
ABSTRACT

W
e study cyber conflict as a strictly
competitive, two-person game in
discrete time, where each player

discovers new exploits according to an
independent random process. Upon discov-
ery, the player must decide if and when to
exercise a munition based on that exploit.
The payoff from using the munition is a
function of time that is (generally) increas-
ing. These factors create a basic tension: the
longer a player waits to exercise a munition,
the greater his payoff because the munition
is more mature, but also the greater the
chance that the opponent will also discover
the exploit and nullify the munition. As-
suming perfect knowledge and under mild
restrictions on the time-dependent payoff
function for a munition, we derive optimal
exercise strategies and quantify the value of
engaging in cyber conflict. Our analysis also
leads to high-level insights on cyber conflict
strategy.

INTRODUCTION
Conflict in cyberspace, or cyber conflict,

is important at both strategic and tactical
levels. In this article, we consider the strate-
gic decisions made by states or other groups
about when and how to engage in cyber
conflict. The increasing dependency on in-
terconnected networks both in military
and civilian life means that little is beyond
the reach of cyberspace. Cyberspace plays
a central role in our social, economic, and
civic welfare. It is, therefore, not surprising
that the United States ‘‘has identified cyber-
security as one of the most serious economic
and national security challenges we face as
a nation’’ (United States Executive Office
of the President, 2010). Consequently, secu-
rity and defense in cyberspace has become
an increasingly large part of the defense
budget (Stervstein, 2011).

A defining characteristic of cyber conflict
is the way in which weapons in cyberspace
are discovered, developed, and employed.
Players search for mechanisms that can
cause cyber systems to perform in ways not
intended in their original design, called ex-
ploits, and, once found, develop them into
one or more cyber munitions. These muni-
tions can then be used as part of a cyber at-
tack. In searching for exploits to use against

an adversary, a player may also discover
flaws in their own system and decide to fix
or patch them so an adversary cannot use
them. Moreover, a player could develop mu-
nitions based on an exploit that the adver-
sary independently fixes, thereby making
the munitions obsolete. Thus, collections of
cyber munitions, or arsenals, are dynamic
and their effectiveness depends on the rela-
tive state of knowledge of the opponents.

In this context, apparently simple ques-
tions, such as ‘‘how long should we hold
a munition in development before using it
in an attack?’’ and ‘‘how should we allocate
limited resources to offense versus defense?’’
require novel analytical models. Moreover,
the dynamic nature of cyber weapons devel-
opment and obsolescence makes it difficult
to assess the potency of an arsenal; this is
true for assessing our own arsenal as well
as an arsenal belonging to an adversary.
Clear, useful analysis at the national level
is important both for making sound future
investment decisions and for creating in-
formed strategic and policy guidance.

To analyze the strategic decisions in-
volved in cyber conflict, we present a highly
stylized model using a game theoretic frame-
work: we view cyber warfare as a game con-
sisting of attacks that opposing players
exercise at a time of their choosing. Each
player discovers, develops, and chooses to
exercise attacks to maximize the value of
their cyber operations. Our analysis is in-
dependent of specific technologies, and
does not assume an explicit cyber system
or exploit.

More specifically, we model cyber war-
fare as a two-player Markov game (Thie,
1983; Fudenberg and Tirole, 1991) where
the choices available to each player depend
on the number of exploits known by each
player and the strength of each player’s mu-
nitions. In general, there may be multiple
exploits that each player discovers, devel-
ops into munitions, and uses to attack, but
we focus this analysis on a scenario where
there is only a single exploit to be discov-
ered. At the beginning of this scenario, nei-
ther player knows the exploit. Each player
discovers the exploit probabilistically, and
upon discovery has a choice about whether
to attack or wait. As soon as a player chooses
to attack, the game terminates and payoffs
are determined. In general, the mechanics
we develop are strictly competitive in the
sense of Birmingham (1970). Our specific
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case studies are zero-sum. In all cases that we
consider here, the decisions are chosen simul-
taneously from the action set of each player.

Using this highly stylized framework, we
develop a preliminary theory of cyber games
and present a few representative cases only. Be-
cause the data analysis required for this model
to support real problem instances is highly de-
pendent on the context and/or possibly sensi-
tive, we present only generic cases.

Under minimal assumptions, our analysis
leads to a fundamental insight: Success requires
rapid action. Our model shows that delays in
taking action reduce the chance of a player’s
success in cyber conflict. Such delays can come
from a variety of sources, including bureau-
cratic or command restrictions. A byproduct of
our model is the calculation of how proficient
a player must be in other areas to make up for
delays in taking action; in most cases the re-
quired capability is unattainable. The immediate
consequence of this is that command structures
in cyberspace should be agile with the correct
level of delegation of authority.

RELATED WORK
The 2010 report, The Science of Cyber-Security

(JASON, 2010), advocates a multidisciplinary
approach to the study of cybersecurity, and it
specifically recommends borrowing ideas from
other sciences, such as physics, cryptography,
and biological sciences, including epidemiol-
ogy. The JASON report introduces a two-player,
stationary, discrete time model called the
forwarder’s dilemma as an example of what a
game-theoretic analysis might look like. This
game considers whether an administrator should
forward another system’s messages on their
network, and is similar both in format and so-
lution to the well-known prisoner’s dilemma
found in Fudenberg and Tirole (1991), which,
along with Thie (1983), forms the basis of the
general analysis presented here. Lye and Wing
(2005) and Shen et al. (2007b) also consider
cyber attacks in the context of a game. Roy et al.
(2010) provides a thorough survey of game the-
ory and cyberspace, and develops taxonomy of
cyber game theoretic models with two broad
categories:

• Static vs. dynamic. A ‘‘one shot’’ cyber conflict
game, where players choose plans of action
and then execute them simultaneously, is a
static game. A cyber conflict game with mul-
tiple stages and sequential decisions is a dy-
namic game.

• Available information. Players may have exact,
imperfect, or no knowledge about their oppo-
nent’s intentions or capabilities. If the players
know the actions of other players once taken,
the game has perfect information. If the players
know the structure of the game and payoffs,
but not the actions, the game has complete in-
formation. Finally, a game in which the pay-
offs evolve in time in a random process is a
stochastic game.

Although game theory considers both coop-
erative and noncooperative games, work to date
on cyber conflict deals only with noncooperative
games. In the taxonomy of Roy et al. (2010), our
proposed model is a noncooperative, dynamic,
stochastic game with perfect information. Sev-
eral other studies consider cyber conflict from
a game theoretic point of view, including Shen
et al. (2007a), Otrok et al. (2008), Jolyon (2006),
and Liu et al. (2006).

The previous study that has the most in
common with our approach is by Lye and Wing
(2005). They consider a two-player, stochastic
game between an attacker and administrator.
Their model considers cyber conflict at the ma-
chine level. It focuses on an attacker attempting
to find the best policy among a portfolio of at-
tacks to damage a university computer net-
work. This game theoretic model of Lye and
Wing maps to the tactical level of conflict as op-
posed to our model, which focuses at the stra-
tegic level between two players engaged in
cyber conflict. Other researchers have addressed
aspects of our model. Cavusoglu et al. (2008)
consider the optimum time for a system admin-
istrator to release a patch. Kannan and Telang
(2005) consider the market value of new exploits,
which is a factor in our analysis. Our analysis is
different because we consider the two players
as seeking to inflict the maximum damage on
each other by use of a single exploit. Nguyen et al.
(2009) consider a cyber game between an at-
tacker and a defender with incomplete informa-
tion. Our work differs from prior approaches in
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that we consider two players who may either at-
tack or defend.

The concept of a zero day attack is important
in our development. Bilge and Dumitras (2012)
and Patcha and Park (2007) discuss these attacks
in detail. Szor (2005) presents an overall discus-
sion of terminology and concepts in the cyber
domain. Hansman and Hunt (2005) give a de-
tailed view of attacks by type.

This article aims to provide a foundation
from which to build more complex models to-
ward the ultimate goal of integrating the cyber
domain into the spectrum of conflict analysis,
to support strategic models for decision makers
at the national level.

ANALYSIS
Our analysis starts with two simplifying as-

sumptions. First, we assume that the two oppo-
nents are operating computer systems that are
sufficiently similar such that the exploits are
symmetric on each. In practice, we do not expect
that two real opponents would be operating iden-
tical systems; however, modern software systems
are often constructed from common components
(e.g., operating systems, open source servers, or
standard communication protocols), so it is rea-
sonable to assume that the same vulnerabilities
could be shared by both opponents.

Our second simplifying assumption is that
there is only one exploit to be discovered, used,
or patched. Extending our analysis to consider
multiple exploits simultaneously would require
a significant expansion of the state-space as well
as additional decision variables and constraints,
and we feel that this extra machinery, although
more realistic, would detract from some of the
basic insights we obtain regarding the timing
of attack and patch decisions. We defer such
analysis to future work.

Model Foundation
As defined previously, a computer system

may contain exploits; these are unknown until
discovered, after which they can be fixed in
the form of a patch or weaponized into a muni-
tion. We model the lifecycle of a single cyber ex-
ploit as a four-stage process.

Discovery of the exploit. We model the discovery of
a single exploit by each player as a random pro-
cess, occurring independently for each player,
which may depend on factors such as training,
investment, experience and luck.

Development of munitions. Once an exploit is dis-
covered, a player can develop a munition based
on the exploit. We assume that there is a relation-
ship between the length of time that a player
knows about an exploit and the effectiveness
of the munition he develops based on that ex-
ploit. Munitions may only be developed for
known exploits.

Employment. Once a munition is developed, it can
be employed at will against an adversary in an
attack.

Obsolescence. Consider a game between two
players, player 1 and player 2. If player 1 dis-
covers an exploit in his system and patches it
before player 2 can develop and use a munition
based on that exploit, that munition becomes
obsolete. A patch can be thought of as an attack
with value zero. Although not explicitly exam-
ined by the perfect information model presented
in this article, when there is a lack of information,
patches may play an important role in the
player’s strategy. For example, we may imagine
a cyber conflict with multiple attacks and limited
resources where a player would only choose to
develop certain discovered exploits into muni-
tions, while creating patches for the remainder
in his portfolio. In a game of perfect information,
such as the one we consider here, the ability to
patch forces immediate action on the part of the
adversary. The ability to patch is what leads to
analytic results presented later.

Uncertainties about the obsolescence of a
player’s own arsenal are a key dimension in
the analysis of cyber conflict. For the purposes
of this analysis, we assume that a player who
is aware of an exploit also knows whether the
other player(s) are aware of the same exploit;
this removes one type of uncertainty. For a
player who is unaware of an exploit, we assume
neither player knows how long it will be until
the unaware player discovers the exploit. This
uncertainty in discovery times is the fundamen-
tal tension that our model seeks to explore.
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Model Formulation
Our model focuses on a strategic cyber con-

flict between two players, where there is a single
exploit that is resident in the systems of each
player at the beginning of the game, to be dis-
covered. Let i index the players i 2 f1,2g. The
mathematical notation used to describe the
game falls into three broad categories: discov-
ery, development, and employment.

Discovery. Let T be the duration of time that an
exploit has existed, which we also call the clock
time. Without loss of generality, we assume that
the game starts when the exploit is created. We
create a discrete time model, with T increasing
over the set of positive integers. If the exploit
was part of the original system, then T is the
age of the system. If the exploit was introduced
as part of a software upgrade, then T is the age
of the upgrade. Let di be player i’s discovery
time—that is, the moment in clock time that
player i discovers the exploit. We define ti ¼
max(0, T – di) to be the relative time that player
i has known about the exploit; we call this
player i’s holding time. By definition, if player
i is not aware of the exploit, then ti ¼ 0. We de-
fine a state of the cyber game, S, as:

S 5 ÆT; t1; t2æ;

where the elements of this three-tuple represent
how long the exploit has existed, how long
player 1 has known the exploit, and how long
player 2 has known the exploit, respectively.

Development. A player’s success in cyber conflict
depends on his ability to both discover exploits
and develop effective munitions. We assume
that at any moment following the discovery
time di, player i has the ability to create and de-
ploy a perfectly effective patch. However, we
assume that the act of deploying the patch effec-
tively announces it to the adversary; so patching
nullifies all munitions based on that exploit, and
this ends the game for both sides. Let pi(T) denote
the probability that player i discovers an exploit
as clock time progresses from period T to period
T 1 1. For convenience, let qi(T) ¼ 1 – pi(T). Let
ai(ti) be the value of an attack by player i using
a munition developed using a holding time of
ti. The value of an attack is a function of t instead

of T because we assume that once the exploit is
known, the effectiveness of the munition de-
pends on holding time and not clock time. We
impose two constraints on ai(ti). First, we assume

aið0Þ5 0;

which means that if an exploit is not known,
then an attack based on it has no value. Addi-
tionally, we assume

0 # aiðtÞ# Bi;

where Bi is an arbitrary finite upper bound, thus
disallowing cyber attacks with either a negative
value or an infinite value.

Employment. Once a player has a cyber munition,
he may choose to use it. Let ui(T) denote the ac-
tion set of player i at time T. We define ui(T) 4
fW,Agwhere

• W: Wait. While waiting, a player has either
not yet discovered the exploit (ti ¼ 0) or
knows about the exploit (ti . 0) and may
be developing a munition.

• A: Attack. When a player attacks, he receives
the value of the attack at that time. Attacking
also broadcasts the attack’s underlying ex-
ploit to all players.

A player who does not know of the exploit
has a singleton action set, fWg, and a player that
does know of the exploit has the full action set,
fW,Ag.

Zero sum game with perfect
information

To fully specify the game, we must define
action sets for each player, and the utilities for
the player’s actions. We assume a zero sum stra-
tegic conflict, i.e., that any utility gain by one
player results in an equal utility loss by the op-
ponent. We use the convention that player 1 is
a maximizing player and player 2 is a minimiz-
ing player. We assume that each player knows
the state of the Markov game, S. But this perfect
information assumption does not mean that
a player knows the exploit. A player is still lim-
ited by his action set. For example, if the state of
the game is ÆT; 1; 0æ, player 1 knows the exploit,
has a holding time of 1, and has an action set of
fW,Ag; whereas player 2 does not know the
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exploit, has a holding time of 0, and therefore
has an action set of solely fWg.

Markov game transitions. The discovery and devel-
opment of attacks are modeled as transitions in
the state of the Markov game. The game begins
in the state Æ0; 0; 0æ and proceeds in discrete
rounds. In each round, the clock time T increases
deterministically. Each player i has holding time
ti ¼ 0 until the player discovers the exploit. Ex-
ploit discovery happens with probability pi(T)
for player i in round T. Once a player discovers
an exploit, the player’s holding time increases
deterministically. Table 1 summarizes the resulting
transitions of the Markov game state. Figure 1 is
a visual depiction of the states of the game.

Let VÆT, t1, t2æ define the value of the game
in state ÆT, t1, t2æ. This value represents the
expected value to the players if they play the
game starting at that state.

Because the game is zero-sum, payoffs for
both players can be described by a single value.
To analyze the game, we seek to characterize
this value function. In particular, VÆ0,0,0æ is the
value of engaging in cyber conflict. We seek to
characterize VÆT, t1, t2æ for every state of the

Markov game. We proceed in our analysis by
considering three cases on t1,t2.

Both players know the exploit. The case where both
players know the exploit is characterized by
t1 . 0, t2 . 0. Here, both players have full action
sets, meaning each may attack or wait. Table 2
represents the payoffs of the Markov game in

Table 1. Markov game state transitions and action sets as a function of ÆT ; t1; t2æ, the state of the game.

t1 5 0 t1 . 0

t2 5 0

ÆT; 0; 0æ

/
1�p1ðTÞð Þ 1�p2ðTÞð Þ

ÆT þ 1; 0; 0æ

/
p1ðTÞ 1�p2ðTÞð Þ

ÆT þ 1; 1; 0æ

/
1�p1ðTÞð Þp2ðTÞ

ÆT þ 1; 0; 1æ

/
p1ðTÞp2ðTÞ

ÆT þ 1; 1; 1æ

8>>>>>>><
>>>>>>>:

u1 ¼ Wf g
u2 ¼ Wf g

ÆT; t1; 0æ
/

1�p2ðTÞð Þ
ÆT þ 1; t1 þ 1; 0æ

/
p2ðTÞ

ÆT þ 1; t1 þ 1; 1æ

8<
:

u1 ¼ A;Wf g
u2 ¼ Wf g

t2 . 0

ÆT; 0; t2æ
/

1�p1 Tð Þð Þ
ÆT þ 1; 0; t2 þ 1æ

/
p1 Tð Þ

ÆT þ 1; 1; t2 þ 1æ

8<
:

u1 ¼ Wf g
u2 ¼ A;Wf g

ÆT; t1; t2æ/
w:p: 1

ÆT þ 1; t1 þ 1; t2 þ 1æ
u1 ¼ A;Wf g
u2 ¼ A;Wf g

Note: The game always starts in ÆT; 0; 0æ. As player i discovers the exploit, ti becomes greater than zero and i’s
action set includes attack. The payoffs of the players are described using two nonnegative functions, a1(t1) and
a2(t2). The function a1(t1) describes the effectiveness of a munition developed by player i for ti time periods.
We assume the game is zero sum, meaning that the payoffs can be described with a single number as opposed
to two numbers—let a positive value be in favor of player 1 and a negative value be in favor of player 2. If player
1 (2) plays A, it contributes a1(t1) [–a2(t2)] to the payoff. The payoffs are further described in Tables 2 and 3.

Figure 1. Diagram of states in the Markov game.
The arrows in the diagram show the possible tran-
sitions from one state to another, as described in
Table 1. The horizontal axis describes increases
in holding time for player 1, t1, and the vertical
axis describes increases in holding time for player
2, t2.
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such a state in matrix form. Each entry in the
matrix contains a single real number, because
the game is zero sum. If both players wait, the
value is determined by future play. If one player
attacks and the other waits, the attacking player
receives the full value of his munition. If both
players attack simultaneously, the difference of
the attack values gives the result of the game.

This leads to the following observation:
Theorem 1 For any game state ÆT,t1,t2æ such

that t1 . 0 and t2 . 0, ‘‘Attack, Attack’’ is an
iterated elimination of dominated strategies
equilibrium with a value of a1(t1) 2 a2(t2).

Proof: Suppose VÆT 1 1,t1 1 1,t2 1 1æ $ 0.
Then, VÆT 1 1,t1 1 1,t2 1 1æ $ 2 a2 t2ð Þ and
a1(t1) $ a1(t1) 2 a2(t2) and ‘‘Attack’’ is a domi-
nating strategy for Player 2. Given player 2 plays
‘‘Attack,’’ player 1 must also play ‘‘Attack,’’ and
‘‘Attack, Attack’’ is an iterated elimination of
dominated strategies equilibrium. A symmetric
argument holds if VÆT 1 1, t1 1 1, t2 1 1æ # 0.

Theorem 1 results in the following corollary:
Corollary 1 If the game starts in ÆT,t1,t2æ

with t1 . 0 and t2 . 0, the game terminates
immediately and

VÆT; t1; t2æ 5 a1ðt1Þ2 a2ðt2Þ:

Interpreting the results of Theorem 1 and the
Corollary 1, a game starting in ÆT, 0, 0æ ; T $ 0
ends optimally no later than one of the following
states is reached: ÆT, 1, t2æ or ÆT, t1, 1æ. However,
the game may also end earlier, if a player who
discovers the exploit chooses to attack before
the second player has discovered the exploit.

Because for each i, ai �ð Þ has a unique associated
ti, for ease of exposition, we drop the index
i from future uses of t. For the remainder of this
article, statements such as a2 (t) should be under-
stood to mean a2 (t2).

Only one player knows the exploit. For simplicity, we
develop the theory from a state where player 1
has the exploit and player 2 does not. The anal-
ysis follows identical lines in the opposing situ-
ation. In this case, player 1 has a full action
set and player 2 may only wait to discover the
exploit,

u1 5 fA,Wg,u2 5 fWg:

Suppose the state of the game is ÆT, t, 0æ. We
define

Y 5 1 2 p2ðTÞ
� �

VÆT 1 1; t1 1 1; 0æ
1 p2ðTÞVÆT 1 1; t1 1 1; 1æ

to be the expected utility if both players choose
to wait at time T. Table 3 displays the payoffs in
matrix form.

Player 1 prefers to attack if Y # a1 (t). The
fundamental analytic question is ‘‘from which
states does player 1 prefer to attack?’’ If player
2 discovers the exploit, the game transitions to
the scenario described previously, and immedi-
ately concludes as specified in Theorem 1. We
characterize states ÆT,t,0æ from which player 1
prefers to attack as follows. We define vt (h) as
the expected utility to player 1 if he waits h time
periods before attacking, starting in state ÆT,t,0æ.
In particular, we have

vtð0Þ5 a1ðtÞ

vtð1Þ5 q2ðTÞ�a1ðt 1 1Þ1 p2ðTÞ�ða1ðt 1 1Þ
2 a2ð1ÞÞ

vtð2Þ5 q2ðT 1 1Þq2ðTÞ�a1ðt 1 2Þ
1 p2ðT 1 1Þq2ðTÞ�ða1ðt 1 2Þ2 a2ð1ÞÞ
1 p2ðTÞ�ða1ðt 1 1Þ 2 a2ð1ÞÞ

Table 3. Payoffs for the case where player 1 knows
the exploit and player 2 does not. Because player 2
does not know that the exploit exists, player 2 may
only wait, and the matrix reduces to a single column.

Player 2 plays: Wait

Player 1 plays: Wait Y
Player 1 plays: Attack a1(t)

Table 2. Payoff matrix for the Markov game when both players know the exploit. The payoff associated with
‘‘Wait, Wait’’ depends on the future play evolution of the game.

Player 2 plays: W Player 2 plays: A

Player 1 plays: W V ÆT 1 1, t1 1 1, t2 1 1æ 2a2(t2)
Player 1 plays: A a1(t1) a1(t1) 2 a2(t2)
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leading to

vtðhÞ5 a1ðt 1 hÞ�
Yh21

k50

q2ðT 1 kÞ

1
Xh21

k50

a1ðt 1 k 1 1Þ2 a2ð1Þ½ � � p2ðT 1 kÞ
(

3
Yk21

j50

q2ðT 1 jÞ

9=
;

(1)

The definition of vt (h) allows us to evaluate
the states from which player 1 prefers to attack.
Player 1 prefers to attack rather than wait in
state ÆT, t, 0æ if and only if the following holds:

a1ðtÞ5 vtð0Þ$ vtðhÞ for all h $ 1: (2)

This statement mirrors our intuition that
a player should attack if and only if an immedi-
ate attack results in a higher utility than waiting
any number of turns before attacking.

Theorem 2 If a1 (t) is concave and nondecreas-
ing, and p2 (T) is nondecreasing, then vt (0) $ vt (1)
implies that player 1 should attack in state ÆT, t, 0æ
(i.e., player 1 can never do better by waiting).

Proof: We proceed by showing that the theo-
rem assumptions imply that

vtð0Þ$ vtðhÞ for all h $ 2:

Consider the quantity

vtðh 1 1Þ2 vtðhÞ

5 a1ðt 1 h 1 1Þ
Yh

k50

q2ðT 1 kÞ

2 a1ðt 1 hÞ
Yh21

k50

q2ðT 1 kÞ1 ½a1ðt 1 h 1 1Þ

2 a2ð1Þ�p2ðT 1 hÞ
Yh21

j50

q2ðT 1 jÞ

5
Yh21

k50

q2ðT 1 kÞ½a1ðt 1 h 1 1Þ

2 a1ðt 1 hÞ2 a2ð1Þp2ðT 1 hÞ�
We know that vt(0) $ vt(1), which implies that

0 $ vtð1Þ2 vtð0Þ
5 a1ðt 1 1Þ2 a1ðtÞ2 p2ðTÞa2ð1Þ
$ a1ðt 1 h 1 1Þ2 a1ðt 1 hÞ2 p2ðTÞa2ð1Þ;

where the last inequality came from the fact that
a1ð�Þ is concave and nondecreasing. Continuing
with the last expression above, we have

0 $ a1ðt 1 h 1 1Þ2 a1ðt 1 hÞ2 p2ðTÞa2ð1Þ
$ a1ðt 1 h 1 1Þ2 a1ðt 1 hÞ2 p2ðT 1 hÞa2ð1Þ;

where the last inequality came from the fact that
p2 �ð Þ is nondecreasing and a2(1) is nonnegative.
Finally, multiplying both sides of the inequality
by the positive number

Yh21

k50

q2ðT 1 kÞ;

gives

0 $
Yh21

k50

q2ðT 1 kÞ½a1ðt 1 h 1 1Þ2 a1ðt 1 hÞ

2 p2ðT 1 hÞa2ð1Þ�5 vtðh 1 1Þ2 vtðhÞ
(3)

We can complete the proof as follows:

vtðhÞ2 vtð0Þ5 vtðhÞ2 vtðh 2 1Þ1 vtðh 2 1Þ
2 vtðh 2 2Þ1 vtðh 2 2Þ.vtð1Þ2 vtð0Þ:

Each of the paired terms on the right hand side
is smaller than zero, by Equation (2), thus we
have

vtðhÞ2 vtð0Þ# 0;

completing the proof.
For the remainder of this article, we assume

stationary probabilities pi (T)¼ pi "T. Theorem 2
shows that vt (0) $ vt (1) is sufficient to prefer
Attack at a holding time of t whereas Equation
(1) shows that vt (0) $ vt (1) is necessary to pre-
fer Attack at t. Therefore, from state ÆT, 1, 0æ
player 1 waits for k�5 min

k
vk 0ð Þ$ vk 1ð Þ½ � turns

before attacking. Substituting the definition of
vt(�), we can write this as k�5 min

k
a1 k 1 1ð Þ2½

a1 kð Þ# p2a2 1ð Þ�.
The set in the definition of k� is never empty

when a1ð�Þ is bounded, concave, and non-
decreasing and p2a2(1) is not identically zero,
meaning that player 1 will eventually prefer to
attack. We conclude that

VÆT; 1; 0æ 5 n0ðk�Þ (4)

Although we presume that most cases will
have nondecreasing a1, a2, p1, p2 functions, there
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is no reason that it must be so. Nondecreasing
functions model situations where the passage
of time brings increased capability, both in de-
velopment and detection. However, there may
be interesting, and operationally relevant, cases
where the functions are decreasing. Although we
do not present detailed results here, the value
functions in these alternate situations may be
evaluated directly using Equations (1) and (2).

Neither player has the exploit. In this case, the game
has been in play for an unknown amount of time
and t1¼ t2¼ 0; therefore, both players have sin-
gleton action sets,

u1 5 fWg
u2 5 fWg:

Using the theory previously developed, the
value of the game given player 1 discovers the
exploit first is VÆT, 1, 0æ. Similarly, if player 2 dis-
covers the exploit first, the value isVÆT, 0, 1æ. If
both players simultaneously discover the ex-
ploit VÆT, 1, 1æ 5 a1 1ð Þ2 a2 1ð Þ. Because the state
ÆT, 0, 0æ transitions into previously analyzed
states, we are only concerned with the first
transition. For stationary discovery probabili-
ties, the next state transition probabilities out
of S 5 ÆT, 0, 0æ are:

Prfnext state is ÆT; 1; 0æg5 g1;0

5
p1ð1 2 p2Þ

p1ð1 2 p2Þ1 p2ð1 2 p1Þ1 p1p2

Prfnext state is ÆT; 0; 1æg5 g0;1

5
p2ð1 2 p1Þ

p1ð1 2 p2Þ1 p2ð1 2 p1Þ1 p1p2

Prfnext state is ÆT; 1; 1æg5 g1;1

5
p1p2

p1ð1 2 p2Þ1 p2ð1 2 p1Þ1 p1p2
;

where we have introduced the g notation for
brevity. The value of the game starting from
ÆT, 0, 0æ is

VÆT; 0; 0æ 5 g1;0VÆT; 1; 0æ 2 g0;1VÆT; 0; 1æ
1 g;1;1 VÆT; 1; 1æ

5 g1;0v
1
0ðk

1�Þ2 g0;1v
2
0ðk

2�Þ
1 g1;1ða1ð1Þ2 a2ð1ÞÞ; (5)

where the negative sign comes from the fact that
player 1 is a maximizing player and player 2 is
a minimizing player; and v1

0ð�Þ, k�1 denote results
of Equations (3) and (4) if player 1 is the first to
discover the exploit, whereas v2

0ð�Þ, k2� denote
the results of Equations (3) and (4) if player 2
is the first to discover the exploit.

NUMERICAL ANALYSIS
In this section, we consider some concrete

examples of the theory developed in the previ-
ous section. Unless otherwise specified, we as-
sume pi(T) ¼ pi, " T and p1 6¼ 0. As a notational
convenience, we will denote the value of any par-
ticular example as Vn, where n is the example
number. The examples in the following sections
differ in the functional form we assume for the
ai �ð Þ functions. In each section, we give a possible
interpretation on where that particular func-
tional form may arise.

Scenario 1: Constant Effectiveness
Functions

Suppose that players 1 and 2 both have at-
tack value functions such that

aið0Þ5 0 aiðtÞ5 ci " t $ 1:

The case of constant ai(�) functions represents the
case where the maximum value of the attack is
realized in the first turn after the exploit is dis-
covered. This would represent cases where ei-
ther the munition development team is very
quick in comparison to the other activities in
the game, or the munition had been previously
developed and awaiting a suitable vulnerability
to make it viable.

Because ai(t) is concave and nondecreasing
for both players, we can use Theorem 2 to com-
pute the optimal attack time for each player, k�i
for i 5 1, 2, which is 1 for both players. We may
directly compute the value of the game using
Equation (5):

V
1

5 p1ð1 2 p2Þa1ð1Þ2 p2ð1 2 p1Þa2ð1Þ
1 p1p2 a1ð1Þ2 a2ð1Þ½ �
p1ð1 2 p2Þ1 p2ð1 2 p1Þ1 p1p2

In particular, Player 1 will have a positive
expected payoff if and only if
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p1a1ð1Þ. p2a2ð1Þ

In this case, a player may make up for a de-
ficiency in either discovery or development by
being strong in the other area. Because 0 # pi # 1
these tradeoffs are implicitly limited.

Scenario 2: Linearly Increasing
Effectiveness

Suppose Players 1 and 2 have attack func-
tions such that

aið0Þ5 0

a1ðtÞ5 t 1 # t # 5

a1ðtÞ5 5 "t $ 5

a2ðt2Þ5 c "t2 $ 1

Linearly increasing ai(�) considers linear im-
provement in the value of the attack function with
time invested. This case generalizes the constant
ai(�) example in the previous section. Although
both examples demonstrate a maximum value
of the attack—the maximum cap of 5 in the linear
growth above—a linear increase requires some
time before the maximum can be achieved.

This function is also concave, increasing,
and we may use Theorem 2 to determine the op-
timal attack time, k�i , for both players. Specifi-
cally, k�2 5 1 and k�1 is dependent on the values
of p2 and c as follows:

k
�
1 5

1 if p2c $ 1

5 otherwise

�

As verification, we compute the values of vt(h)
for h ¼ 1,2,.,5. We see in Figure 2 that the max-
imizing value is h ¼ 5. For example, if a2(1) ¼ 1,
p2 ¼ .2. Knowing k� for both players, we may
compute the value of the game, V2ÆT, 0, 0 æ as
a function of p1; see Figure 3.

Scenario 3: Nonmonotone
effectiveness

Suppose that a2(1) ¼ 1, p2 ¼ .3, and player
1’s value function has a single dip, specifically,
a1(t) ¼ (1, 2, 3, 4, 5, 3, 6), as shown in Figure 4.
Nonmonotone ai(�), is an operationally important

case. The nonmonotonicity is caused not by
‘‘lost learning’’ on the attacker’s part, but rather
captures the idea that there are times–due to po-
litical, military, or environmental considerations–
when an attack may have a payoff before and
after some specific event or circumstance, but
not be as effective during the circumstance.

Figure 2. Value of scenario 2 from player 1’s point of
view. The vertical axis plots the value, nt hð Þ, as a func-
tion of the number of time periods player 1 waits be-
fore attacking, h. The value function increases to the
point h ¼ 5, and decreases afterward. By Theorem 2,
this implies that player 1’s optimal attack time k1* is 5.

Figure 3. Value of scenario 2 as a function of player
1’s probability of discovering the exploit, p1. Here, we
see that the value of the game is a concave function of
player 1’s probability of detecting the exploit. Increases
in detection probability at low detection values provide
a bigger increase in the game value than increases in
detection probability at high detection values.
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Because a1(t) is not concave and increasing,
we cannot apply Theorem 2. Here we need to
actually compute the numeric values of vt(h).
Performing this calculation, we see that k�1 5 5
and it is not advisable to wait through the non-
increasing region. Figure 5 graph’s the player’s
value fuction.

A decision maker may want to know what
value of a1(7) would change player 1’s decision.
We answer this question by performing a line
search on a1(7) and determine the threshold
value is � 6.6.

EXTENSION: DELAYED ACTION
It may be the case that a player discovers an

exploit and cannot take action; specifically, the
player is unable (or not allowed) to attack, patch,
or work toward development of a munition for
some predetermined fixed time after discovery

Figure 4. The effectiveness function for scenario 3.
Unlike our previous examples, the value of player
1’s attack has a dip at t1¼ 6. In this scenario, Theorem
2 no longer applies in finding the optimal attack
time k1*.

Figure 5. Player 1’s value as a function of waiting
time, h in scenario 3. We see that the payoff for wait-
ing to h ¼ 7 is less than executing at h ¼ 5.

Figure 6. Player 1’s utility curve as a function of
waiting time w against an evenly matched opponent.
We see that player 1’s utility drops off rapidly from an
expected value of zero, with the implication that
waiting is costly.

Figure 7. Player 1’s required detection probability
p1 required to achieve VwÆ0,0,0æ ¼ 0 as a function of
waiting time, w. Player 1’s required capability in-
creases rapidly, and, because p1 may never be greater
than 1, parity is unachievable after w ¼ 5.
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of an exploit. This may be due to legal, policy,
or organizational limitations.

Suppose player 1 has a rule where he must
wait w time periods after discovery before any at-
tack, patch, or development of a munition. Con-
sistent with our previous definition of perfect
information, if player 2 has the exploit, he learns
if player 1 knows the exploit. Player 2 also knows
the existence and duration of player 1’s delay
rule. We wish to understand the value of this
delayed version of our game, which we denote
as VwÆ � æ . If both players have the exploit, player
2 can wait and exercise his munition the turn be-
fore player 1 is able to begin work. Therefore,

V
wÆT;1;1æ

5 2 a2ðw 2 1Þ:

If player 2 has the exploit and player 1 does not,
player 2 may continue developing his munition
until player 1 discovers the exploit, and an addi-
tional (w 2 1) time periods before attacking.
Therefore,

V
w ÆT; 0; 1æ 5 2

XN
i50

p1ð1 2 p1Þi a2ði 1 wÞ:

Finally, if player 1 has the exploit and player
2 does not, there are two possibilities. First,
player 1 may retain sole knowledge of the ex-
ploit until the end of the waiting period. Second,
player 2 may discover the exploit during player
1’s forced delay time. Therefore,

V
wÆT; 1; 0æ 5 ð1 2 p2Þw VÆT; 1; 0æ

2
Xw21

i51

p2ð1 2 p2Þ a2ðw 2 iÞ:

We may combine these expressions to write:

V
wÆT; 0; 0æ 5 g1;0½ð1 2 p2Þw VÆT; 1; 0æ

2
Xw21

i51

p2ð1 2 p2Þ a2ðw 2 iÞ�

2g0;1

XN
i 5 0

p1ð1 2 p1Þi a2 ði 1 wÞ
" #

2 g1;1a2 ðw 2 1Þ:

The implication of this is that unproductive
waiting times are damaging to a player’s pros-
pects in a cyber conflict.

Consider the specific example of two
evenly matched players with bounded, linear

development functions, thus: p1 ¼ p2 ¼ .1, a1(t) ¼
a2(t) ¼ t for 0 , t # 10 and a1(t) ¼ a2(t) ¼ 10
for t . 10. By symmetry, VÆT; 0; 0æ 5 0 for this
game when neither player is forced to wait.
Now consider the case where player 1 has a
waiting time w. We plot player 1’s expected pay-
off as a function of w in Figure 6.

We can also ask ‘‘How good does player 1’s
detection probability p1 need to be in order to
make up for a given waiting time w?’’ Figure 7
shows the adjustment required in this exam-
ple. For waiting times longer than five pe-
riods, even perfect detection does not achieve
parity.

The lesson of Figures 6 and 7 is that waiting
times are costly and adversely affect one’s pros-
pects in cyber conflict.

CONCLUSION AND FUTURE WORK
We have developed and exercised a limited,

stylized model. Real situations, of course, have
many differences from the idealized mathemat-
ics; the utility of this work is to define the cyber
conflict problem with perfect information.

Additionally, we:

• Demonstrate a framework for analyzing the
problem, which may be extended to a wider
class of military problems within and beyond
cyberspace, and

• Demonstrate that in cyber conflict, idle wait-
ing times are damaging, and we provide a
means to calculate their disutility.

This article considered (a) a symmetric
problem involving (b) a single attack that takes
place in (c) discrete time and (d) with perfect
information—four idealizations that help us be-
gin to tackle the problem of cyber conflict.

Relaxing each of these assumptions pro-
vides avenues for additional research. Of these,
we believe that relaxing assumption (d) perfect
information appears to be the richest area to ex-
plore in the future, and with this exploration
come considerations of credibility, reputations,
and risk taking.

In this analysis, we have used ‘‘holding
time’’ as a proxy for development effort, the
idea being that the longer a player holds the ex-
ploit, the more effort goes into developing the
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munition. In general, the development of a
munition will depend on many kinds of re-
sources, including labor, computational re-
sources, equipment, and time. If multiple,
independent exploits exist, then we would also
want to include in our model the additional re-
source management decisions surrounding the
simultaneous development of multiple muni-
tions (or patches). If multiple, synergistic ex-
ploits exist (i.e., the combined effect of using
two exploits simultaneously is significantly dif-
ferent from the sum of the effects of the two ex-
ploits if employed singly), then the model would
need to account for this as well.

Extending the analysis here to consider the
asymmetric (and admittedly more realistic) case
where opponents do not share the same vulner-
abilities will be an important topic of future
work. In practice, we expect that real opponents
may share some, but not all vulnerabilities.
In a perfect information setting, extending the
model we present to asymmetric vulnerabil-
ities involves expanding the state space of the
Markov game. The expanded state could in-
clude data on how many of the shared, own,
or opponent’s vulnerabilities are known. Fur-
ther realism could be added by differentiating
individual vulnerabilities, at the cost of com-
plicating the analysis.

Perhaps the most important avenue of fu-
ture work is exploring imperfect information
settings. The Markov game framework we pres-
ent provides a strong basis for extensions into
imperfect information. Specifically, imperfect
information could be modeled as a belief prob-
ability distribution over the state space of the
Markov game. In other words, the players do
not know exactly which state of the Markov
game they are in. Instead, each player has their
own probability distribution over the state space
of the game–based on the information the player
has observed over the course of the game. In each
round, each player would make decisions based
their own belief distribution, and the results of
both players’ decisions would impact the belief
distributions for the next round of play. Explor-
ing simple versions of the cyber conflict game
under imperfect information would be the most
promising future avenue for yielding insights
into the problem, though it is clearly analytically
difficult.

Other important next steps in game theo-
retic modeling of cyber conflict are to determine
functional forms for the rate of detecting vul-
nerabilities and the rate of developing exploits
because these create the two fundamental ten-
sions explored in this article. In considering
the rate and longevity of vulnerabilities, we
recommend following the approach taken in
Bilge and Dumitras (2012). For the develop-
ment of munitions, we recommend consider-
ing software development generally. A good
starting place is Nikula et al. (2010).

Future work may also focus on finding, an-
alyzing, and using data to populate the pro-
posed model. The sources of such information
might be sensitive, or even classified. However,
we note that absolute values the parameters (e.g.,
the probability of detecting an exploit) are not re-
quired for the model to be insightful. Rather,
it might be sufficient to analyze sensitivity to
a range of values for the models to yield insight
about the competitive dynamics at work in cyber
conflict.
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