intersects set 1K K  in each of three cases:  

Case 1: 1K  is a convex set with perimeter 1L , 
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Case 2: 1K  is a non-convex (but simply connected) set with perimeter 1L , and 

Case 3: 1K  is the union of two disjoint convex sets denoted by 1K   and 1K  with perimeters 1L  and 

1,L  respectively.  

These cases are applicable to the bistatic detection problem when 2 2a b   (Case 1), 

2 2 1a b  (Case 2), and 1a b   (Case 3). The field of interest F is represented by set K, while the 
target trajectory T is represented by line  . Table 1 contains a complete mapping of the bistatic detection 
problem to a line-set intersection problem, and Figure 4 illustrates this mapping. 
 
Table 1. Mapping the problem of detecting mobile targets with a bistatic sensor to a line-set intersection 

problem. 
Mobile Target Bistatic Detection Problem Line Set Intersection Problem 

Field of interest F with perimeter FP  Set K with perimeter L 

Sensing zone C with perimeter CP Set 1K  with perimeter 1L  

Sensing zones C  and C  with perimeters  

CP  and CP  
Sets 1K 

 and 1K  with perimeters 1L  and 1L  

Convex hull ( )conv C  with perimeter e
CP  Convex hull 1( )conv K  with perimeter 1

eL  

Internal cover iC  with perimeter i
CP  Internal cover 1

iK  with perimeter 1
iL  

Target trajectory T Random line   
PoD = Probability of detecting the target with 

 

1. a convex sensing zone C 

2. a single non-convex sensing zone C 

3. at least one of the two disjoint convex 

sensing zones C  and C  

1KPoD = Probability of line  intersecting 

1. a convex set 1K  

2. a non-convex, simply connected set 1K  

3. at least one of two disjoint convex sets

1K   and 1K  
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Figure 4. Mapping of the problem of detecting mobile targets with a bistatic sensor to a line-set 

intersection problem when the detection zone is (i) a convex set ( 2 2)a b   (ii) a non-convex set 

( 2 2 1)a b   (iii) two disjoint convex sets ( 1)a b  . 

4.3.2 Analytical Solution: 

To solve the line-set intersection problem we adopt some results from integral geometry and geometric 
probability (Flanders, 1967; Lazos et al, 2007; Santalo, 1976). Proofs for Equations (11) and (12) and 
Theorems 1 and 2 can be found in (Santalo, 1976). For completeness, we include the proofs for Theorems 
1 and 2 in the appendix. 

A line  can be specified by the shortest distance from   to the origin of its coordinate system, , and 

the angle of the direction perpendicular to   with respect to the x axis, .  The measure m  of a set of lines 

( , )   is defined by the integral of the density of lines ,d d d    where   denotes the exterior 

product used in exterior calculus (Flanders, 1967): 

 ( ) .m d d     (10) 

The measure of set of lines that intersect a fixed bounded convex set K is 
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2

0

( ; )
K

m K d d d L


   


      


     (11) 

where L  is the perimeter of the set K.  

Let K be a piecewise differentiable curve in the plane that has finite length L. The measure of all lines 
  that intersect K, weighted by their number of intersections n times is given by 

 2 .nd L    (12) 

Based on these definitions we now state two theorems from (Santalo, 1976). 

Theorem 1 (Santalo, 1976) 

If 1K  is a convex set with perimeter 1L  randomly deployed in a bounded set K with perimeter L, the 

probability that a random line   intersecting K also intersects 1K , 
1KPoD , is given by: 

 
1

1 .K

L
PoD

L
   (13) 

For the case where 1K  is non-convex, we must replace 1L  with the perimeter of 1( )conv K  (the convex 

hull of 1K ), denoted by 1
eL . Similarly, if L is non-convex, L is switched with the perimeter of the convex 

hull of K (Santalo, 1976). 

 Returning to the multistatic sonar problem, for Case 1 where 2 2a b   (Cassini oval is a single loop 
that looks like an ellipse) we have 

 C

F

P
PoD

P
   (14) 

and for Case 2 where 2 2 1a b   (Cassini oval attains a dent on top and bottom) we have 

 .
e

C

F

P
PoD

P
   (15) 

To address Case 3, we adopt Theorem 2 from (Santalo, 1976):  

Theorem 2 (Santalo, 1976) 

Let 1K  and 1K be two bounded convex sets in the plane such that 1 1K K  , and denote their 

perimeters by 1L  and 1L , respectively. Call 1( )conv K  the convex hull of 1 1K K   and 1
iK  the internal 

cover realized by a closed elastic string drawn about 1K   and 1K  and crossing over at a point O placed 

between 1K   and 1K  as in Figure 5. Let 1
eL  and 1

iL  denote the perimeters of 1( )conv K  and 1
iK , 
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respectively.  Then, Santalo (1976) defines ,K KPoS    as the probability that a random line   separates 1K   
and 1K  , given that it intersects 1( )conv K , and calculates it as follows: 

 

 1 1 1
, 1 1 1

1

( )
( , | ( ) ) .

i

K K e

L L L
PoS P K K conv K

L
 

               (16) 

 
Figure 5. Two disjoint convex sets in a line-set intersection problem. 

If we call 
1 1,K KPoD    the probability that   intersects either 1K   or 1K  or both, given that it intersects 

1( )conv K , then:  
 

 
1 1 1 1

1 1 1 1
, ,

1

( )
1 .

e i

K K K K e

L L L L
PoD PoS

L
   

   
     (17) 

 
Using (11) and (17), we can express 

1 1, ( )K Km    , the measure of set of lines that intersect either 1K   or 

1K  or both, as 
 

 
1 1 1 1, 1 , 1 1 1 1( ) ( ).e e i

K K K Km L PoD L L L L             (18) 

 
Then, 

 

 1 1

1

, 1 1 1 1
( ) ( )

.
( ; )

e i
K K

K

m L L L L
PoD

m K L
     

 
 


  

  (19) 

 
Mapping (19) to our problem for Case 3 where 1a b   (Cassini oval splits into two ovals), we have 

 

 .
e i

C C C

F

P P P
PoD

P

 
   (20) 

 
 To combine the mapping results in (14), (15), and (20), we define a new parameter, eff

CP , as the 
effective perimeter of a Cassini oval as follows: 

 

1K  1K 

1( )conv K

1
iK

O



1K  1K 
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, 2 2

 , 2 2 1

, 1

C

eff e
C C

e i
C C C

P a b

P P a b

P P P a b

 
  
   

  (21) 

 
and generalize PoD for all three cases as: 

 

 .
eff

C

F

P
PoD

P
   (22) 

Given these results, we are now ready to calculate detection probabilities for sensing zones represented by 
Cassini ovals. In particular, we must compute e

CP  and i
CP . Figure 6 shows a mathematical representation 

of a Cassini oval that will assist us in our calculations. 

 

Figure 6. Geometrical representation of a Cassini oval and its intersection points on the x axis. 

Similar to the CP  computation in (8), we use the symmetry property and multiply the length of a quarter 

of eC  and iC  by four. Using information in Figure 6 we can compute e
CP  and i

CP  as follows: 

 

  
2 2

4 4

4 4

1 4

2

4
4 4 ( )  

2

a b
e

C C

b a

a

b a
P AB BC g x dx

a



 

 
  

    
  
 

   (23) 

  
4

2 2

4 4 8 4

2 4 4 4 4

1 2 2 2

2

44 2 ( ) ( ) .2

a b a

a b
i

C C

ab

a

P OD DC a b g x dxa a a b


 

 
 
         
 
 
 

   (24) 

 
Figure 7 represents eff

CP  normalized with respect to the monostatic perimeter, 2πb, as a function of a/b 

ratio. It demonstrates that eff
CP  reaches its maximum value when a/b=1, meaning that to maximize PoD for 

transiting targets, we should separate the source and receiver by 2b thus gaining about 7% over a monostatic 
system where they are collocated.  
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Figure 7. Normalized bistatic effective perimeter computed as 2eff

CP b . 

4.4 Mobile Targets: Scenario 2 

In this scenario we analyze the effect of target speed and search period on the optimal sensor 
configuration under the assumptions that the source and receiver are placed in a vast two-dimensional 
Poisson field of targets with density λ at time t=0 and the number of targets located in region F, FN , follows 

a Poisson distribution of parameter ( )FA : 
 

 
 ( ) ( )

( ) .
!

F
kA

F
F

e A
P N k

k

 

    (25) 

 
We further assume that each target moves on a straight line through the field independently of other 

targets in a random direction  0, 2   according to uniform distribution with a constant speed v for a 

finite period t. If the target enters C it is detected with probability 1. Given the initial target density and the 
random movement model, at any time instant t, the locations of the targets still form a two-dimensional 
Poisson field of the same density (Serfozo, 1999). If we call CN  the average total number of detections 

over t, we want to maximize 0C tN N N   where 0N
 is the average number of initial detections at time 

t=0 and tN  is the average number of detections in the time interval (0,t]. Initial detections include the 
targets that are inside the detection region C at time t=0, and based on the Poisson field assumption this is 
equal to 0 CN A . 
 

tN  is computed by simply summing the number of targets that enter C up to time t. We approximate 
this by considering the sweeping of a Poisson field of stationary targets with a monostatic sensor of sweep 
width eff

CP   with a constant speed v for time t. In this approximation, the number of targets detected is 

computed as .
eff

C
t

P
N v t


     Therefore, 

 .eff
C C C

v t
N A P


    

 
  (26) 
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From (26) we note that the total number of detections depends on both CA  and eff
CP . If we call eqA  the 

equivalent area covered and define it as the area in F that includes CN targets, then eq CA N  . Figure 8 

illustrates the value eqA  with respect to vt and a/b. Note that, to maximize ,eqA  one needs to adjust the 

separation distance of sonobuoys considering the product vt. The optimal a/b ratio for any given vt value is 
presented in Figure 9. In particular, the best strategy for 5.77vt   would be co-locating the sensors, or 
using an equivalent monostatic sensor with a detection range of b. For 5.77 17.8vt   the optimal a/b 
value is between 0.82 and 1 (Cassini oval with dent on top and bottom), and for 17.8vt  the optimal a/b 
value is 1 (lemniscate of Bernoulli). 

 
Figure 8. eqA  value (equivalent area covered by a stationary sensor) as a function of a/b and vt. 

 

 

Figure 9.  Optimal a/b value as a function of vt. 

Comparing results from Karatas and Akman (2015) and Figures 7 and 8, we see that the stationary and 
moving target problems have different solutions. In practice all three tactical problems are important, with 
the emphasis depending on the target speed and the length of the time interval over which the buoys are 
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monitored. Although 0.5 is not the best a/b ratio in any case, it is a good compromise because it is nearly 
optimal in all cases.  

5. SIMULATION RESULTS 

In this section we perform Monte Carlo simulations to verify the theoretical results of detection 
probability for both stationary and moving targets. Without loss of generality we set b=1 in all simulation 
runs. 

5.1 Experiments for Stationary Targets 

Since there is no prior information about target location and the target is likely to be anywhere in the 
field, in our Monte Carlo simulations, we random uniformly place 106 targets in a rectangle of size 4x6 
units.  

Due to the fact that the source-receiver orientation does not have an effect on the area covered (AC) at 
the beginning of our simulation for stationary targets, we place both the source and receiver at the center 
point of F. Then, at each iteration we increase the distance between source and receiver by 0.02 units as 
displayed in Figure 10(i). At each iteration we count the number of targets that lie within C.  
 

Figure 10(i) illustrates a number of iterations of the simulation process. Solid lines represent bistatic 
detection zones (Cassini ovals) drawn for a series of different source-receiver locations. Targets are denoted 
by + marks. We repeat the experiment 103 times for difference target placements, and Figure 10(ii) shows 
the resulting average PoD values of the simulation results together with analytic function for all values of 

 / 0, 2a b . Experiment results show an excellent match between the theory and simulation results. As 

predicted, PoD increases with AC, and AC attains its maximum value when a/b=0.  
 

 
Figure 10. (i) Source and receiver locations for each iteration.  

(ii) Comparison of simulation and analytic results with respect to different a/b ratios. 
 

It should be noted that, although the ratio a/b = 0 is optimal, any a/b ratio between 0 and 0.5 leads to 
near-optimal results. Moreover, a strictly positive separation distance enables decision makers to take 
advantage of the covertness of multistatic systems, since the location of the receiver is unknown by the 
target.  
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5.2 Experiments for Mobile Targets: Scenario 1 

To evaluate the detection performance of bistatic sensors for transiting targets we randomly deploy the 
bistatic couple with a fixed a/b value in a circular region F of radius r. We initially set the separation 
distance between buoys to 0 and increase it by 0.02 units until it reaches 4. To ensure statistical validity, 
for each a/b value we randomly deploy the buoys 103 times and for each deployment we generate 106 
random mobile target trajectories as straight lines that intersect F as follows: Let F denote a circle of radius 
r with its center at the origin. We define a target trajectory by determining two points, the target entrance 
point (E1) and exit point (E2), on this circle. E1  and E2 are generated as follows: 

1. Two angles, 1  and 2 , are generated uniformly at random within [0, 2 ).   

2. The coordinates of E1  and E2 are calculated as     1 1cos , sinr r  and     2 2cos , sin ,r r 
respectively. 

3. These two points are used to construct a target trajectory that enters F at point E1, moves along a 
straight line, and exits F at E2.  

 To compute PoD, for each a/b, we measure the fraction of trajectories that intersect with the sensing 
area of the sensors, C. Based on our results in previous section, the probability that a target is detected by 
a bistatic sonobuoy equals 2eff

CPoD P r . Figure 11(i) shows a simulation run. The disk of radius r 

represents the area F, while the Cassini oval represents the sensing zone C, and straight lines represent 
target trajectories. Figure 11(ii) depicts the detection probabilities for r=4 and 8 units and a/b[0,2]. The 
simulation results confirm that the probability of detecting a target travelling on a random straight line 
intersecting F is equal to the ratio of the perimeter of C (as computed by (21)) and the perimeter of F. 
Moreover, PoD is maximized when a/b=1. 

 

Figure 11. (i) A simulation run of transiting targets.  
(ii) PoD values with respect to different a/b values for r=4 and 8 km. 

5.3 Experiments for Mobile Targets: Scenario 2 

In our final group of experiments for moving targets, we simulate a field F of size 50x50 units as a 
Poisson field of targets with density λ=2500 targets/unit2. To simulate the vast Poisson field we choose the 
area size large enough to ensure that no target beyond the borders of F has a chance of entering C. We first 
place the sensors at the center of F and increase the distance from 0 to 4 units with increments of 0.02 units. 
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For each a/b value the targets move on a straight line in a random direction  0, 2   according to 

uniform distribution. We measure the number of targets that are detected for two scenarios: one with vt=9 
units and another with vt=20 units. Figure 12(i) displays an example simulation run. Figure 12(ii) displays 
both simulation and analytic results for vt=9 and 20 units and a/b[0,2]. The optimal a/b value is 0.95 for 
vt=9 units and 1.00 for vt=20 units.  

Figure 12. (i) Simulation run representing a Poisson field of targets moving in F.  
(ii) Analytical and simulation results of the number of detections for vt=9 and 20 units. 

 
The simulation results confirm that the probability of detecting a random target travelling at a speed of 

v for a period of t in F depends on the magnitude of vt and the ratio a/b.  

6. DISCUSSION 

We now summarize our results and discuss their applicability to real-world decision problems. For the 
stationary target scenario, PoD simply depends on the fraction of the area covered and a/b=0 is the optimal 
value. For the moving target scenario where the target transits F on a straight line, we map the bistatic 
detection problem to a line set intersection problem and derive analytical expressions which result in an 
optimal ratio of a/b=1, thus a separation distance of 2b. In the second and final moving target scenario 
where we assume that the sonobuoys are located in a Poisson field of targets where targets move to a random 
direction with a constant speed v for a finite period t, the optimal a/b value is determined to be between 0 
and 1 depending on how large the vt product is. Even though all three problems have different solutions, 
a/b=0.5 provides an acceptable “compromise” solution since it is nearly optimal in all cases. Alternatively, 
a practitioner facing a target that is not known to be either stationary or moving could choose a/b in such a 
way as to provide some measure of robustness or to optimize an expected outcome. Let ( )staPoD a b  and 

( )movPoD a b  denote the probability of detecting a stationary target and a moving target, respectively, as a 

function of the a/b ratio. Various approaches exist for selecting the a/b value that will provide the best 
balance between ( )staPoD a b  and ( ).movPoD a b   
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Figure 13. (a) expz , (b) consz , (c) optz , and (d) regz  values  for varying combinations of r and a/b. Note 
that the vertical axis in (a) and (d) uses a logarithmic scale. When using the Laplace, Maximin and 

Maximax criteria, a practitioner should choose the a/b ratio that maximizes expz , consz and  optz , 
respectively. For the Maximin Regret criterion, it is optimal to choose the ratio that minimizes regz . 

A natural choice is to choose the a/b ratio that maximizes the expected detection probability

    ,exp sta sta mov movz p PoD a b p PoD a b  where stap  is the probability of encountering a stationary 

target, and movp is the probability of encountering a moving target. In the absence of reliable information 

regarding stap  and ,movp  various options exist for choosing a/b. The Laplace criterion suggests setting 

0.5sta movp p   an maximizing .expz  This approach assumes that if there is no information about the 
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probabilities on encountering a stationary or a moving target, then it is reasonable to treat the probability 
of encountering each type of target as being equal. Alternatively, the decision maker could use a 
conservative approach called the “Maximin criterion.” This approach chooses a/b so as to maximize 

min{ ( ), ( )}.cons sta movz PoD a b PoD a b  The Maximax criterion, on the other hand, is an optimistic 
approach that suggests examining the maximum payoff of each alternative and choosing the one with the 
best possible outcome. For our problem, this criterion maximizes max{ ( ), ( )}.opt sta movz PoD a b PoD a b  
Finally, the classical decision-theoretic notion of Minimax Regret suggests choosing a/b so as to minimize 

 
  

 
  

/ * / *
max{max / * ( ), max / * ( )}.reg sta sta mov mov

a b a b
z PoD a b PoD a b PoD a b PoD a b            

 
Because both ( )staPoD a b  and ( )movPoD a b  depend on the radius of the search area, r, the resulting 

optimal also a/b ratio depends on r. Figure 13 shows the (a) expz , (b) consz , (c) optz , and (d) regz  values 

for various combinations of r and a/b. In Figure 13(a), we use 0.5.sta movp p   Note that when using the 

Laplace, Maximin and Maximax criteria, a practitioner should choose the a/b ratio that maximizes expz , 
consz and  optz , respectively. For the Maximin Regret criterion, it is optimal to choose the ratio that 

minimizes regz . Figure 14 shows the resulting optimal a/b for varying r values for all four criteria.  
 
 

 

Figure 14. The best a/b ratio for various values of the search area radius r using Laplace, Maximin, 
Maximax and Maximin Regret criteria. 

7. CONCLUSIONS AND FUTURE WORK 

We have considered the problem of optimizing the placement of a bistatic sonobuoy pair for 
maximizing the target detection probability, PoD. Assuming that the geometric model of a bistatic system 
is a Cassini oval with a sensor separation distance of 2a and equivalent monostatic detection range of b, the 
problem is to select the optimal a/b ratio so as to maximize PoD for both stationary and moving target 
scenarios. Our analysis provides a “back of the envelope” estimate of the probability of detection for each 
of these cases as a function of a/b. If it is not known whether the target is moving or stationary, the decision 
maker may choose an a/b value that provides some measure of robustness. The effectiveness and accuracy 
of our analytical solutions in this study are tested with Monte Carlo simulations, and our results show good 
agreement between the theory and simulation. 

a/
b
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There are a variety of potential extensions of our work. We have made a number of simplifying 
assumptions in order to maintain analytical tractability, and these assumptions should be relaxed in future 
research efforts. Examples of additional elements that should be modeled include such phenomena as 
fluctuating signal strength (e.g., in the presence of noise or interference), the direct blast effect, alternative 
sensor models, target localization, Doppler shift, and target aspect dependence. Future work may also 
extend our approach to the multistatic setting, which is both important and non-trivial.  
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APPENDIX 

Proof of Theorem 1 
Based on Equation (11), we can express this probability as the ratio of the measure of the set of lines 

intersecting 1K  to the measure of the set of lines intersecting K. For the case where K is convex: 
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  (27) 

If 1K  is non-convex and 1( )conv K  is the convex hull of 1K , one can observe that any line intersecting 

1( )conv K  also intersects 1K , and vice versa. Thus, we have 
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  (28) 

Therefore, in the case where 1K  is non-convex, 1L  is switched with the perimeter of 1( )conv K , 1
eL .■ 

Proof of Theorem 2 

Let 1K  and 1K   be the boundaries of bounded convex sets 1K   and 1K  respectively. Though they 

have arcs in common, we will consider 1K , 1K  , 1( )conv K  and 1
iK  as different curves. Every line 

that meets 1K  and 1K   has two intersection points with each of the curves 1K , 1K   and 1( )conv K , 

and four intersection points with 1
iK ; there are in all ten points of intersection. Let 10m  be the measure of 

the set of such lines. The lines that meet either 1K  or 1K  , but not both, have six common points with 

the curves 1K , 1K  , 1( )conv K , 1
iK  and let 6m  be the measure of this set of lines. Similarly, the lines 

that separate 1K  and 1K   have four intersection points with the curves 1( )conv K  and 1
iK  and let 4m  

denote the measure of this set of lines. 
 
Since the measure of the set of lines that meet a convex set is equal to its perimeter according to 

Equation (11), the measures 6m , 6m  of the lines that meet 1K   without meeting and 1,K   or vice versa, 
are: 
 
 6 1 10 6 1 10,m L m m L m         (29) 
 
and therefore we have 
 
 6 6 6 1 1 102m m m L L m          (30) 

 
Since 1( )conv K  is a closed convex curve, we have 

 
 4 6 10 1

em m m L     (31) 
 

and applying (12) to sets 1K , 1K  , 1( )conv K  and 1
iK , we obtain 
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 4 6 10 1 1 1 14 6 10 2( )e im m m L L L L         (32) 

 
and we get 
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  (33) 

 
In words, the measure of the set of lines that separate 1K   and 1K  is 1 1 1( )iL L L   . In terms of 

geometrical probability, if   is a line chosen at random in the plane with the condition that it meets the 
convex hull of 1K   and 1K , the probability that   separates 1K   and 1K  is then 

1 1

1 1 1
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