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Abstract—This paper describes new algorithms for throughput optimization in a mobile backbone network. This hierarchical

communication framework combines mobile backbone nodes, which have superior mobility and communication capability, with regular

nodes, which are constrained in mobility and communication capability. An important quantity of interest in mobile backbone networks

is the number of regular nodes that can be successfully assigned to mobile backbone nodes at a given throughput level. This paper

develops a novel technique for maximizing this quantity in networks of fixed regular nodes using mixed-integer linear programming

(MILP). The MILP-based algorithm provides a significant reduction in computation time compared to existing methods and is

computationally tractable for problems of moderate size. An approximation algorithm is also developed that is appropriate for large-

scale problems. This paper presents a theoretical performance guarantee for the approximation algorithm and also demonstrates its

empirical performance. Finally, the mobile backbone network problem is extended to include mobile regular nodes, and exact and

approximate solution algorithms are presented for this extension.

Index Terms—Wireless sensor networks, mobile communication systems.

Ç

1 INTRODUCTION

DETECTION and monitoring of spatially distributed
phenomena often necessitates the distribution of

sensing platforms. For example, multiple mobile robots
can be used to explore an area of interest more rapidly than
a single mobile robot [1], and multiple sensors can provide
simultaneous coverage of a relatively large area for an
extended period of time [2]. However, in many applica-
tions, the data collected by these distributed platforms is
best utilized after it has been aggregated, which requires
communication among the robotic or sensing agents. This
paper focuses on a hierarchical network architecture called
a mobile backbone network, in which mobile agents are
deployed to provide long-term communication support
for other agents in the form of a fixed backbone over which
end-to-end communication can take place. Mobile backbone
networks can be used to model a variety of multiagent
systems. For example, a heterogeneous system composed of
air and ground vehicles conducting ground measurements
in a cluttered environment can be appropriately modeled as
a mobile backbone network, as can a team of mobile robotic
agents deployed to collect streams of data from a network
of stationary sensor nodes.

Previous work has focused on optimal placement of

mobile backbone nodes in networks of fixed regular nodes,

with the objective of providing permanent communication

support for the regular nodes [3]. Existing techniques, while
exact, suffer from intractable computation times, even for
problems of modest size. Furthermore, mobility of regular
nodes has not been adequately addressed. This paper
provides tractable solutions to the important problem of
maximizing the number of regular nodes that achieve a
desired level of throughput. It also describes a new mobile
backbone network optimization problem formulation that
models regular node mobility, and it provides tractable
solutions to this problem, including the first known
approximation algorithm with computation time that is
polynomial in both the number of regular nodes and the
number of mobile backbone nodes.

2 BACKGROUND AND PROBLEM STATEMENT

Mobile backbone networks were described by Rubin et al. [4]
and Xu et al. [5] as a solution to the scalability issues inherent
in mobile ad hoc networks. Noting that most communication
bandwidth in single-layer large-scale mobile networks is
dedicated to packet forwarding and routing overhead, they
proposed a multilayer hierarchical network architecture, as is
currently used in the Internet. Srinivas et al. [6] defined two
types of nodes: regular nodes, which have limited mobility
and communication capability, and mobile backbone nodes,
which have greater communication capability than regular
nodes and which can be placed at arbitrary locations in order
to provide communication support for the regular nodes.

Srinivas et al. [6] formulated the connected disk cover
(CDC) problem, in which many mobile backbone nodes
with fixed communication ranges are deployed to provide
communication support for a set of fixed regular nodes. The
goal of the CDC problem is to place the minimum number
of mobile backbone nodes such that each regular node is
covered by at least one mobile backbone node and all
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mobile backbone nodes are connected to each other. Thus,
the CDC problem takes a discrete approach to modeling
communication, in that two nodes can communicate if they
are within communication range of each other, and
otherwise cannot.

This paper uses a more sophisticated model of commu-
nication similar to that described by Srinivas and Modiano
[3]. We assume that the throughput (data rate) that can be
achieved between a regular node and a mobile backbone
node is a monotonically nonincreasing function of both the
distance between the two nodes and the number of other
regular nodes that are also communicating with that
particular mobile backbone node and thus causing inter-
ference. While our results are valid for any throughput
function that is monotonically nonincreasing in both
distance and cluster size, it is useful to gain intuition by
considering a particular example. One such example is the
throughput function resulting from the use of a Slotted
Aloha communication protocol in which all regular nodes
are equally likely to transmit. In this protocol, the
throughput � between regular node i and mobile backbone
node j is given by

�ðAj; dijÞ ¼
1

Aj

�� �� 1� 1

Aj

�� ��
 !ðjAjj�1Þ

1

d�ij

 !
; ð1Þ

where Aj

�� �� is the number of regular nodes assigned to
mobile backbone node j; dij is the distance between regular
node i and mobile backbone node j, and � is the path loss
exponent. As noted in [3], one can use the fact that

1� 1

c
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e

for c > 0 to obtain a simpler expression for the Slotted
Aloha throughput function. In this simplified expression,
the throughput is given by

�ðAj; dijÞ �
1

e � jAjj � d�ij
; ð2Þ

where e is the base of the natural logarithm.
Building upon this continuous throughput model, we

pose the mobile backbone network optimization problem as
follows: given a set ofN regular nodes distributed in a plane,
our goal is to place K mobile backbone nodes, which can
occupy arbitrary locations in the plane, while simultaneously
assigning the regular nodes to the mobile backbone nodes,
such that the effectiveness of the resulting network is
maximized. In this work, the effectiveness of the resulting
network is measured by the number of regular nodes that
achieve throughput at least �min, although other formulations
(such as that which maximizes the aggregate throughput
achieved by all regular nodes) are possible. The particular
choice of objective in this work is motivated by applications
such as control over a network, in which a minimum
throughput level is required, or sensing applications in
which sensor measurements are of a particular (known) size.
Thus, our objective is to maximize the number of regular
nodes that achieve throughput at least �min.

Each regular node can be assigned to a single mobile
backbone node, and it is assumed that regular nodes
assigned to one mobile backbone node encounter no

interference from regular nodes assigned to other mobile
backbone nodes (e.g., because each “cluster” composed of a
mobile backbone node and its assigned regular nodes
operates at a different frequency than other clusters). We
also assume that there is no need for the mobile backbone
nodes to be “connected” to one another. This assumption
models the case in which mobile backbone nodes serve to
provide a satellite uplink for regular nodes; this is the case,
for instance, in hastily formed networks that operate in
disaster areas [7]. This assumption is also valid for the case in
which the mobile backbone nodes are known to be powerful
enough to communicate effectively over the entire problem
domain. For cases in which the problem domain is so large
that mobile backbone nodes have difficulty communicating
with each other, it would be necessary to develop algorithms
to ensure connectivity between the mobile backbone nodes
(see [6], for example).

We seek to provide the best possible throughput on a
permanent basis; therefore, once the mobile backbone nodes
have been placed at their optimal positions, no improve-
ment can be obtained by moving further. Thus, our model
represents a “one-time” network design problem and is also
suitable for cases in which mobile backbone nodes are
deployable, but cannot move once they have been
deployed. This is in contrast to the message ferrying problem,
in which regular nodes have a finite amount of data
available to transmit, and mobile backbone nodes must
move around the network and collect data [8], [9], [10], [11].

We assume that the positions of regular nodes are known
with complete accuracy, e.g., because the regular nodes are
equipped with GPS. The problem of dealing with error in
regular node position estimates is a topic of future research.

As posed, the mobile backbone network optimization
problem is quite difficult. Consider a simplification in which
the problem is decomposed into two parts: mobile backbone
node placement and regular node assignment. Because the
mobile backbone nodes can be placed anywhere in the plane,
the problem of finding an optimal placement is a hard
nonconvex optimization problem even when a simple
heuristic technique is used to solve the assignment portion
of the problem. Similarly, given a placement of mobile
backbone nodes, the assignment portion of the problem is
also nontrivial. An exhaustive enumeration of allKN possible
assignments is impractical, and naive assignment techniques,
such as that of assigning each regular node to the nearest
mobile backbone node, can perform quite badly [3].

Although the problem considered in this paper is similar
to that encountered in cellular network optimization, the
approaches taken herein differ from those in the cellular
literature. Some approaches to cellular network optimization
take base station placement to be given, then optimize over
user assignment and transmission power to minimize total
overall interference [12], [13], [14], [15]. Others assume a
simple heuristic for the assignment subproblem and proceed
to choose base station locations from among a restricted set
[16], [17]. In contrast, we seek to optimize the network
simultaneously over mobile backbone node placement and
regular node assignment, without assuming variable trans-
mission power capability on the part of the regular nodes and
without limiting the placement of the mobile backbone nodes.
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A typical example of an optimal solution to the simulta-
neous placement and assignment problem is shown in Fig. 1
for a group of regular nodes denoted by �. The mobile
backbone nodes, denoted by �, have been placed, and regular
nodes have been assigned to them such that the number of
regular nodes that achieve throughput �min is maximized.
This example is typical of an optimal solution in that the
clusters of regular nodes and mobile backbone nodes are of
relatively small size, and the regular nodes are distributed
intelligently among the mobile backbone nodes, with fewer
regular nodes being allocated to mobile backbone nodes with
larger cluster radii. In this example, all regular nodes have
been successfully assigned to mobile backbone nodes.

In the problem considered in Fig. 1, regular nodes are
stationary, and their positions are given as problem data, as
has been assumed in previous work [3]. New solutions to
this problem are described in Section 3. In Section 4, we
consider an extension to this problem in which the
placement of regular nodes is also a decision variable. That
is, the goal in Section 4 is to place both N regular nodes and
K mobile backbone nodes, while simultaneously assigning
regular nodes to mobile backbone nodes, such that the
effectiveness of the overall network is maximized.

3 STATIONARY REGULAR NODES

This section describes the mobile backbone network optimi-
zation problem in which regular nodes are stationary.
Denoting the problem data as Ri (the locations of the regular
nodes, i ¼ 1; . . . ; N), �min (the desired minimum throughput
level), and � (the throughput function); and the decision
variables as Mi (the selected locations of the mobile back-
bone nodes, i ¼ 1; . . . ; K) and A (the assignment of regular
nodes to mobile backbone nodes), this optimization problem
can be stated as:

max
M;A

F�ðR;M; A; �minÞ

subject to Mi 2 IR2; i ¼ 1; . . . ; K

A 2 A;

where A is the set of valid assignments (i.e., those in which
each regular node is assigned to at most one mobile backbone
node), and F� ðR;M; A; �minÞ is the number of regular nodes
that achieve throughput level �min, given node placements R
and M, assignment A, and throughput function � .

As discussed in Section 2, this problem is quite difficult.
Fortunately, it is possible to solve a simpler problem that
nonetheless yields an optimal solution to the original
problem. A key insight discussed in [3], [18] is that although
the mobile backbone nodes can occupy arbitrary locations,
they can be restricted to a small number of locations
without sacrificing optimality. For throughput functions
that are monotonically nonincreasing in distance, each
mobile backbone node can be placed at the 1-center of its
assigned regular nodes in an optimal solution.

The 1-center location for a set of regular nodes is the
location that minimizes the maximum distance from the
mobile backbone node to any of the regular nodes in the set.
Consider a feasible solution to the mobile backbone network
optimization problem, i.e., a solution in which K mobile
backbone nodes are placed anywhere in the plane, each
regular node is assigned to at most one mobile backbone
node, and each assigned regular node achieves throughput
at least �min. Let Ak denote the set of regular nodes assigned
to mobile backbone node k, for k ¼ 1; . . . ; K, and let rk denote
the distance from mobile backbone node k to the most distant
regular node in Ak. By our assumption that the solution is
feasible, we know that �ðjAkj; rkÞ � �min. Now, modify the
solution such that the mobile backbone node k is placed at the
1-center of the set Ak, leaving the assignment Ak unchanged.
By definition of the 1-center, the distance from every regular
node in Ak to mobile backbone node k is no more than rk. In
particular, if the distance from the mobile backbone node to
the most distant regular node inAk is now denoted by r0k, we
know that �ðjAkj; r0kÞ � �ðjAkj; rkÞ � �min, since � is a non-
increasing function of distance. Thus, the modified solution
in which the mobile backbone node is placed at the 1-center
of its assigned regular nodes is feasible and has the same
objective value as the original solution. Repeating the
argument for the remaining mobile backbone nodes
1; . . . ; K, we can see that restricting the feasible set of mobile
backbone node locations to the set of 1-center locations of all
subsets of regular nodes does not reduce the maximum
objective value that can be obtained.

Fortunately, although there are 2N possible subsets of
N regular nodes, there are only OðN3Þ distinct 1-center
locations [19]. Although a particular 1-center location may
correspond to multiple subsets of regular nodes, it is
uniquely defined by the regular nodes that are most distant
from it in all of these sets. Each 1-center location either
coincides with a regular node, lies at the center of the
diameter described by two regular nodes, or lies at the
circumcenter of three regular nodes [20]. Thus, there are at
most ðN1 Þ þ ð

N
2 Þ þ ð

N
3 Þ distinct 1-center locations, and they

can be efficiently enumerated through enumeration of the
possible sets of “defining” regular nodes. Moreover, the
maximum communication radius associated with each
possible mobile backbone node location is easy to compute.
This radius, which we will denote as the 1-center radius, is
the distance from the 1-center location to any of the defining
regular nodes. For 1-center locations defined by the

562 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 5, APRIL 2011

Fig. 1. A typical example of an optimal mobile backbone network. Mobile
backbone nodes, indicated by �, are placed such that they provide
communication support for regular nodes, shown as �. Each regular
node is assigned to one mobile backbone node. Dashed lines indicate
the radius of each cluster of nodes.



diameter between two nodes or the circumcircle of three
nodes, the 1-center radius is simply the radius of the
associated circle. For 1-center locations defined by a single
regular node, the associated 1-center radius is zero.1

The insight that mobile backbone nodes can be restricted
to a relatively small number of locations without sacrificing
optimality of the overall solution allows the mobile back-
bone network optimization problem to be simplified. The
problem becomes

max
M;A

F�ðR;M; A; �minÞ

subject to Mi 2 CðRÞ; i ¼ 1; . . . ; K

A 2 A;

where CðRÞ denotes the set of 1-center locations of the
regular nodes, and jCj ¼ OðN3Þ.

3.1 Mixed-Integer Linear Program (MILP) Approach

A primary contribution of this work is the development of a
single optimization problem that simultaneously solves the
mobile backbone node placement and regular node assign-
ment problems. This is accomplished through the formula-
tion of a network design problem. In network design
problems, a given network (represented by a directed graph)
can be augmented with additional arcs for a given cost, and
the goal is to intelligently “purchase” a subset of these arcs in
order to achieve a desired flow characteristic [21].

The network design problem that produces an optimal
solution to the mobile backbone network optimization
problem is constructed as follows: A source node, s, is
connected to each node in the set of nodes N ¼ f1; . . . ; Ng
(see Fig. 2). N represents the set of regular nodes. The arcs
connecting s to i 2 N are of unit capacity. Each node i 2 N
is, in turn, connected to a subset of the nodes in M ¼
fN þ 1; . . . ; N þMg, where M is OðN3Þ. M represents the
set of possible mobile backbone node locations, i.e., the 1-

center locations of the subsets of regular nodes. Node i 2 N
is connected to node N þ j 2 M if, and only if, regular
node i is within the 1-center radius of location j. The arc
connecting i to N þ j is of unit capacity. Finally, each node
in M is connected to the sink, t. The capacity of the arc
connecting node N þ i 2 M to the sink is the product of a
binary variable yi, which represents the decision of whether
to place a mobile backbone node at location i, and a
constant ci, which is the maximum number of regular nodes
that can be assigned to a mobile backbone node at location i
at the desired throughput level �min. The quantity ci can be
efficiently computed in one of two ways. For an easily
inverted throughput function such as the approximate
Slotted Aloha function described by (2), one can simply
take the inverse of the expression with respect to cluster
size, evaluate the inverse at the desired minimum through-
put level �min, and take the floor of the result to obtain an
integer value for ci. For the throughput function given by
(2), we have

ci ¼
1

e � �min � r�i

� �
; ð3Þ

where ri is the 1-center radius associated with 1-center
location i. If the throughput function cannot easily be
inverted with respect to cluster size, as is the case with the
exact Slotted Aloha throughput function given in (1), one
can perform a search for the largest cluster size ci � N such
that �ðci; riÞ � �min. For example, a binary search for ci
would involve OðlogðNÞÞ evaluations of the function � . In
either case, the resulting value of ci is the maximum number
of regular nodes that can be assigned to the mobile
backbone node at location i, such that each of these regular
nodes achieves throughput at least �min.

Denote the set of nodes for the network design problem by
N and the set of arcs by A. If K mobile backbone nodes are
available to provide communication support for N regular
nodes at given locations, and a throughput level �min is
specified, the goal of the network design problem is to select
K arcs incident to the sink and a feasible flow x such that
the net flow through the graph is maximized.

The network design problem can be solved via the
following mixed-integer linear program (MILP), which we
denote as the Network Design MILP:

max
x;y

XN
i¼1

xsi ð4aÞ

subject to
XM
i¼1

yi ¼ K; ð4bÞ
X

j:ði;jÞ2A
xij ¼

X
l:ðl;iÞ2A

xli i 2 N n fs; tg; ð4cÞ

xij � 0 8ði; jÞ 2 A; ð4dÞ
xij � 1 8ði; jÞ 2 A : j 2 N n ftg; ð4eÞ

xðNþiÞt � yici i 2 f1; . . . ;Mg; ð4fÞ
yi 2 f0; 1g i 2 f1; . . . ;Mg; ð4gÞ

xiðNþjÞ � yj 8ði; N þ jÞ 2 A : i 2 f1; . . . ; Ng: ð4hÞ

The objective of the Network Design MILP is to
maximize the flow x through the graph (4a). The constraints
state that K arcs (mobile backbone node locations) must be
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1. In practice, we consider the 1-center radius of such locations to have a
small positive value " in order to assure boundedness of the throughput
function; this modification does not impact the solution as long as " is such
that the throughput achieved by the regular node does not cross the
threshold of �min, and no additional regular nodes fall within a distance of "
of the mobile backbone node.

Fig. 2. The network design problem corresponding to the joint placement
and assignment problem for mobile backbone networks. Unlabeled arc
capacities are equal to 1.



selected (4b), flow through all internal nodes must be
conserved (4c), arc capacities must be observed (4d)-(4f),
and yi is binary for all i (4g). Constraint (4h) is a valid
inequality that decreases computation time by reducing the
size of the feasible set in the LP relaxation [22]. Note that,
for a given specification of the y vector, all flows x are
integer in all basic feasible solutions of the resulting (linear)
maximum flow problem.

This network design problem exactly corresponds to the
mobile backbone network optimization problem as posed in
this section. The geometry of the mobile backbone network
problem is described by the arcs connecting node sets N and
M, while both the throughput function and the desired
minimum throughput level are captured in the capacities of
the arcs connecting nodes in M to the sink, t. Any feasible
placement of mobile backbone nodes and assignment of
regular nodes is associated with a feasible solution to the
network design problem with the same objective value;
likewise, any integer-feasible solution to the network design
problem yields a feasible placement and assignment in the
mobile backbone network optimization problem, such that
the number of regular nodes assigned is equal to the volume
of flow through the network design graph. The equivalence
of these two problems is formally stated in Theorem 1.

Theorem 1. Given an instance of the mobile backbone network
design problem, the corresponding Network Design MILP
yields an optimal solution to the mobile backbone node
placement and regular node assignment problems.

Proof. The proof of Theorem 1 can be found in Appendix A.tu

A solution to problem (4) provides both a placement of
mobile backbone nodes and an assignment of regular nodes
to mobile backbone nodes. Mobile backbone nodes are
placed at locations for which yi ¼ 1, and regular node i is
assigned to the mobile backbone node at location j if
xiðNþjÞ ¼ 1. The number of regular nodes assigned is equal
to the volume of flow through the graph.

We make the following observations about this algorithm:

Remark 1. If K mobile backbone nodes are available and
the goal is to assign as many regular nodes as possible
such that a desired minimum throughput is achieved for
each assigned regular node, the MILP problem in (4)
needs only to be solved once for the desired throughput
value and with a fixed value of K. However, we also
note that the Network Design MILP can be used as a
subroutine in solving the maximum fair placement and
assignment (MFPA) problem considered in [3], in which
the objective is to maximize the minimum throughput
achieved by any regular node, such that all regular nodes
are assigned. To solve the MFPA problem, it is necessary
to solve the Network Design MILP OðlogðNÞÞ times for
different throughput values in order to find the
maximum throughput value, such that all regular nodes
can be assigned. There are at most OðN4Þ possible values
for the minimum throughput achieved by any regular
node; searching among these throughput values via
binary search would require OðlogðNÞÞ solutions of the
Network Design MILP.

Remark 2. It should be noted that the worst-case complexity
of mixed-integer linear programming is exponential in

the number of binary variables. However, this approach
performs well in practice, and simulation results indicate
that it compares very favorably with the search-based
approach developed in [3] for the MFPA problem (see
Table 1). Note that while the computation time of the
search-based algorithm increases very rapidly with the
problem size, the MILP-based algorithm remains com-
putationally tractable for problems of practical scale.

3.2 Approximation Algorithm

Table 1 indicates that the MILP formulation described by (4)
provides an optimal solution in tractable time for moder-
ately sized problems. However, this method is demon-
strated to scale poorly with problem size. Moreover, we
have shown that the network design problem on a network
of the general form shown in Fig. 2 is NP-hard [23].
Therefore, an approximation algorithm with computation
time that is polynomial in the number of regular nodes and
the number of mobile backbone nodes is desirable. This
section describes such an algorithm.

The primary insight on which the approximation
algorithm is based is the fact that the maximum number
of regular nodes that can be assigned is a submodular
function of the set of mobile backbone node locations
selected. Given a finite ground set D ¼ f1; . . . ; dg, a set
function fðSÞ defined for all subsets S of D is said to be
submodular if it has the property that

fðS [ fi; jgÞ � fðS [ figÞ � fðS [ fjgÞ � fðSÞ;

for all i; j 2 D; i 6¼ j and S 	 D n fi; jg [24]. In the context of
the network design problem, this means that the maximum
flow through the network is a submodular function of the
set of arcs incident to the sink that are selected.

It has been shown [25] that for maximization of a
nondecreasing submodular set function f , where fð;Þ ¼ 0,
greedy selection of elements yields a performance guaran-
tee of 1� ð1� 1

PÞ
P > 1� 1

e , where P is the number of
elements to be selected from the ground set and e is the base
of the natural logarithm. This means that if an exact
algorithm selects P elements from the ground set and
produces a solution of value OPT , a greedy selection of P
elements (i.e., selection via a process in which element i is
selected if it is the element that maximizes fðS [ figÞ, where
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TABLE 1
Average Computation Times for the MILP-Based and

Search-Based Algorithms, for Various Numbers of Regular
(N) and Mobile Backbone Nodes (K) in the Maximum

Fair Placement and Assignment (MFPA) Problem

All models were formulated in GAMS 22.9 and solved using ILOG
CPLEX 11.2.0 on a 3.16 GHz Intel Xeon CPU with 3.25 GB of RAM.



S is the set of elements already selected) produces
a solution of value at least ð1� ð1� 1

PÞ
P Þ �OPT .

For the network design problem considered in this
paper, P ¼ K (the number of mobile backbone nodes that
are to be placed), and OPT is the number of regular nodes
that are assigned in an optimal solution. Note that greedy
selection of K arcs amounts to solving at most OðN3KÞ
linear maximum flow problems on graphs with at most N þ
K þ 2 nodes. Thus, the computation time of the greedy
algorithm is polynomial in the number of regular nodes and
the number of mobile backbone nodes. Furthermore, each
of the maximum flow problems solved by the greedy
algorithm is solved over a bipartite graph with node sets
N [ ftg and fsg [K, where K is the set of nodes from M
whose outgoing arcs are selected. Because maximum flow
problems can be solved even more efficiently in bipartite
networks than in general networks [21], the greedy
algorithm is thus highly efficient. Further computational
efficiency can result from exploitation of max-flow/min-cut
duality [23].

The submodularity of the network design objective is
formally stated in Lemma 1:

Lemma 1. If G is a graph in the network design problem
described in Section 3.1, the maximum flow that can be routed
through G is a submodular function of the set of arcs selected.

Proof. The proof of Lemma 1 can be found in Appendix B.tu

Lemma 1 implies that greedy selection of mobile back-
bone node locations (i.e., selection via a process that
maximizes the total number of regular nodes assigned for
each incremental selection of a new mobile backbone node
location) yields provably good solution to the overall
placement and assignment problem.

Given a network design graph G;K mobile backbone
nodes, and M possible mobile backbone node locations, and
denoting by f the maximum flow through G as a function of
the set of mobile backbone node locations selected, this
greedy selection process is described by Algorithm 1.
Algorithm 1 begins with an empty set of selected mobile
backbone node locations, S, and incrementally adds
K elements to this set. In each of K rounds of selection,
M � jSj maximum flow problems are solved on graphs
consisting of nodes s; t, N, S and each of the M � jSj nodes
belonging to set M n S. In each round of selection, the node
from set M n S that maximizes the total flow through G is
added to set S, and this process continues until jSj ¼ K.
Algorithm 1 then returns set S. The performance of
Algorithm 1 is described by Theorem 2.

Algorithm 1.

S  ;
maxflow 0

for k ¼ 1 to K do

for m ¼ 1 to M do

if fðS [ fmgÞ � maxflow then

maxflow fðS [ fmgÞ
m�  m

end if

end for

S  S [ fm�g
end for

return S

Theorem 2. Algorithm 1 returns a solution S such that

fðSÞ � ð1� 1
eÞ � fðS�Þ

� �
, where S� is the optimal solution to

the network design problem on G.

Proof. This follows from the fact that all maximum flows

through G are integer, and from the observation that the

maximum flow that can be routed through G is a

submodular function of S, the set of arcs that are

selected. tu

3.3 Experimental Evaluation of Approximation
Algorithm

As described in Section 3.2, greedy selection of mobile

backbone node locations results in assignment of at least

dð1� ð1� 1
KÞ

KÞ �OPTe � dð1� 1
eÞ �OPTe regular nodes,

where K is the number of mobile backbone nodes that are

to be placed and OPT is the number of regular nodes

assigned by an exact algorithm (such as the MILP algorithm

described in Section 3.1) [25]. While such worst-case

performance guarantees are quite useful, it is also worth-

while to examine the typical performance of the approxima-

tion algorithm on many problems.
To this end, we have performed computational experi-

ments on a number of problems of various degrees of

complexity. Regular node locations were generated ran-

domly in a finite 2D area, and a moderate throughput value

was specified (i.e., one high enough such that there was no

trivial selection of mobile backbone node locations that

would result in assignment of all regular nodes). Results were

averaged over a number of trials for each problem dimension.
Fig. 3 shows the performance of the approximation

algorithm relative to the exact (MILP) algorithm. In Fig. 3a,

the average percentage of regular nodes assigned by the

exact algorithm that are also assigned by the approximation

algorithm is plotted, along with the theoretical lower bound

of dð1� 1
eÞ �OPTe, for various problem sizes. In this figure,

a data point at 100 percent would mean that, on average, the

approximation algorithm assigned as many regular nodes

as the exact algorithm for that particular problem size. As

the graph shows, the approximation algorithm consistently

exceeds the theoretical performance guarantee and achieves

nearly the same level of performance as the exact algorithm

for all problem sizes considered.
Fig. 3b shows the computation time required for each of

these algorithms, plotted on a logarithmic axis. As the

figure shows, the computation time required for the

approximation algorithm scales gracefully with problem

size. The average computation time of the approximation

algorithm was about 15 seconds for N ¼ 100 and K ¼ 14,

whereas the MILP algorithm took nearly 12 minutes to

solve a problem of this size. The significant improvement in

computation time achieved by the approximation algorithm

makes it appropriate for some real-time applications, while

the exact algorithm is a promising candidate for one-time

design problems involving significant costs.
Both the MILP algorithm and the approximation algo-

rithm were formulated in GAMS 22.9 and solved using

ILOG CPLEX 11.2.0 on a 3.16 GHz Intel Xeon CPU with

3.25 GB of RAM.
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4 JOINT PLACEMENT OF REGULAR AND MOBILE

BACKBONE NODES

As described in Section 3, existing problem formulations in
the study of mobile backbone networks have assumed that
the locations of regular nodes are fixed a priori and that
only the locations of mobile backbone nodes are variable
[18], [3], [6]. This assumption is reasonable for some
applications, such as scenarios that involve mobile agents
extracting data from a fixed sensor network. However, in
many applications, the locations of both regular nodes and
mobile backbone nodes can be controlled. For example, a
heterogeneous system composed of air and ground vehicles
conducting ground measurements in an urban environment
can be appropriately modeled as a mobile backbone
network: the ground vehicles are well-positioned to make

observations of phenomena at ground level, but their
movement and communication are hindered by surround-
ing obstacles. Air vehicles, on the other hand, are poorly
equipped to observe events on the ground but can easily
move above ground obstacles and communicate.

This section develops a modeling framework and
solution technique that are appropriate for problems of this
nature. We assume that L candidate regular node locations
are available a priori, perhaps selected by heuristic means
or due to logistical constraints. Each of N regular nodes
(N � L) must occupy one of these locations, and no two
regular nodes can be assigned to the same location. Given
an initial location and a mobility constraint, each regular
node is capable of reaching a subset of the other locations.
There are K mobile backbone nodes (K � N) that can be
placed anywhere, a throughput function � is specified, and
a desired minimum throughput �min is given.

Given these assumptions, the goal of this section is to
place both the regular nodes and mobile backbone nodes
while simultaneously assigning regular nodes to mobile
backbone nodes in order to maximize the number of regular
nodes that are successfully assigned and achieve the
desired minimum throughput level �min, under the given
throughput function � .

Denoting the problem data as Ii (the initial locations of the
regular nodes, i ¼ 1; . . . ; N) and rðIiÞ (the locations reachable
from each of the initial regular node locations); and the
decision variables as Fi (the final locations of the regular
nodes), Mi (the selected locations of the mobile backbone
nodes, i ¼ 1; . . . ; K), and A (the assignment of regular nodes
to mobile backbone nodes), this optimization problem is:

max
F; M; A

F�ðF;M; A; �minÞ

subject to Fi 2 rðIiÞ; i ¼ 1; . . . ; N

Mi 2 CðIÞ; i ¼ 1; . . . ; K

A 2 A;

where F� ðF;M; A; �minÞ is the number of regular nodes that
achieve throughput level �min, given node placements F
and M, assignment A, and throughput function � . A
denotes the set of valid assignments, while C denotes the
1-centers of candidate regular node locations.

4.1 Network Design Formulation

Optimal simultaneous placement and assignment of regular
nodes and mobile backbone nodes is again achieved
through the solution of a network design problem.

The network design graph over which this optimization
takes place is schematically represented in Fig. 4. This graph
is similar to that shown in Fig. 2, with the exception that sets
of nodes L ¼ fN þ 1; . . . ; N þ Lg and L0¼ fN þ Lþ 1; . . . ;
N þ 2Lg are added. These nodes represent locations to
which regular nodes may move. Node i 2 N is connected to
node N þ j 2 L if, and only if, regular node i can reach
sensing location j under its mobility constraint. Each node
N þ i 2 L is connected to node N þ Lþ i 2 L0 via an arc of
unit capacity. This enforces the constraint that at most one
regular node can occupy each location. Finally, node N þ
Lþ i 2 L0 is connected to node N þ 2Lþ j 2 M if, and only
if, sensing location i is within the 1-center radius of 1-center
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Fig. 3. Comparison of the exact and approximation algorithms
developed in this section. Although the MILP-based exact algorithm
developed in this section significantly outperforms existing techniques in
terms of required computation time, our experiments indicate that the
greedy approximation algorithm achieves nearly the same level of
performance with an even greater reduction in computation time.
(a) Performance of the approximation algorithm developed in this paper,
relative to an exact solution technique, in terms of number of regular
nodes assigned at the given throughput level. (b) Computation time of
the approximation algorithm and the exact (MILP) algorithm for various
problem sizes. Due to the large range of values represented, a
logarithmic scale is used.



j. Finally, each node in M is connected to the sink t, and the

capacity of the arc connecting N þ 2Lþ i 2 M to t is again

the product of yi and ci.
This network design problem exactly describes the

mobile backbone network optimization problem with
mobile regular nodes. The arcs connecting node sets N

and L reflect the mobility constraints of the regular nodes,
while the geometric aspects of the mobile backbone node
placement problem are described by the arcs connecting

node sets L0 and M. As in Section 3, both the throughput
function and the desired minimum throughput level are
captured in the capacities of the arcs connecting nodes in M

to the sink, t. Any feasible placement and assignment of
regular and mobile backbone nodes is associated with a

feasible solution to the network design problem; likewise,
any feasible solution to the network design problem yields a
feasible placement and assignment in the mobile backbone

network optimization problem.
Denote the set of nodes in the network design graph by

N and the set of arcs by A. If K mobile backbone nodes

are available and a minimum throughput level is specified,

the goal of the network design problem is to select K arcs

from fN þ 2Lþ 1; . . . ; N þ 2LþMg and a feasible flow

xij; ði; jÞ 2 A such that the s� t flow is maximized. This

problem can be solved via the following MILP:

max
x;y

XN
i¼1

xsi ð5aÞ

subject to
XM
i¼1

yi ¼ K; ð5bÞ
X

j:ði;jÞ2A
xij ¼

X
l:ðl;iÞ2A

xli i 2 N n fs; tg; ð5cÞ

xij � 0 8 ði; jÞ 2 A; ð5dÞ
xij � 1 8 ði; jÞ 2 A : j 2 N n ftg; ð5eÞ

xðNþ2LþiÞt � yici i 2 f1; . . . ;Mg; ð5fÞ
yi 2 f0; 1g i 2 f1; . . . ;Mg; ð5gÞ

xðNþLþiÞðNþ2LþjÞ � yj 8 i 2 f1; . . . ; Lg;
ðN þ Lþ i; N þ 2Lþ jÞ 2 A; ð5hÞ

where the constraints state that K arcs (mobile backbone
node locations) must be selected (5b), flow through all
internal nodes must be conserved (5c), arc capacities must be
observed (5d)-(5f), and yi is binary for all i (5g). Constraint
(5h) is again a valid inequality included to reduce computa-
tion time by strengthening the LP relaxation [22].

Fig. 5 shows an example of a solution to the simultaneous
placement and assignment problem with regular node
movement. The regular nodes, initially in positions indicated
by 
, are able to move to other locations (�) within their radii
of motion, indicated by shaded circles. This initial config-
uration is shown in Fig. 5a. In an optimal solution to this
problem, shown in Fig. 5b, the regular nodes have moved
such that they are grouped into compact clusters for which
the mobile backbone nodes can provide an effective commu-
nication infrastructure. The clusters are relatively balanced,
in that the clusters with larger radii tend to have fewer regular
nodes, while the more compact clusters can accommodate
more regular nodes and still achieve the desired minimum
throughput. In this example, all regular nodes have been
successfully assigned to mobile backbone nodes.

This algorithm is designed to maximize the number of
regular nodes that are assigned at throughput level �min. If,
instead, the goal is to achieve the best possible minimum
throughput such that all regular nodes are assigned to a
mobile backbone node (i.e., to solve the MFPA problem), it is
necessary to solve the MILP problem in (5) OðlogðLÞÞ times
for different throughput values (which result in different
values for c1; . . . ; cM in the network design problem).

In this paper, all candidate regular node locations are
considered to be equally valuable—that is, a regular node
that transmits to a mobile backbone node from location i
contributes as much to the objective as a mobile backbone
node transmitting from location j. However, this formula-
tion can easily be modified to model variably valuable
sensing locations by replacing the objective function with

max
x;y

XL
i¼1

vixNþi;NþLþi;

where vi is the value of location i.

4.2 Approximation Algorithm

While the MILP-based algorithm described in Section 4.1
provides an exact solution to the mobile backbone network
optimization problem, its worst-case computation time is
again exponential in the number of binary variables.
Fortunately, the submodularity property described in Sec-
tion 3.2 also holds for graphs of the form shown in Fig. 4:

Lemma 2. If G is a graph in the network design problem
described in Section 4.1, the maximum flow that can be routed
through G is a submodular function of the set of arcs selected.

Proof. The proof of Lemma 2 is similar to that of Lemma 1,
with the exception that the reduction to a bipartite
matching problem is replaced with a reduction to a
node-disjoint path problem on a tripartite graph. tu
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Fig. 4. The network design problem corresponding to the joint placement

and assignment problem for mobile backbone networks, with regular

node mobility. Unlabeled arc capacities are equal to 1. For clarity, not all

arcs and nodes are shown.



Lemma 2 motivates consideration of a greedy algorithm
for the problem of maximizing the number of regular nodes
that achieve throughput level �min. Given a network design
graph G of the form shown in Fig. 4, with K mobile
backbone nodes and M possible mobile backbone node
locations, and denoting by f the maximum flow through G
as a function of the set of mobile backbone node locations
selected, this greedy algorithm is described by Algorithm 2.
Theorem 3 describes the performance of Algorithm 2.

Algorithm 2.

S  ;
maxflow 0

for k ¼ 1 to K do

for m ¼ 1 to M do

if fðS [ fmgÞ � maxflow then

maxflow fðS [ fmgÞ
m�  m

end if

end for

S  S [ fm�g
end for

return S

Theorem 3. Algorithm 2 returns a solution S such that
fðSÞ � ð1� 1

eÞ � fðS�Þ
� �

, where S� is the optimal solution to
the network design problem on G.

Proof. This follows from the fact that all maximum flows
through G are integer, and from the observation that
the maximum flow that can be routed through G is a
submodular function of S, the set of arcs that are
selected. tu
Thus, Algorithm 2 is an approximation algorithm with

approximation guarantee 1� 1
e . Additionally, because each

round of greedy selection consists of solving a polynomial

number of maximum flow problems on graphs with at most
N þ 2LþK þ 2 nodes, and there are K rounds of selection,
the running time of Algorithm 2 is polynomial in the number
of regular nodes, the number of locations, and the number of
mobile backbone nodes. Furthermore, all network flow
problems solved by Algorithm 2 are formulated on bipartite
graphs, for which highly efficient algorithms exist [21].

The performance of Algorithm 2 relative to the exact
(MILP) algorithm developed in this section is shown in Fig. 6.

Again, the approximation algorithm exhibits excellent em-
pirical performance, achieving results comparable to those of
the exact algorithm with a great reduction in computation
time. The results shown in Fig. 6 were obtained from models
formulated in GAMS 22.9 and solved using ILOG CPLEX
11.2.0 on a 3.16 GHz Intel Xeon CPU with 3.25 GB of RAM.

5 CONCLUSIONS

This work has described new algorithms for solving the
problem of mobile backbone network optimization. Exact
MILP-based techniques and the first known approximation

algorithms with computation time polynomial in the
number of regular nodes and the number of mobile
backbone nodes were described.

Based on simulation results, we conclude that the MILP-
based approach provides a considerable computational
advantage over existing techniques for mobile backbone
network optimization. This approach has been successfully
applied to a problem in which a maximum number of
regular nodes are to be assigned to mobile backbone nodes

at a given level of throughput, and to a related problem
from the literature in which all regular nodes are to be
assigned to a mobile backbone node such that the minimum
throughput achieved by any regular node is maximized.
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Fig. 5. A small example of mobile backbone network optimization with limited regular node movement. Open circles represent possible regular node
locations, and filled circles are the initial locations of the regular nodes. Shaded circles in (a) indicate the possible radius of motion of each regular
node. In (b), mobile backbone nodes are placed such that they provide communication support for the regular nodes. Each regular node is assigned
to at most one mobile backbone node. Dotted lines indicate regular node motion in this optimal solution. Dashed circles indicate the communication
radius of each cluster of nodes. In this example, all regular nodes have been successfully assigned to mobile backbone nodes. (a) Initial regular node
placement, with radius of motion for each regular node. (b) An optimal placement of regular and mobile backbone nodes.



For cases in which an MILP approach is impractical due
to constraints on computation time, the greedy approxima-
tion algorithms developed in this paper present viable
alternatives. The approximation algorithms carry the ben-
efit of a theoretical performance guarantee, and simulation
results indicate that they perform very well for the problem
of assigning a maximum number of regular nodes such that
each assigned regular node achieves a minimum through-
put level.

APPENDIX A

PROOF OF THEOREM 1

Proof. Given a feasible solution to the original problem (i.e.,
a solution in which K mobile backbone nodes are placed

anywhere in the plane, each regular node is assigned to

at most one mobile backbone node, and every assigned

regular node achieves throughput at least �min), a feasible

solution to the corresponding network design problem

and its associated Network Design MILP (4) can be

constructed as follows:
Let Ak denote the set of regular nodes assigned to

mobile backbone node k, for k ¼ 1; . . . ; K. Calculate the
1-center of set Ak and denote its location by lk and its
1-center radius by rk. Note that although some 1-center
locations may coincide, each will be distinct in the set
M. By our assumption that we are given a feasible
solution to the original problem, we know that
Ai \Aj ¼ ; 8i; j 2 f1; . . . ; Kg; i 6¼ j. Therefore, the defin-
ing regular nodes of each 1-center must be distinct, and
li is distinct from lj in the set M.

Assume without loss of generality that the network
design graph is labeled such that nodes N þ 1; . . . ; N þ
K correspond to the locations l1; . . . ; lK . Set binary
variables y1; . . . ; yK equal to 1, and set the remaining
binary variables yKþ1; . . . ; yM equal to 0. Note that
constraints 4b and 4g in the Network Design MILP are
now satisfied.

Next, for each regular node i that is a member of set
Ak for some k, set xsi equal to 1. Set xsj equal to 0 for each
regular node j for which 6 9k : j 2 Ak. For k ¼ 1; . . . ; K,
and for all regular nodes i such that i 2 Ak, set xiðNþkÞ
equal to 1 (recall that an arc exists between every such
pair of nodes ði;N þ kÞ by definition of the 1-center and
by construction of the network design problem). Set
xjðNþkÞ equal to 0 for all regular nodes j such that j 62 Ak

(if an arc exists between node j and node N þ k). For all
arcs terminating at nodes N þK þ 1; . . . ; N þM, set the
flow x equal to 0. Note that flows for all arcs terminating
in node sets N and M have now been assigned such that
constraints 4d and 4e are satisfied. Furthermore, flow
conservation (constraint 4c) is now satisfied for nodes
1; . . . ; N : regular nodes that are assigned to a mobile
backbone node have one unit of incoming flow and one
unit of outgoing flow (since every regular node is
assigned to at most one mobile backbone node by our
assumption that the original solution was feasible), while
regular nodes that are not assigned to a mobile backbone
node have no incoming or outgoing flow.

Finally, consider the arcs connecting nodes N þ
1; . . . ; N þM to the sink. For k ¼ 1; . . . ; K, the arc from
node N þ k to node t has capacity ck, since yk ¼ 1. The
remaining arcs have zero capacity, since yk ¼ 0 for
k ¼ K þ 1; . . . ;M. Set the flows xðNþkÞt equal to jAkj
for k ¼ 1; . . . ; K, and set the flows xðNþkÞt equal to 0 for
k ¼ K þ 1; . . . ;M. By definition of ck and by our
assumption that all assigned regular nodes achieve
throughput at least �min in the original solution,
constraint (4f) is satisfied. Constraint (4d) is also now
satisfied for all arcs. Furthermore, constraint (4c) is
satisfied for nodes N þ 1; . . . ; N þM; node N þ k has
jAkj units of flow incoming and outgoing for
k ¼ 1; . . . ; K, and zero units of flow incoming and
outgoing for k ¼ K þ 1; . . . ;M. Thus, all constraints are
satisfied, and the objective value of this solution is equal
to the number of regular nodes that were assigned in the
original solution, i.e.,

PK
k¼1 jAkj.
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Fig. 6. Comparison of the exact and approximation algorithms
developed in this section. On average, the approximation algorithm
greatly exceeded its performance guarantee, achieving nearly the same
level of performance as the exact algorithm for all problem sizes
considered. In all cases, L ¼ 1:5 N. (a) Performance of the approxima-
tion algorithm developed in this section, relative to an exact solution
technique, in terms of number of regular nodes assigned at the given
throughput level. (b) Computation time of the approximation algorithm
and the exact (MILP) algorithm for various problem sizes. Due to the
large range of values represented, a logarithmic scale is used.



Now, assume that we are given a feasible solution to
the network design problem and its associated MILP.

Furthermore, assume that all flows in this solution are

integer. (By virtue of the total unimodularity of the

constraint matrix in the maximum flow problem and

the integrality of the right-hand side vector, all basic

feasible solutions of the linear program induced by any

feasible choice of the y vector are integer.)

Since all flows are integer, flows along arcs terminating
in node sets N and M are either 0 or 1. Again, assume

without loss of generality that the nodes are labeled such

that y1; . . . ; yK are equal to 1, and yKþ1; . . . ; yM are equal to

0. Thus, no flow traverses nodes N þK þ 1; . . . ; N þM.
To construct a feasible solution to the mobile backbone

network optimization problem, first place mobile back-
bone nodes at the K locations l1; . . . ; lK corresponding to
nodes N þ 1; . . . ; N þK in the network design graph.
Next, for each mobile backbone node k ¼ 1; . . . ; K, let Ak

be the set of regular nodes for which xiðNþkÞ ¼ 1. Assign
the regular nodes in set Ak to regular node k. Note that
each regular node is assigned to at most one mobile
backbone node, since at most one unit of flow can
traverse each node 1; . . . ; N . Furthermore, note that each
assigned regular node achieves throughput at least �min
by definition of the arc capacity ck. The number of
regular nodes assigned in this solution is equal toPK

k¼1 jAkj. For each mobile backbone node k; jAkj is equal
to the flow traversing node N þ k. Since no flow
traverses nodes N þK þ 1; . . . ; N þM, the total flow
through the graph is equal to

PK
k¼1 jAkj. Thus, the two

solutions have the same objective value.
We have shown that for every feasible solution to the

original problem, there is a feasible solution to the
corresponding network design problem and its asso-
ciated MILP with the same objective value. Thus,
although the restriction of mobile backbone nodes to
the 1-center locations of regular nodes may exclude an
uncountable number of optimal solutions to the original
placement and assignment problem, it does not exclude
all optimal solutions. Furthermore, we have shown that
for every integer solution to the network design problem
and its associated MILP (including the optimal solution),
there is a feasible solution to the original problem with
the same objective value. Thus, the MILP formulation
cannot produce a solution with a higher objective value
than is possible in the original problem. Therefore, the
MILP formulation can be used to obtain a solution to the
original problem that achieves the same optimal objec-
tive value that was possible in the original problem. tu

APPENDIX B

PROOF OF LEMMA 1

Proof. We begin by restating the submodularity condition
as follows:

f�ðS [ fi; jgÞ þ f�ðSÞ � f�ðS [ figÞ þ f�ðS [ fjgÞ; ð6Þ

where f� is the maximum flow through G, as a function
of the set of selected arcs. Next, we note that for a fixed

selection of arcs S, the problem of finding the maximum

flow through G can be expressed as an equivalent

maximum matching problem on a bipartite graph with

node sets L and R.2 This is accomplished as follows: node

set L in the bipartite matching problem is simply node

set N in the maximum flow problem. Node set R is

derived from node set M in the maximum flow problem,

with one modification: if the arc from node N þ i 2 M to

t has outgoing capacity ci, then R contains ci copies of

node N þ i, each of which is connected to the same

nodes in L as the original node N þ i. Thus, each node

N þ i in the maximum flow problem becomes a set of

nodes N þ i in the bipartite matching problem, and the

cardinality of this set is equal to ci. An example of this

reformulation is shown in Fig. 7.
For any feasible flow in the original graph, there is a

corresponding matching in the bipartite graph with
cardinality equal to the volume of flow; likewise, for any
feasible matching in the bipartite graph, there is a
corresponding flow of volume equal to the cardinality of
the matching. Therefore, the volume of the maximum
flow through the original graph is equal to the cardinality
of a maximum matching in the bipartite graph.

The graphs expressing the relation in (6) are shown in
Fig. 8a: the sum of the maximum flows through the left
two graphs must be less than or equal to the sum of the
maximum flows through the right two graphs.
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2. A set of edges in a graph is a matching if no two edges share a common
end node. A maximum matching is a matching of maximum cardinality [26].

Fig. 7. An example of conversion from a maximum flow problem to an
equivalent bipartite matching problem, for N ¼ 4;M ¼ 3. (a) A graph
over which a maximum flow problem can be formulated. Unlabeled arc
capacities are equal to one. (b) A bipartite matching problem that is
equivalent to the maximum flow problem above.



Converting these maximum flow problems into their
equivalent bipartite matching problems, we obtain the
condition that the sum of the cardinalities of maximum
matchings in bipartite graphs G1 and G2 in Fig. 8b is at
most the sum of the cardinalities of maximum match-
ings in G3 and G4.

Consider a maximum matching M1 in graph G1, and
denote its cardinality by Ns. This means that Ns nodes
from set S are covered by matching M1. Note that M1 is a
feasible matching for G2 as well, since all arcs in G1 are
also present in G2.

It is a property of bipartite graphs that if a matching Q
is feasible for a graph H, then there exists a maximum
matching Q� in H such that all of the nodes covered by Q
are also covered by Q� [26]. Denote such a maximum
matching for matching M1 in graph G2 by M2, and note
that Ns nodes from set S are covered by M2. Denote the
number of nodes covered by M2 in node sets i and j by
Ni and Nj, respectively. Then, the total cardinality of
these maximum matchings for graphs G1 and G2 is equal
to 2Ns þNi þNj.

Now consider the matching obtained by removing the
edges incident to node set j from M2. Note that this
matching is feasible for graph G3, and its cardinality is
Ns þNi. Likewise, the matching obtained by removing the
edges incident to node set i from M2 is feasible for graph
G4, and its cardinality is Ns þNj. Since these matchings
are feasible (but not necessarily optimal) forG3 andG4, the
sum of the cardinalities of maximum matchings for these
graphs must be at least 2Ns þNi þNj. This establishes the
submodularity property for the matching problem as well
as for the maximum flow problem. tu
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