
Simultaneous Placement and Assignment
for Exploration in Mobile Backbone Networks

Emily M. Craparo, Jonathan P. How, and Eytan Modiano

Abstract— This paper presents new algorithms for conduct-
ing cooperative sensing using a mobile backbone network. This
hierarchical sensing approach combines backbone nodes, which
have superior mobility and communication capability, with
regular nodes, which are constrained in mobility and commu-
nication capability but which can sense the environment. In the
framework of a cooperative exploration problem, a technique
is developed for simultaneous placement and assignment of
regular and mobile backbone nodes. This method, a gener-
alization of existing techniques that only consider stationary
regular nodes, optimally solves the simultaneous placement
and assignment problem in computationally tractable time
for problems of moderate size. For large-scale instances of
this problem, a polynomial-time approximation algorithm is
developed. This algorithm carries the benefit of a theoretical
performance guarantee and also performs well in practice.
Finally, the simultaneous placement and assignment technique
is incorporated into a cooperative exploration algorithm, and
its performance is shown to compare favorably with that of a
benchmark based on existing assignment algorithms for mobile
backbone networks.

I. INTRODUCTION

The motivation for analyzing mobile backbone networks
is discussed in detail in Refs. [6], [8], [9]. Srinivas et
al. [8] define two types of nodes, which may be thought
of as representing robotic agents: regular nodes, which
have limited mobility and communication capability, and
mobile backbone nodes, which have greater communication
capability than regular nodes and which can be placed
at arbitrary locations in order to provide communication
support for the regular nodes. Each regular node is assigned
to at most one mobile backbone node and communicates
only with this node. The mobile backbone nodes, in turn,
communicate with each other in order to provide end-to-end
communication capability for the network. Thus, the goal
of mobile backbone network optimization is to place these
nodes and assign regular nodes to mobile backbone nodes
such that the overall quality of the network is optimized.
Quality is defined, for example, in terms of the number of
regular nodes that achieve a desired minimum throughput, or
the lowest throughput achieved by any regular node in the
network.

This paper uses a model of communication described by
Srinivas and Modiano [7]. In this model, the throughput (or

E. Craparo is a Research Assistant in the Dept. of Aeronautics and
Astronautics, Massachusetts Institute of Technology, emilyc@mit.edu

J. How is a Professor in the Dept. of Aeronautics and Astronautics,
Massachusetts Institute of Technology, jhow@mit.edu

E. Modiano is an Associate Professor in Dept. of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, modiano@mit.edu

data rate) that can be achieved for transmissions from a regu-
lar node to its assigned mobile backbone node is modeled as
a decreasing function of both the distance between the two
nodes and the number of other regular nodes that are also
communicating with that particular mobile backbone node
and thus causing interference. For example, the throughput
τ between regular node i and mobile backbone node j
when using a Slotted Aloha communication protocol can be
approximated by [7]

τ(i, j)≈ 1
e · |A( j)| ·d(i, j)α

(1)

where |A( j)| represents the number of regular nodes as-
signed to mobile backbone node j, d(i, j) represents the
distance between regular node i and mobile backbone node
j, α represents the path loss exponent, and e is the base
of the natural logarithm. An implicit assumption is made
that regular nodes assigned to one mobile backbone node
encounter no interference from regular nodes assigned to
other mobile backbone nodes (for example, because each
“cluster” consisting of a mobile backbone node and its
assigned regular nodes operates at a different frequency than
other clusters).

A key insight noted in [7] and utilized in this work is that
although the mobile backbone nodes can be placed anywhere
in the plane, only a limited number of possible locations
for mobile backbone nodes need to be considered in order
to obtain an optimal solution to the problems described in
the first paragraph of this section. Specifically, each mobile
backbone node can be placed at the 1-center of its set
of assigned regular nodes in an optimal solution. The 1-
center location for a set of regular nodes is simply the
location that minimizes the maximum distance to any regular
node, and it is easily computable [1]. Fortunately, although
there are O(2N) possible subsets of N regular nodes, there
are only O(N3) distinct 1-center locations [5]. This means
that although the mobile backbone nodes can theoretically
occupy any of an infinite number of possible locations,
only a polynomial number of locations need actually be
considered, and these locations can be enumerated efficiently.
Srinivas et al. take advantage of this fact to develop a search-
based algorithm for solving the maximum fair placement
and assignment problem (MFPA) in networks comprised of
stationary regular nodes and mobile backbone nodes [7]. In
the MFPA problem, optimality is defined in terms of the
minimum throughput achieved by a regular node when all
regular nodes are assigned to mobile backbone nodes. The
running time of the algorithm presented in [7] is polynomial



in the number of regular nodes but exponential in the number
of mobile backbone nodes.

Our previous work has described an improved optimal
solution technique for this problem, as well as for the related
problem of maximizing the number of regular nodes that
achieve a desired minimum throughput [2]. Our work also
described the first known polynomial time approximation
algorithm for maximizing the number of regular nodes that
achieve a desired minimum throughput for the case of
stationary regular nodes [2].

This paper formulates an extension to the mobile backbone
network problem that allows modeling of regular node mo-
tion and derives exact and approximate solution techniques
for this problem. These techniques are then applied to a
cooperative exploration problem.

II. JOINT PLACEMENT OF REGULAR
AND MOBILE BACKBONE NODES

A. Previous work and problem statement

Previous problem formulations in mobile backbone net-
works have assumed that the locations of regular nodes are
fixed a priori and that only the locations of mobile backbone
nodes are variable [2] [7] [8]. This assumption is reasonable
for some applications, such as scenarios that involve mobile
agents extracting data from a fixed sensor network. However,
in many applications the locations of both regular nodes
and mobile backbone nodes can be controlled. For example,
consider a cooperative exploration mission being executed by
a heterogeneous team of air and ground vehicles. The ground
vehicles can move and can accurately sense phenomena at
ground level, but the air vehicles are more mobile and are
better equipped to communicate over long distances.

This paper develops a modeling framework and solution
technique that are appropriate for problems of this nature. We
assume that L candidate regular node locations are available
a priori, perhaps selected by heuristic means or due to
logistical constraints. Each of N regular nodes (N ≤ L) must
occupy one of these locations, and no two regular nodes can
be assigned to the same location. Given an initial location
and a mobility constraint, each regular node is capable of
reaching a subset of the other locations. There are K mobile
backbone nodes (K ≤ N) that can be placed anywhere, a
throughput function τ is specified, and a desired minimum
throughput τmin is given.

Given these assumptions, the goal of this section is to
place both the regular nodes and mobile backbone nodes
while simultaneously assigning regular nodes to mobile
backbone nodes in order to maximize the number of regular
nodes that are successfully assigned and achieve the desired
minimum throughput level τmin, under the given throughput
function τ .

B. Network design formulation

Optimal simultaneous placement and assignment of reg-
ular nodes and mobile backbone nodes is achieved through
the solution of a network design problem. In network design
problems, a given network (represented by a directed graph)

Fig. 1. The network design problem corresponding to the joint placement
and assignment problem for mobile backbone networks, with regular node
mobility. Unlabeled arc capacities are equal to one. For clarity, not all arcs
and nodes are shown.

can be augmented with additional arcs for a given cost, and
the goal is to optimize some desired flow characteristic at a
minimum cost by intelligently “purchasing” a subset of these
arcs, subject to a budget constraint. In this case, flow through
the network is used to represent regular node movement as
well as assignment of regular nodes to mobile backbone
nodes, while arc “purchases” represent mobile backbone
node placement.

The network graph over which this optimization takes
place is schematically represented in Fig. 1. This graph is
constructed as follows: the source node, s, is connected via an
arc of unit capacity to each of a set of nodes N= {1, . . . ,N},
which represent the initial locations of the N regular nodes.
Each of these nodes, in turn, is connected via an arc of unit
capacity to a subset nodes in L= {N + 1, . . . ,N + L}. Node
i is connected to node N + j iff regular node i can reach
sensing location j under its mobility constraint. Next, each
of the nodes in L is connected to a copy of itself in set
L′= {N + L + 1, . . . ,N + 2L}, and again these arcs are of
capacity one. This duplication is done in order to enforce
the constraint that only one regular node can occupy each
sensing location. The portion of the graph described thus far
models regular node placement.

The remainder of the graph models mobile backbone
node placement, as well as assignment of regular nodes to
mobile backbone nodes. Each of the nodes in L′ is connected
via an arc of unit capacity to a subset of the nodes in
M= {N + 2L + 1, . . . ,N + 2L + M}, which represent possi-
ble mobile backbone node locations. (Recall that, although
mobile backbone nodes can be placed at arbitrary locations,
only M locations need to be considered, where M is O(L3).)
Node N +L + i is connected to node N +2L + j iff sensing
location i is within the radius of the 1-center associated with
j. (Recall that each 1-center location has both a center and



a radius associated with it.)
Finally, each node in M is connected to the sink t. The

capacity of the arc from node N +2L+ i to t is the product
of a binary variable yi, which represents the decision of
whether to “purchase” this arc, and a constant ci, which
is the floor of the inverse with respect to cluster size of
the throughput function, evaluated at the desired minimum
throughput level, i.e. the maximum number of regular nodes
that can be assigned to a mobile backbone node at location
i and achieve the desired throughput level. For example, for
the approximate Slotted Aloha throughput function described
by Eq. 1,

ci =
⌊

1
e · τmin · rα

i

⌋
where τmin is the desired minimum throughput and ri is the
radius associated with 1-center location i.

Note that any feasible solution to this network design
problem represents a feasible placement and assignment of
regular nodes and mobile backbone nodes (recall that all
flows in an optimal solution to an integer network flow
problem are integer); likewise, any feasible placement and
assignment of regular nodes and mobile backbone nodes also
determines a feasible flow in the graph. Therefore, an optimal
solution to this network design problem yields an optimal
solution to the simultaneous placement and assignment prob-
lem.

Denote the set of nodes in the network design graph by
N and the set of arcs by A . If K mobile backbone nodes
are available and a minimum throughput level is specified,
the goal of the network design problem is to select K arcs
from {N + 2L + 1, . . . ,N + 2L + M} to t and a feasible flow
xi j, (i, j) ∈ A such that the s− t flow is maximized. This
problem can be solved via the following mixed-integer linear
program (MILP):

max
x,y

N

∑
i=1

xsi (2a)

subject to
M

∑
i=1

yi ≤ K (2b)

∑
j:(i, j)∈A

xi j = ∑
l:(l,i)∈A

xli i ∈N \{s, t} (2c)

xi j ≥ 0 ∀ (i, j) ∈A (2d)
xi j ≤ 1 ∀ (i, j) ∈A : j ∈N \{t}

(2e)
x(N+2L+i)t ≤ yici, i ∈ {1, . . . ,M} (2f)

yi ∈ {0,1} i ∈ {1, . . . ,M} (2g)

where the constraints state that at most K arcs (mobile
backbone node locations) can be selected (2b), flow through
all internal nodes must be conserved (2c), arc capacities must
be observed (2d- 2f), and yi is binary for all i (2g).

Fig. 2 shows an example of a solution to the simul-
taneous placement and assignment problem with regular
node movement. The regular nodes, initially in positions
indicated by •, are able to move to other locations (◦) within

TABLE I
AVERAGE COMPUTATION TIMES FOR VARIOUS VALUES OF N , K AND L,

FOR THE MFPA PROBLEM.

N K L MILP Algorithm with
Regular Node Movement

4 2 10 10 sec
6 2 15 16.5 sec
8 3 20 80 sec

their radii of motion, indicated by shaded pink circles. This
initial configuration is shown in Fig. 2(a). In an optimal
solution to this problem, shown in Fig. 2(b), the regular
nodes have moved such that they are grouped into compact
clusters for which the mobile backbone nodes can provide
an effective communication infrastructure. The clusters are
relatively balanced, in that the clusters with larger radii tend
to have fewer regular nodes, while the more compact clusters
can accommodate more regular nodes and still achieve the
desired minimum throughput. In this example, all regular
nodes have been successfully assigned to mobile backbone
nodes.

We make the following remarks about this algorithm:

Remark 1: This algorithm is designed maximize the number
of regular nodes that are assigned at throughput level τmin.
If, instead, the goal is to achieve the best possible minimum
throughput such that all regular nodes are assigned to a
mobile backbone node (i.e. to solve the MFPA problem), it is
necessary to solve the MILP problem in Eq. 2 O(log(NL3))
times for different throughput values (which result in differ-
ent values for the ci’s in the network design problem).

Remark 2: If arbitrarily many mobile backbone nodes are
available and the goal is to achieve a desired minimum
throughput while utilizing a minimal number of mobile
backbone nodes, then a MILP problem similar to the one
in Eq. 2 needs only to be solved once for the values of ci
corresponding to the desired throughput. The problem must
be modified so that the number of mobile backbone nodes
used is minimized, subject to the constraint that the flow
through the graph is equal to the number of regular nodes.

Remark 3: It should be noted that the worst-case complexity
of mixed-integer linear programming is exponential in the
number of binary variables. However, this approach performs
well in practice, and simulation results indicate that it com-
pares very favorably with the search-based approach devel-
oped in Ref. [7] (see [2]). Table I shows the computation
time of the MILP algorithm when applied to the MFPA
problem described in Remark 1. Note that this problem
requires repeated solution of the MILP; for problems that
do not require repeated solution of the MILP, the algorithm
is therefore faster. As the table indicates, this method is
appropriate for problems of moderate scale.



(a) Initial regular node placement, with radius of motion for
each regular node.

(b) An optimal placement of regular and mobile backbone
nodes.

Fig. 2. A small example of mobile backbone network optimization with limited regular node movement. Open blue circles represent possible regular
node locations, and filled blue circles are the initial locations of the regular nodes. Shaded pink circles in the left figure indicate the possible radius of
motion of each regular node. In the right figure, mobile backbone nodes, shown in red, are placed such that they provide communication support for the
regular nodes. Each regular node is assigned to at most one mobile backbone node. Dotted lines indicate regular node motion in this optimal solution.
Dashed circles indicate the radius of each cluster of nodes. In this example, all regular nodes have been successfully assigned to mobile backbone nodes.

III. APPROXIMATION ALGORITHM

While the MILP-based algorithm described in the previous
section is computationally feasible for problems of moderate
scale, its worst-case computation time is exponential in the
number of binary variables. Therefore, this section develops
an approximation algorithm for this problem that is appro-
priate for problems of larger scale.

This approximation algorithm is based on the insight that
the number of regular nodes that can be placed and assigned
is a submodular function of the set of mobile backbone node
locations that are selected. The submodularity condition for
a set function f is typically stated as

f (S∪{i, j})− f (S∪{i})≤ f (S∪{ j})− f (S)

where S is a set, and i and j are individual elements of the
ground set such that i, j /∈ S, i 6= j.

Submodular functions in discrete optimization are anal-
ogous to convex functions in continuous optimization [3].
Both can be efficiently minimized; however, maximization
is more difficult. Fortunately, it has been shown that for
maximization of a nondecreasing submodular set function
f , where f ( /0) = 0, greedy selection of elements carries a
performance guarantee of 1− (1− 1

R )R > 1− 1
e , where R is

the number of elements to be selected and e is the base of the
natural logarithm [4]. This means that if an exact algorithm
selects R elements from the ground set and produces a
solution of value OPT , a greedy selection of R elements
(i.e. selection via a process in which element i is selected if
it is the element that maximizes f (S∪ i), where S is the set
of elements already selected) produces a solution of value at
least (1− (1− 1

R )R) ·OPT .
This observation motivates consideration of a greedy

algorithm (Algorithm 1) for the problem of maximizing

the number of regular nodes that achieve throughput level
τmin. Given a network design graph G, K mobile backbone
nodes and M possible mobile backbone node locations, and
denoting by f the maximum flow through G as a function
of the set of mobile backbone node locations selected, this
greedy algorithm is:

Algorithm 1
S← /0
max f low← 0
for k=1 to K do

for m=1 to M do
if f (S∪{m})≥ max f low then

max f low← f (S∪{m})
m∗← m

end if
end for
S← S∪{m∗}

end for
return S

The following theorem describes the performance of Al-
gorithm 1:

Theorem 1: Algorithm 1 returns a solution S such that
f (S)≥

⌈
(1− 1

e ) · f (S∗)
⌉
, where S∗ is the optimal solution to

the network design problem on G.
Proof: This follows from the observation that all max-

imum flows through G are integer, and from the following
Lemma, the proof of which appears in the Appendix:

Lemma 1: The maximum flow that can be routed through
G is a submodular function of S, the set of arcs that are
selected.



Thus, Algorithm 1 is an approximation algorithm with
approximation guarantee 1− 1

e . Additionally, because each
round of greedy selection consists of solving a polynomial
number of maximum flow problems, and there are K rounds
of selection, the running time of Algorithm 1 is polynomial
in the number of regular nodes, the number of locations, and
the number of mobile backbone nodes.

IV. APPLICATION TO COOPERATIVE EXPLORATION

This section applies the techniques developed in the previ-
ous sections to a cooperative exploration problem. Consider
a situation in which a set of L locations are to be visited and
sensed by regular nodes, and the sensor data taken by the
regular nodes is to be transmitted to the mobile backbone
nodes. A location is successfully visited at time t if the
following conditions are met:
• The location is occupied by a regular node ni at time t.
• Regular node ni is assigned to a mobile backbone node

at time t.
Once a location has been visited, it remains visited for all
future time. Our goal is to minimize the time required to
visit all locations.

This problem can be written as a MILP; however, even for
small numbers of locations and regular nodes, the problem
rapidly becomes computationally intractable. Therefore, we
turn our attention to heuristic and approximate algorithms.

First, consider a greedy algorithm (Algorithm A) based
on a slight modification of the MILP technique described
in Section II. At each time step, the algorithm positions
both regular nodes and mobile backbone nodes in order
to maximize the number of unvisited locations that are
visited. This is accomplished using the MILP described
in Section II. In the case that no regular node is able to
reach an unvisited location in a particular iteration, a simple
greedy algorithm may become “stuck” and make no further
progress because no regular node has any incentive to move.
Therefore, if a subset of the regular nodes is unable to reach
any unvisited locations, they simply move to the locations
that minimize the sum of their distances to the remaining
unvisited locations. This modification guarantees that all
locations will be visited in finite time.

For comparison, a second greedy algorithm is also con-
sidered. This algorithm (Algorithm B) is based on existing
techniques that cannot accommodate regular node motion.
In this algorithm, regular nodes are greedily positioned on
unvisited locations, and mobile backbone nodes are then
optimally placed in order to service the regular nodes
occupying unvisited locations. Again, regular nodes that
cannot reach unvisited locations are moved to the locations
that minimize the sum of their distances to the remaining
unvisited locations.

The key difference between these two algorithms is that
Algorithm A optimizes over both the placement of regular
and mobile backbone nodes as well as the assignment
of regular nodes simultaneously, while Algorithm B must
treat regular node placement and assignment sequentially,
resulting in degraded performance.

Fig. 3. Performance of two greedy algorithms (Algorithm A and Algo-
rithm B) for the exploration problem, in terms of the fraction of locations
visited as a function of time.

A. Experimental Performance Analysis

Fig. 3 illustrates the typical performance of these greedy
algorithms on a particular example problem. A set of 25
locations were randomly generated in a finite 2-dimensional
space according to a uniform distribution, and five regular
nodes were randomly assigned to initial locations. Two
mobile backbone nodes were available to collect data from
the regular nodes. The red (dash-dot) line represents the
percentage of the locations that were visited as a function
of time when Algorithm A was used. The blue (dashed) line
represents the same quantity when Algorithm B was used.

The upper black line in Fig. 3 is a theoretical upper bound
on performance: this line depicts the fraction of locations
visited if every regular node is successfully placed at an
unvisited location and assigned to a mobile backbone node
at every time step. In many cases this level of performance
and is not achievable by any algorithm; this upper bound is
considered due to the intractability of solving the problem
to optimality. The lower black line represents the level of
performance if every mobile backbone node covers only one
regular node on an unvisited location at each time step.
This is a strict lower bound on performance if the regular
nodes are unconstrained in their movement (i.e. a regular
node can reach any location from any other location in a
single time step); otherwise, it is not a strict lower bound,
but it is an interesting point of comparison by which to judge
algorithms.

As shown in Fig. 3, simultaneous placement and assign-
ment of regular nodes and mobile backbone nodes tends to
significantly outperform sequential placement of these nodes
in terms of total time required to visit all locations, as well
as in the percentage of locations that have been visited at
times prior to the completion time.

To verify that these trends hold over many problem
instances, the performance of the two greedy algorithms was



Fig. 4. Average improvement in time-discounted reward of the exact and
approximate versions of Algorithm A, relative to the time-discounted reward
of Algorithm B.

examined for 100 randomly-generated sets of initial condi-
tions. On average, Algorithm A significantly outperformed
Algorithm B, both in terms of total time to visit all locations
and in terms of the percentage of locations that were visited
at any particular time. At the theoretical minimum time at
which exploration might have been completed by an exact
algorithm (t =

⌈ L
N

⌉
), Algorithm A had visited an average of

72% of the locations, while Algorithm B had only visited
57% of the locations. An approximate version of Algo-
rithm A in which the MILP optimization was replaced with
the polynomial-time approximation algorithm developed in
Section III had visited 67% of the locations.

It is also of interest to examine the time-discounted
performance of both algorithms, since information gathered
from uncertain environments is generally more useful when
it is received earlier rather than later. The average time-
discounted reward earned by both greedy algorithms was
calculated for the randomly-generated instances described
in the previous paragraph, where the reward at time t is
simply the total number of locations that have been visited
at time t, discounted by a factor of α t , where α ≤ 1.
Fig. 4 shows the relative improvement in total discounted
reward obtained by the exact and approximate versions of
Algorithm A over Algorithm B, evaluated at t =

⌈ L
N

⌉
, for

various values of α . As the graph indicates, Algorithm A
achieved a discounted reward that was 35− 45% greater
than that of Algorithm B for values of α ≥ 0.5, and the
approximate version of Algorithm A achieved a discounted
reward 25−35% greater than that of Algorithm B.

B. Theoretical Performance Analysis

As described previously, there are two complicating as-
pects of the exploration problem under communication con-
straints. One is the issue of motion planning, which is a
difficult problem even when communication constraints are
neglected. The other is the impact of communication con-

straints, as considered in this paper. To isolate the effect of
communication constraints on the efficiency of exploration,
we assume for purposes of analysis that the regular nodes
are unrestricted in their movement, i.e. a regular node can
reach any location from any other location in a single time
step. In this case, a trivial upper bound on the time required
to visit all locations is T ≤

⌈ L
K

⌉
, but a tighter upper bound

can be found.
First, note that the total number of locations visited is a

submodular function of the set of configurations of regular
nodes and mobile backbone nodes that have been realized,
where a configuration of regular nodes and mobile backbone
nodes includes both their locations and the assignment of
regular nodes to mobile backbone nodes. This is easy to
see: if a measurement is taken from configuration j, this
measurement cannot increase the total number of locations
visited by a greater quantity if measurements have already
been taken from configurations S∪{i} than if measurements
have been taken from configurations S, since the measure-
ment taken from configuration j may involve locations that
are also measured in configuration i.

Using this insight, one can derive a performance bound on
the time required to explore all locations using a greedy ap-
proach such as Algorithm A. Let T ∗ denote the time required
to visit all locations using an exact algorithm. Because of the
submodularity property, at time t = T ∗, a greedy algorithm
will have visited at least

⌈
(1− (1− 1

T ∗ )
T ∗)L

⌉
≤

⌈
(1− 1

e )L
⌉

locations. Furthermore, at each time t > T ∗, the greedy
algorithm can visit at least K new locations (assuming that
K locations remain to be visited). So, the time required to
visit the remaining locations is at most⌈

L−
⌈
(1− 1

e )L
⌉

K

⌉
=

⌈
L+

⌊
( 1

e −1)L
⌋

K

⌉

=

⌈⌊L
e

⌋
K

⌉
.

This yields an overall bound for the time T required to
visit all locations of

T ≤min

{⌈
L
K

⌉
, T ∗+

⌈⌊L
e

⌋
K

⌉}
,

which means that although even an exact algorithm may take
up to

⌈ L
K

⌉
time steps to completely explore all locations, a

greedy algorithm is guaranteed to take no longer than
⌈
b L

e c
K

⌉
more time steps than an exact algorithm, up to a maximum
of

⌈ L
K

⌉
total time steps.

V. CONCLUSIONS

This paper presented a generalization of existing mobile
backbone network problems that models the motion of both
regular nodes and mobile backbone nodes. A MILP-based
exact solution to this problem was shown to perform well in
practice for problems of moderate size, and a polynomial-
time approximation algorithm was given for larger problems.



The performance of greedy algorithms based these tech-
niques was given for a cooperative exploration problem, and
a performance bound was established for a special case of
this exploration problem. Given the intractability of solving
the exploration problem exactly, our results indicate that a
greedy approach is an excellent alternative.

VI. ACKNOWLEDGMENTS

This work was funded in part by NSF grant CCR-0325401,
AFOSR grant FA9550-04-1-0458, and an NSF Graduate
Fellowship.

REFERENCES

[1] P. Agarwal and M. Sharir, “Efficient Algorithms for Geometric Opti-
mization,” ACM Comput. Surveys, 30, pp. 412-458, 1998.

[2] E. Craparo, J. How and E. Modiano, “Optimization of Mobile Back-
bone Networks: Improved Algorithms and Approximation,” Proceed-
ings of the American Control Conference, June 2008.

[3] s. Fujishige, Submodular Functions and Optimization (Second Edi-
tion), Annals of Discrete Mathematics, Vol. 58, 2005.

[4] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of the ap-
proximations for maximizing submodular set functions,” Mathematical
Programming, vol. 14, 1978, pp 265-294.

[5] F. Preparta and M. Shamos, Computational Geometry: An Introduc-
tion, Springer-Verlag, New York, 1985.

[6] I. Rubin, A. Behzadm R. Zhang, H. Luo, and E. Caballero, “TBONE:
a Mobile-Backbone Protocol for Ad Hoc Wireless Networks,” Proc.
IEEE Aerospace Conference, 6, 2002.

[7] A. Srinivas and E. Modiano, “Joint node placement and assignment
for throughput optimization in mobile backbone networks,” To appear
in Proc. IEEE INFOCOM’08, Apr. 2008.

[8] A. Srinivas, G. Zussmanm and E. Modiano, “Mobile Backbone
Networks: Construction and Maintenance,” ACM MOBIHOC 2006,
May 2006.

[9] K. Xu, X. Hong, and M. Gerla, “Landmark Routing in Ad Hoc Net-
works with Mobile Backbones,” Journal of Parallel and Distributed
Computing, 63, 2, pp 110-122, 2003.

APPENDIX

This section gives a proof of Lemma 1: The maximum
flow that can be routed through G is a submodular function
of S, the set of arcs that are selected.

For purposes of proving the submodularity of the network
design objective function, the maximum flow problem of
Section II will be reformulated as a set-to-set node disjoint
path problem in a modified version of the maximum flow
graph. A set-to-set node disjoint path problem specification
consists of a directed graph, H, and designations of subsets
of the nodes of H as the source set and the destination set.
The goal of a set-to-set node disjoint path problem is to find
the maximum number of paths originating in the source set
and terminating in the destination set, such that no node in
H is traversed by more than one path.

The modification of the maximum flow graph to the graph
induced by the corresponding set-to-set node disjoint path
problem is accomplished as follows: the s and t nodes are
removed, and node set N remains unchanged. Node sets L
and L′ are compressed into a single set L; since the problem
under consideration is a node disjoint path problem, there
is no need to enforce the node capacity constraint using
a duplicate set of location nodes, as in the maximum flow
problem. Set M is modified in the following way: if a node
m ∈M in the maximum flow problem has outgoing capacity

ts

3

2

1

C1=1

C3=2

C2=3

(a) Graph induced by a maximum flow problem. For
clarity, node sets L and L′ present in Fig. 1 have been
replaced with a single node set, with the restriction that
at most one unit of flow may traverse each of these
nodes.

1

3

2

(b) Graph induced by a set-to-set
node disjoint path problem.

Fig. 5. An example of conversion from a maximum flow problem to an
equivalent set-to-set node disjoint path problem.

c, then node set M in the modified graph itself contains a set
of nodes m consisting of c copies of this node, each of which
is connected to the same nodes in L as the original node m.
An example of this reformulation is shown in Fig. 5.

The source set in this problem is N, and the destination
set is M. Note that any configuration of set-to-set node
disjoint paths in this modified graph has a corresponding
feasible flow in the maximum flow problem. Likewise, any
feasible flow in the maximum flow problem defines a set
of node disjoint paths in the modified problem. Therefore,
the maximum flow in the original problem is equal to the
maximum number of node disjoint paths in the modified
problem.

To show that the maximum flow through G is a submod-
ular function of the set of arcs that are selected, we will
prove that the maximum number of node disjoint paths in H
is a submodular function of the set of destination nodes. A
restatement of the submodularity condition is:

f (S∪{i, j})+ f (S)≤ f (S∪{i})+ f (S∪{ j}).

The relevant maximum flow graphs for this relation are
shown at the top of Fig. 6: the sum of the maximum flows
through the left two graphs must be less than or equal to the
sum of the maximum flows through the right two graphs.



c1

c2

cj

1

2

N

…
…

…S

1

2

L

…
…

j

c2
1

2

N

…
…

…S

1

2

L

…
…

c1 1

2

N
…

…

…S

c1

c2

cii

1

2

L

…
…

L

1

2

N

…
…

…S

c2

cj

i

j

1

2

…
…

c1

ci

H1 H2 H3 H4

j
i

1

2

N

…
…

…

c1S

ci cj

1
2

L

…
…

1
c1

L

1

2

N

…
…

…S
2…

…

c1

i

1

2

N

…
…

…S

ci

1
2

L

…
…

1

jL

1

2

N

…
…

…

c1S

cj

2…
…

Fig. 6. Schematic representation of the graphs involved in the proof of Lemma 1. The top four graphs are for the original maximum flow problem, while
the bottom four graphs are their equivalent reformulations in the node disjoint path problem. For clarity, not all arcs are shown.

Converting these maximum flow problems into their equiv-
alent node disjoint path problems yields the graphs shown
at the bottom of Fig. 6. The submodularity condition states
that the maximum number of node disjoint paths in the left
two graphs is at most the maximum number of node disjoint
paths in the right two graphs. Denote these graphs from left
to right by H1, H2, H3 and H4.

We will also make use of the following fact, which we
state without proof: If H is a three-layered graph of the form
shown in Fig. 5(b), with source set N and destination set M,
and P is a set of node disjoint paths in H that covers a subset
D of the destination nodes, there exists a maximum set of
node disjoint paths P′ in H that also covers node set D.

Lemma 1 can now be proved.
Proof: Making use of the reformulation of the max-

imum flow problem as a node disjoint path problem, the
claim of the lemma can be restated as follows: if Pi denotes a
maximum set of node disjoint paths in graph Hi from Fig. 6
for i = 1, . . . ,4, and |Pi| denotes the cardinality of Pi (i.e.
the number of elements from the source or destination sets
covered by Pi), then |P1|+ |P2| ≤ |P3|+ |P4|.

Consider a maximum set of node disjoint paths P1 in graph

H1, and denote its cardinality by Ns. Note that P1 is a feasible
set of node disjoint paths for graph H2 as well.

Because P1 is feasible in graph H2, there is a maximum
set of node disjoint paths in H2 that covers the same set of
destination nodes in S as H1. Call this optimal solution P2.
Denote the number of nodes covered by P2 in node sets i
and j by Ni and N j, respectively. Then, the total number of
node disjoint paths in P1 and P2 is equal to 2Ns +Ni +N j.

Now consider the set of node disjoint paths obtained by
removing the paths ending in node set j from P2. Note that
this set of node disjoint paths is feasible for graph H3, and
its cardinality is Ns + Ni. Likewise, the set of node disjoint
paths obtained by removing the paths ending in node set
i from P2 is feasible for graph H4, and its cardinality is
Ns +N j. Since these sets of node disjoint paths are feasible
(but not necessarily optimal) for H3 and H4, the sum of the
cardinalities of maximum node disjoint paths for these graphs
must be at least 2Ns +Ni +N j.

This establishes the submodularity property for the node
disjoint path problem under consideration, and by extension
for the maximum flow problem.


