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A popular approach for describing the structure of many complex networks focuses on graph theoretic
properties that characterize their large-scale connectivity. While it is generally recognized that such descrip-
tions based on aggregate statistics do not uniquely characterize a particular graph and also that many such
statistical features are interdependent, the relationship between competing descriptions is not entirely under-
stood. This paper lends perspective on this problem by showing how the degree sequence and other constraints
�e.g., connectedness, no self-loops or parallel edges� on a particular graph play a primary role in dictating many
features, including its correlation structure. Building on recent work, we show how a simple structural metric
characterizes key differences between graphs having the same degree sequence. More broadly, we show how
the �often implicit� choice of a background set against which to measure graph features has serious implica-
tions for the interpretation and comparability of graph theoretic descriptions.
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INTRODUCTION

The recent use of network models to describe complex
systems has emphasized the study of graph theoretic proper-
ties as a means to characterize the similarities and differ-
ences in structure and function of systems across a variety of
domains �1–7�. Considerable effort has been directed both at
the empirical analysis of graph theoretic properties of real
systems and at the development of generative models that
attempt to explain such properties. An implicit assumption in
much of this work is that graph theoretic properties ad-
equately capture key system features in order to serve as a
basis for comparison and contrast.

Notwithstanding the potential pitfalls of reducing a com-
plex system �e.g., one that may involve heterogeneous com-
ponents, layered architectures, and feedback dynamics� to a
simple graph �8,9�, there exists the practical problem that
many descriptions based on aggregate statistics do not
uniquely characterize the system of interest. In fact, there
often exists considerable diversity among graphs that share
any single statistical feature, particularly when viewed
through the lens of a specific application domain. For ex-
ample, recent work on the router-level Internet has shown
that there is enough diversity among graphs having the same
power-law node degree distribution that, although indistin-
guishable when viewed by this aggregate statistic, these
graphs can actually be interpreted as “opposites” when
viewed from an engineering perspective that incorporates
technology constraints and is motivated by throughput per-
formance �8,10,11�.

The purpose of this paper is to explore this notion of
graph diversity and characterize more completely the way in
which the degree sequence of a particular graph dictates
many popular graph features, including its correlation struc-

ture. Furthermore, this paper emphasizes the importance of
choosing an appropriate “background set” when evaluating a
graph, as well as the importance of making sure that the
comparative analysis of two graphs is conducted with respect
to an appropriate reference. In this regard, we show that not
all graph theoretic measures have an obvious interpretation
or are directly comparable.

DEGREE SEQUENCE AND GRAPH DIVERSITY

For a graph with n vertices, let di denote the degree �i.e.,
number of connections� of vertex i, 1� i�n, and call D
= �d1 ,d2 , . . . ,dn� the degree sequence of the graph, assumed
without loss of generality always to be ordered d1�d2
� ¯ �dn. Within the space of all graphs having n vertices,
let G�D� denote the considerably smaller subset of graphs
having particular degree sequence D.

Not all sequences of integers D correspond to realizable
graphs. One well-known characterization of whether or not a
sequence D corresponds to a simple, connected graph is due
to Erdös and Gallai �12�, who observed that a sequence of
positive integers d1 ,d2 , . . . ,dn with d1�d2� ¯ �dn is
graphical if and only if �i=1

n di is even and for each integer k,
1�k�n−1,

�
j=1

k

dj � k�k − 1� + �
j=k+1

n

min�k,dj� .

Recent work has further reduced the number of sufficient
conditions to be checked �13�, and several algorithms have
been developed to test for the existence of a graph satisfying
a particular degree sequence D �14�.

The restriction to graphs having a particular degree se-
quence has been considered previously in the context of
graph generation mechanisms �2,15�. In particular, the con-
figuration model �CM� �2,16,17� often serves as the null hy-
pothesis of networks having a particular degree sequence,
since it yields graphs that are maximally random �in the
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sense of maximum entropy� while conforming to a specified
degree sequence D. In what follows, we will always restrict
attention to graphs with a specified D.

In considering the structural features of a particular graph,
we leverage previous work �18� and define, for any graph g
having fixed degree sequence D, the s metric

s�g� = �
�i,j��E

didj = �
i�V

�
j�V

1

2
diaijdj , �1�

where A= �aij� is the vertex adjacency matrix for the graph,
and V and E denote the sets of all vertices and edges in the
graph, respectively. Accordingly, we assume without loss of
generality that the number of vertices and edges in the graph
are represented by n= �V� and l= �E�, respectively. Note that
the summation in �1� is easily computed for any graph and
does not depend on the process by which it was constructed.
Implicitly, the metric s�g� measures the extent to which the
graph g has a hublike core and is maximized when high-
degree vertices are connected to other high-degree vertices.

In general, the set G�D� will have many elements exhib-
iting a range of s values. Within this space, we define the smax
and smin graphs within G�D� as those having the maximum
and minimum s�g� values, respectively. To facilitate the deri-
vation of these values, we introduce the vector

�2�

which is simply derived from the original degree sequence
D. The smax and smin values within G�D� can be described in
terms of Z in the following manner. Since G�D� only requires
its elements to satisfy the degree sequence D �and ignores
issues such as connectedness, multiple edges, etc.� it is easy
to show that within G�D� one has

smax �
1

2
ZZT, �3�

with equality achieved in practice only under certain circum-
stances �e.g., when the elements of D are all even or there is
an even number of elements having any particular odd
value�. This observation follows from the rearrangement in-
equality �19�, which states that if a1�a2� ¯ �an and b1
�b2� ¯ �bn, then for any permutation �a1� ,a2� , . . . ,an�� of
�a1 ,a2 , . . . ,an�, we have

a1b1 + a2b2 + ¯ + anbn � a1�b1 + a2�b2 + ¯ + an�bn

� anb1 + an−1b2 + ¯ + a1bn.

Accordingly, it follows that

smin �
1

2
ZẐT, �4�

where Ẑ is simply the vector Z with elements in reverse
order. However, unlike the case in �3� where equality is
achieved in practice only sometimes and where the actual

value may deviate considerably from the upper bound, the
relationship in �4� holds with approximate equality and typi-
cally the smin value deviates from the lower bound by only a
single pair of edges, if at all.

It is easy to see that the smax value can be rewritten as

smax 	 �
i=1

n

�di/2��di�2 = �
i=1

n

�di�3/2, �5�

which is achieved in effect by creating primarily self-loops
among the vertices in the network and then connecting the
remaining stubs in order of decreasing di �see Appendix A of
�18� for details�. To the best of our knowledge, there does not
exist a comparable analytic formula �or interpretation� for the
smin graph in G�D�.

Many graphs of practical interest have additional condi-
tions imposed by functional or domain constraints, such as a
requirement to be connected or a restriction against self-
loops or multiple connections. Thus, in our investigation we
also consider the restricted set of all simple and connected
graphs having the same degree sequence D, which we denote
as G�D�. Note that G�D��G�D� and that most randomly
generated graphs with particular D will be neither simple nor
connected, so this is an important and nontrivial restriction.
From these definitions it follows that

1

2
ZẐT � smin

G�D� � smin
G�D� � smax

G�D� � smax
G�D� �

1

2
ZZT.

Although bounding values for the minimum and maximum
elements of G�D� can be directly obtained from Eqs. �3� and
�4�, obtaining smax and smin values within the restricted space
G�D� is more complicated.

Given a particular degree sequence D, it is possible to use
a deterministic procedure in order to construct the smax graph
in G�D�. The details of this construction procedure are pre-
sented in �18�, but the basic idea is to order all potential links
�i , j� for all i , j�V according to their weights didj and then
add them one at a time in a manner that results in a simple,
connected graph having degree sequence D. While simple
enough in concept, this type of “greedy” heuristic procedure
may have difficulty achieving the intended sequence D due
to the global constraints imposed by connectivity require-
ments, but it works well in practice for most graphs �again,
see �18� for details�. Obtaining the smin value is less exact,
and it is easy to show that the smin graph is not unique.
Whitney and Alderson �20� have recently used a heuristic
approach, originally proposed by Maslov and Sneppen �21�,
which employs a Metropolis-like algorithm based on succes-
sive rewiring to obtain smin values within G�D�. Unfortu-
nately, this method is inefficient and does not reliably obtain
the actual smin

G�D� value. However, in practice one finds that
1
2ZẐT	smin

G�D�	smin
G�D�, so in the remainder of this paper we

use the smin
G�D� value defined in �4�, as an approximate �and

more conservative� bounding value for smin
G�D�.

As a measure of graph structure, the s metric provides a
simple means for contrasting the differences between graphs
having the same degree sequence, and in this paper we use it
exclusively as a means for measuring the diversity within a
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particular space of graphs. In particular, the extreme points
smax and smin serve as meaningful reference points for indi-
vidual graphs and the space as a whole, and for a given D the
difference smax−smin provides a measure of how different the
absolute extremes are. Using this perspective, it is not hard
to see that the amount of diversity for graphs having a par-
ticular D is related to the amount of variability within the
sequence D itself. Here, we characterize variability with the
standard measure of �sample� coefficient of variation �CV�,
which for a given sequence D= �d1 ,d2 , . . . ,dn� is defined as

CV�D� = ��D�/
d� , �6�

where 
d�=n−1�k=1
n dk is the average vertex degree, and we

measure deviations of the di from its average 
d� using the
sample standard deviation ��D�= ��k=1

n �dk− 
d��2 / �n−1��1/2.
For graphs with regular structure that have low variability

in their degree sequence D, there is typically very little di-
versity in the corresponding space of graphs G�D�. Consider
as an extreme example, a one-dimensional lattice �i.e., a
chain� with the degree sequence Dchain= �2,2 ,2 , . . . ,2 ,1 ,1�.
One can easily show that for a chain consisting of n nodes

CV�Dchain� =
n1/2�n − 2�1/2

21/2�n − 1�3/2

and thus CV�Dchain�→0 as n→�. It is easy to see that there
is no diversity among graphs having degree sequence Dchain,
since all n-node chains are isomorphic to one another in
G�D� and thus smin=smax.

For sequences D with increasing CV�D�, graph diversity
as measured by the range smax−smin also increases. Here, we
leverage two classes of graphs as reference points. For
graphs with a degree sequence having an exponential form,
ke�dk 	c for constant c�0 �denoted here as Dexp�, one ob-
serves that CV�Dexp�→� �a constant� as n→�. In contrast,
the scale-free graphs �22�—so called because their degree
sequences exhibit a scaling relationship of the form kdk

�=c,
for all 1�k�ns, where c�0 and ��0 are constants, and
where ns determines the range of scaling �23�—exhibit di-
vergent CV. It is easy to show that degree sequences Dscaling
with �	2 follow CV�Dscaling�→� as n→�. As we will
show below, these classes of graphs yield degree sequences
with measurably different levels of diversity.

Although one might expect that graph diversity simply
increases with CV�D�, this need not be the case. Consider a
star consisting of a single central node that connects to all
others and having degree sequence Dstar= �n−1,1 ,1 , . . . ,1�.
One can similarly show that

CV�Dstar� =
n1/2�n − 2�
2�n − 1�

,

and thus CV�Dstar�→� as n→�. However, as for the chain,
there is no diversity among graphs having degree sequence
Dstar �i.e., all stars are isomorphic to one another in G�D� and
smin=smax�.

In order to make the previous discussion more concrete,
we now consider a simple experiment to investigate the role
of CV�D� in determining the diversity for graphs having par-

ticular D. For purposes of exposition, we begin with a study
of acyclic graphs �i.e., trees� and then later comment on how
our results apply to general graphs. Our experiment uses in-
cremental growth via preferential attachment as described in
�24�, in which each newly added node connects to an exist-
ing node k with probability


�k� = b
�dk�p

�
j

�dj�p
, �7�

where dk is again the degree of node k, and p is a parameter
that tunes the attachment mechanism. The resulting graph is
simple and connected, and thus an element of G�D�, al-
though the degree sequence D that is realized will vary from
trial to trial. Clearly, p=0 is equivalent to uniform attach-
ment �resulting in Dexp�, while p=1 is equivalent to linear
preferential attachment used in the Barabási-Albert model
�3� �resulting in Dscaling�. A similar type of model was also
considered in �25�. Note also that as p→� each newly added
node attaches to the maximum degree node �resulting essen-
tially in Dstar�, while as p→−� each newly added node at-
taches to the minimum degree node �resulting essentially in
Dchain�. In what follows, we first restrict attention to the case
where b=1 �i.e., we generate acyclic graphs� and consider a
range of values for p in order to generate graphs having a
variety of degree sequences. We defer results on general
graphs until the end.

Figure 1 shows the result of an experiment in which for
each trial we generate a tree having n=100 nodes using pref-
erential attachment rule given by �7�. That is, each trial re-
sults in a tree having its own degree sequence D and s value.
In generating these graphs, we use various attachment expo-
nents p, but only for the purpose of realizing graphs with a
diversity of degree sequences. In what follows we focus pri-
marily on the degree sequence D and the constraints it places
on the space of graphs, not the attachment exponent p that
led to D. For each degree sequence D, we then calculate
CV�D� as well as the corresponding smax and smin values as
described above. The resulting picture in Fig. 1�a� shows a
striking relationship between CV�D� and the range of pos-
sible s-values. One observes that, while the smax and smin
values increase with CV�D� for both the unconstrained space
G�D� and the constrained space G�D�, the differences given
by smax−smin for each space behave differently at the maxi-
mal values of CV�D�. Specifically, this difference within the
unconstrained space G�D� increases with CV�D�, but it is
zero at both extremes of CV�D� for the simple, connected
graphs in G�D� �again, the limiting cases of a chain and a
star�. It is also worth noting that the values for smin

G�D� and smin
G�D�

are so close as to be indistinguishable, further supporting our
choice to treat these values as equivalent. Figure 1�b� pre-
sents the same information for smax and smin within G�D�, but
normalizes the s values for each graph against its respective
smax value, thus resulting in a feasible range �0, 1� for each
graph. Collectively, this suggests that for a given degree se-
quence one needs enough variability to enable diversity
among simple, connected graphs but that too much variabil-
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ity actually becomes a constraint within the space G�D�,
something that Maslov et al. �26� have described as essen-
tially a finite-size effect.

Although it is now well understood that there can be
many graphs having the same degree sequence and that these
graphs may have considerable structural differences, quanti-
fying these differences and their implications in terms of real
systems remains the topic of active research. Previous work
by Li et al. �18� has shown that the s metric, and in particular
the smax graph within G�D�, is relevant for many commonly
studied graph properties. First, high-degree nodes in the smax
graph have high centrality, and for trees this relationship was
shown to be monotonic. Second, smax graphs are self-similar
under appropriately defined operations of trimming and
coarse graining. Finally, the smax graph has the highest like-
lihood of being generated by the generalized random graph
�GRG� model �15�. As already noted, other work by Li et al.
�10� has shown that, in modeling the router-level Internet,
the observed degree sequences in real networks allow for
dramatic diversity in candidate models, particularly when
measured in terms of throughput performance. A previously
unanswered question was whether this diversity is inherent
in all networks, and here we have shown that it depends to
some extent on the degree sequence of the network in ques-
tion.

Taken by itself, this observation is neither groundbreaking
nor surprising. For some time, there has been a general rec-
ognition in the literature that the degree sequence of a graph
can provide only a simplistic characterization of its proper-
ties, and this has led many researchers to consider more so-
phisticated descriptions of graph structure. Most notable has
been an emphasis on various forms of correlation in network
connectivity, ranging from simple notions of network clus-
tering �i.e., connectivity correlations between vertex triplets�
to more general degree-degree correlations �also called the
joint degree distribution �JDD�� and spectral methods. There
is now a growing literature on the importance of correlation
structure in networks �2,27–31� and how to generate net-
works having particular correlation structure �25,32–34�. A
simple measure of correlation structure that has appeared ex-
tensively in the literature is the Pearson coefficient r �known
more generally as the correlation coefficient �35�� which is
used to quantify the average tendency of vertices to connect
to others having similar degree. It turns out that there is an
inherent relationship between the Pearson coefficient and the
s metric, and a closer look at this relationship yields consid-
erable insight into both the diversity within the background
set G�D� as well as the interpretation of r itself.

GRAPH ASSORTATIVITY RECONSIDERED

Recently, Newman �36� introduced the following sample-
based measure of graph assortativity as defined by the Pear-
son coefficient:

r�g� =
� �

�i,j��E
didj/l − � �

�i,j��E

1

2
�di + dj�/l2

� �
�i,j��E

1

2
�di

2 + dj
2�/l − � �

�i,j��E

1

2
�di + dj�/l2 . �8�

This relationship can be written as
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FIG. 1. �Color online� Three views of graph diversity. In this
experiment trees of size n=100 were generated according to attach-
ment rule �7� for different values of p. �a� For each resulting tree,
we plot smin and smax values in both G�D� and G�D� versus the
CV�D� of the corresponding degree sequence. Note that smin

G�D�

	smin
G�D�. �b� The smin and smax in G�D�, each normalized by their

respective smax. �c� The corresponding rmin and rmax values in G�D�.
In all cases, the vertical lines correspond to the upper and lower
limits of CV for an acyclic graph having 100 nodes �i.e.,
CV�Dchain�=0.0711 and CV�Dstar�=4.9495�.
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r�g� =
� �

�i,j��E
didj − ��

i�V

1

2
di

22� l

��
i�V

1

2
di

3 − ��
i�V

1

2
di

22� l

, �9�

where the first term of the numerator is exactly s�g�. Al-
though the Pearson coefficient is only a summary statistic for
the correlation profile of the graph as a whole, it provides
interesting information nonetheless and is often cited as a
key feature distinguishing various classes of complex net-
works �4,27,36,37�.

Here, we argue that r�g� has a natural interpretation as a
centered and normalized version of s�g�. In particular, ob-
serve that the first term of the denominator in �9� is exactly
the smax value within the space G�D� as defined in �5�. Ac-
cordingly, one can rewrite the Pearson coefficient as

r�g� =
s�g� − s�gc�
smax
G�D� − s�gc�

, �10�

where we refer to gc as the center of the space G�D�.
The reason that gc can be viewed as the center of this

space of graphs is discussed in the online supplement to our
previous work �18�. The key idea is that a deterministic
graph in G�D� with zero assortativity has exactly the same s
value as s�gc�, equal to l−1��i�V

1
2di

2�2. More specifically, con-
structing such a deterministic graph with zero assortativity
means connecting a vertex to any other vertex in a manner
that is proportional to each vertex’s degree. This can be re-
alized using a pseudograph g̃A in which the elements of the
adjacency matrix A= �aij� are non-negative real numbers rep-
resenting link weights and satisfying

aij =
didj

�
k�V

dk

= aji.

By extension, the s metric for the pseudograph g̃A is calcu-
lated as

s�g̃A� = �
j�V

�
i�V

1

2
diaijdj =

��
j�V

1

2
dj

22

l
,

showing that s�g̃A�=s�gc�. Note that the GRG method �15�
can be interpreted as a stochastic procedure that generates
real graphs from the zero-assortativity pseudograph g̃A, with
the one important difference that the GRG method always
results in simple �but not necessarily connected� graphs. It
has recently been shown that the statistical ensemble of
graphs resulting from the stochastic GRG method has zero
assortativity �39�.

Thus, the Pearson coefficient r �as a summary statistic of
graph assortativity� captures a fundamental feature of graph
structure, one that is closely related to our s metric.1 That r
reflects s is obvious from its definition, but the question is
whether a consideration of s by itself provides insight. The
key observation is that the existing notion of assortativity for
an individual graph g is implicitly measured against a back-
ground set of graphs G�D� that is not constrained to be either
simple or connected. As we show next, because r is com-
puted relative to an unconstrained background set, in some
cases this normalization �against the unconstrained smax
graph� and centering �against the g̃A pseudograph� does a
relatively poor job of distinguishing among graphs having
the same degree sequence, particularly when that degree se-
quence exhibits high variability. Figure 2 shows four graphs
having the same degree sequence, but with very different
connectivity patterns. These graphs were originally con-
structed as contrasting representations of the router-level In-
ternet �see �18�, Fig. 5�, but are presented here in a manner
that highlights their diversity. Specifically, one observes that
although they have nearly the same assortativity as defined
by r, their structural differences are highlighted by s and its

1Indeed, the Pearson coefficient is typically viewed as simply the
correlation coefficient of the joint distribution P�k ,k�� that a ran-
domly selected link in the network will connect vertices having
degree values k and k�. In this context, the “centering term” is
simply the squared average of the marginal distribution of P�k ,k��,
and the denominator of �8� is the square root of the standard
deviation.

FIG. 2. Four graphs with the
same degree sequence but increas-
ing values of s. As originally pre-
sented in �18�, these networks
have the same �power-law� degree
distribution, but here the degree-1
nodes have been omitted. The la-
bel on each node indicates its total
degree. The degree sequence for
these graphs yields smin=28 826
and smax=77 350 within G�D�.
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normalized values s /smax
G�D� and S�g� defined as

S�g� =
s�g� − smin

smax − smin
. �11�

In cases where network performance is measured by the
maximum throughput under fixed node capacities, these
structural differences translate to big differences in perfor-
mance �18�.

For additional insight into the way in which differences in
s translate to differences in r, we extend the previous com-
putational experiment to values of rmax and rmin within the
constrained background set G�D�. Note that these values can
be computed directly from the corresponding values of smax
and smin. In Fig. 1�c� we show these values for each of the
generated graphs in our experiment. There are several strik-
ing features of this plot. The first is that the normalization of
the s metric in the calculation of the Pearson coefficient r
dramatically changes the sense of graph diversity among
graphs having a particular D. For values of relatively high
CV�D�, r	0 and seems largely independent of any diversity
as measured by the range in allowable s. In other words, a
second important conclusion is that all networks with high
CV�D� have r	0 and this seems largely a function of D and
not any particular feature of the graph or whether it is a
technological or social network as argued in �37�. This idea
has been made previously in �7,26,29,33,38� and has also
been recently argued �20� based largely on empirical obser-
vations of real networks having a range of r values. A third
important result is that for small values of CV�D� one ob-
serves that small diversity as measured by smax−smin trans-
lates to a large range of rmax−rmin. One can see this more
clearly with the simple example in Table I, which illustrates
the sensitivity of r to small changes in topology. Thus, for
graphs that are simple and connected, the Pearson coefficient
r can both hide structural diversity as well as display false
diversity.

It is worth noting that although r�g�=1 is achieved ap-
proximately by the smax graph within G�D� for all graphical
D, it is only in very special instances of D where the smin

graph is obtained. Specifically, when smin=ZẐT, then it fol-
lows that r�g�=−1 if and only if zk+ ẑk=z �a constant� for
each of the k pairs of elements. In other words, although it is

true that rmax=1 for arbitrary D, one often observes that
rmin�−1 simply because of the degree sequence D itself. A
proof of this appears in the Appendix.

Based on this analysis, one might reasonably conclude
that the Pearson coefficient r is not a suitable metric for
comparing the correlation structure of graphs from different
domains. Indeed, it is well understood that a more accurate
approach is to consider higher-order forms of correlation. Yet
the deeper question relates to how one should evaluate any
observed correlation structure. Recent efforts by several au-
thors have warned against graph theoretic analysis of net-
works in isolation. For example, Maslov et al. �21,26� have
argued that a real assessment of a network’s correlation
structure makes sense only when compared against its ran-
domized counterpart. In the context of rich-club ordering in
complex networks �i.e., the tendency of high-degree vertices
to connect to one another�, Colizza et al. �40� have also
argued that the presence of high-degree vertices in a given
network is enough to ensure that high-degree vertices are
connected, and they similarly argue for the need to compare
the features of any subject network to a randomized baseline.
Thus, important questions include: What is the appropriate
baseline against which to compare graphs? and how does this
relate to the background set of graphs, as defined by G�D� or
G�D�?

MEASURING AGAINST BACKGROUND SETS

The previous sections provide enhanced understanding of
the way in which a given D constrains the possible s and r
values a graph can have, and they also suggest that when
making statements about a graph based on these graph prop-
erties one must consider the background set against which
these properties are being evaluated. Here, we expand this
viewpoint by considering the way in which a graph with
given D compares within the space of graphs bounded by
smin and smax values. We furthermore consider the location of
randomized graphs within this space.

As above, our approach here is largely empirical, and we
again leverage our previous numerical experiment in gener-
ating graphs via incremental growth according to an attach-
ment exponent p. For a given value of p, we generate a graph
having n vertices with resulting degree sequence D. Then,
for that particular D we construct the smin and smax graphs

TABLE I. Sensitivity of assortativity among graphs having low CV�D�. Each graph shown has n nodes
and n−1 links. In the limit where n→�, minimal differences in graph structure, as measured by CV�D� and
the ratio s /smax

G�D�, translate to large differences as measured by the Pearson coefficient r.

rs / smaxCV(D)

≈ 0≈ 1≈ 0

≈ -1≈ 1≈ 0

≈ 0≈ 1≈ 0

DAVID L. ALDERSON AND LUN LI PHYSICAL REVIEW E 75, 046102 �2007�

046102-6



within G�D�. We also compute the theoretical upper bound
�3� and lower bound �4� on s within G�D�. We then obtain
appropriately randomized graphs having degree sequence D
in two ways. First, we generate m=500 new graphs accord-
ing to the configuration method. Also, we consider the pro-
cess of degree-preserving rewiring on the original graph.

Graph rewiring is effective as a conceptual, as well as
computational, means for exploring the space of graphs hav-
ing the same degree sequence D. Since exchanging the end
points of any two links does not alter the degrees of the
affected vertices �and hence leaves the overall degree se-
quence unchanged�, this approach has been a popular tool for
investigating the effects of local topological changes on glo-
bal graph properties �18,21,26� as well as a means for gen-
erating graphs having a specified degree sequence and addi-
tional properties �i.e., connectedness� �41,42�. Here, we
consider degree-preserving rewiring as a means for moving
within the space of graphs having degree sequence D. In
previous work �18�, we have used the number of successive
rewiring steps between two graphs as a measure of distance
in the space G�D�; however, in this study we restrict atten-
tion to the distribution of s values within the possible range
smax−smin for both G�D� and G�D�. In the aforementioned
extreme examples of a chain and star, any degree-preserving
rewiring operation that precludes disconnection or self-loops
yields a graph that is isomorphic to the original, and again
shows that there is no diversity in either case.

Figure 3 shows the results of three representative numeri-
cal experiments exploring the distribution of graphs having
particular s-values for a specified D. Figure 3�a� resulted
from uniform attachment �i.e., p=0� and corresponds to the
case of Dexp having low variation �here, CV�D�=0.6380
within the possible range �0.0711,4.9495� for acyclic graphs
having n=100 nodes�. Figure 3�b� resulted from linear pref-
erential attachment �p	1� and corresponds to the case of
Dscaling �here, CV�D�=1.4121�. Figure 3�c� resulted from su-
perlinear preferential attachment �i.e., p�1� and corresponds
to a case with high variability �here, CV�D�=2.5141�. For
each case, the smax graph within G�D� was obtained by the
construction mechanism described previously, while the smin
value was obtained from �4�. The leftmost graph for each
case corresponds to an approximate smin graph obtained heu-
ristically. From these results, several observations are imme-
diately clear.

�1� For each particular D, there are considerable differ-
ences between the smin and smax graphs. In all cases, the smin
graph looks very chainlike and the smax graph looks very
starlike.

�2� The range of feasible s values for graphs in G�D� is
considerably larger than the range for G�D�, and this differ-
ence increases with greater CV�D�.

�3� The differences between the graphs in each case are
less obvious when evaluated using the Pearson coefficient r
�normalized against the graphs in the unconstrained space
G�D�� but are emphasized when evaluated using normalized
s values �i.e., either s /smax or S�. Thus, when comparing
among elements of G�D�, the Pearson coefficient sometimes
tends to hide the structural differences rather than highlight
them. Similar observations were made previously in �18,20�.

�4� Although rewiring within the space G�D� yields a dis-
tribution of graphs that theoretically span the entire space,
using rewiring to obtain graphs having extreme s values is
difficult to achieve in practice. The implications for using
rewiring as a means to obtain an ensemble of graphs is un-
clear. Moreover, it is unclear what, if anything, one can say
about the original graph for each case based on its placement
within the feasible range of graphs for G�D�.

�5� As expected, there is good correspondence in all cases
between the distribution of graphs resulting from rewiring in
the unconstrained space G�D� and those generated from the
configuration method. Furthermore, the distribution of these
graphs appears largely centered on r=0, as would be pre-
dicted since it was shown that the CM approach results in
zero-assortativity graphs �in expectation�.

�6� The distribution of graphs in G�D� is consistently
shifted toward larger s values than those in G�D�. As CV

increases, the differences between the distribution of graphs
in G�D� and G�D� becomes more extreme, to the point where
all of the graphs generated within G�D� have s values larger
than can be achieved by the smax graph of G�D�. In other
words, for large-CV degree sequences, none of the graphs
generated by the CM or resulting from rewiring within G�D�
correspond to simple, connected graphs �i.e., elements in
G�D��.

In practice, when considering graphs having high CV, we
advocate the use of s /smax

G�D� or S as measures of diversity
when considering graphs that are simple and connected. For
graphs that are not simple or connected, the Pearson coeffi-
cient r provides insight into the diversity within G�D�.

These observations yield several important conclusions.
First, graphs that arise from different contexts may not be

directly comparable using structural metrics that are inher-
ently computed against different background sets. In consid-
ering the above examples, one observes that the approximate
smin graph in Fig. 3�b� �i.e., CV�D�=1.41� translates to r
=−0.45 while the smax graph for Fig. 3�c� �i.e., CV�D�=2.51�
translates to r=−0.43. A naive look at the Pearson coefficient
suggests that they are similarly assortative, although the
graph in Fig. 3�b� has the minimal r value and the graph in
Fig. 3�c� has the maximal r value.

Second, the differences between the unconstrained space
G�D� and the space of simple, connected graphs G�D� may
be more important in determining graph properties than other
features as measured by aggregate statistics. Specifically, the
use of graph generation techniques such as the configuration
method, even if they replicate the measured degree sequence
of a real network, may be entirely inappropriate if the do-
main under study requires simple and connected graphs. This
strengthens previous results on the importance of these addi-
tional restrictions as reported in �26,43�.

Third, while it is clear that the evaluation of a graph based
on its structural properties may be appropriate only in rela-
tion to the corresponding background set, understanding the
implication of those structural features �e.g., in terms of
function� remains an open question. For example, it remains
unclear what, if anything, the relative placement of a graph
within the range �smin,smax� actually says about the graph
itself.
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DISCUSSION

An inherent challenge in the study of graph diversity is
that the combinatorics of even relatively small networks
typically result in a space of graphs that is incredibly large.
In this study, we have focused on graphs having n=100
�which are about the largest that can be visualized easily� for
purposes of exposition, and even here a comprehensive
analysis of the elements in G�D� and G�D� is challenging. In
choosing preferential attachment as our primary means for
graph generation, we have tried to keep our methods closely

tied to the literature so that they may be easily replicated. An
alternate approach could have been to identify specific de-
gree sequences D for which graph isomorphism reduces the
number of unique graphs to a small handful and the entire
space of graphs �not just smax and smin� is easily visualized.
Identifying and exploring such examples may represent an
important step in future work.

The overall message of the results here is that one must
carefully consider the inherent diversity of graphs sharing a
particular statistical measure when making claims based on

s=572, s/smax=0.68, S=0.04, r = -0.82 smax= 843, s/smax = 1, S = 1, rmax = 0.34sorig = 765, s/smax = 0.91, S = 0.71, rorig = 0.01
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FIG. 3. �Color online� Diver-
sity among graphs having the
same degree sequence: �a� uni-
form attachment �p=0�, �b� ap-
proximate linear attachment �p
	1�, �c� superlinear attachment
�p�1�. In each case, a single
graph with n=100 vertices was
generated using a different prefer-
ential attachment exponent and re-
sults in a different degree se-
quence D. The corresponding smin

and smax graphs were also ob-
tained for both G�D� and G�D�.
Each node is labeled with its de-
gree, with degree-1 nodes omitted
for simplicity. Also shown for
each is the distribution of graphs
within the space G�D� �from re-
wiring� and within G�D� �from re-
wiring and generated via the CM�.
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any such statistic. Nonetheless, additional work is required to
understand fully the way in which graph diversity affects
such characterizations. While others have argued for the need
to compare against a randomized version of the graph, here
we have compared against the entire feasible region, as mea-
sured by the range �smin,smax�. The examples here seem to
suggest that the distribution of graphs within either G�D� or
G�D� is not uniform, and a general characterization of these
distributions is unknown. Ideally, one would like to know
more about where the randomized graph sits within the over-
all space �i.e., is it the center of this space?�. Moreover, there
may be important differences between graph properties that
are imposed by structural constraints �e.g., by the degree
sequence D� and those relative to what has been randomized.

Although this study provides additional insight into the
way in which graph diversity affects one’s ability to use ag-
gregate statistics for characterizing complex networks, it has
done so primarily for acyclic graphs �i.e., trees�, and more
work is required to understand the extent to which these
same results hold for more general network structures. How-
ever, we now present preliminary empirical evidence that
suggests the story for nontrees is qualitatively the same.

In Fig. 4, we show the results of a final experiment in
which we again generate trees having n=100 nodes accord-
ing to attachment rule �7� for a range of exponents p. How-
ever, to each tree having an initial l=n−1 links we then add
an additional kl links by choosing end points probabilisti-
cally in correspondence with �7�. In this manner, we gener-
ate graphs having n nodes and a degree sequence D satisfy-
ing �idi=2�k+1��n−1� �i.e., the average degree is 
d�
	2�k+1��. Empirical evidence �4� suggests that, for many
real networks, 
d�	10. For each degree sequence D, we then

compute the corresponding smin, smax, rmin, and rmax values as
was done previously. Figure 4 shows these values plotted
against the variation of D, represented again as CV�D� and
also now normalized as CV�D� /CV

max�D� for purposes of
comparison.

One observes for graphs with increasing average degree
�
d�	4,6 ,10 in Figs. 4�a�–4�c�, respectively� that CV�D� de-
creases overall but the relative shape of the space of graphs
within G�D�, as defined by the range �smin,smax�, remains
qualitatively consistent with that of trees. However, the total
variation as measured by the distance between �smax
−smin� /smax decreases with increasing link density. At the
same time, for graphs with increasing link density and hav-
ing degree sequence with CV

max�D�, the difference smax−smin

is no longer zero in general, indicating inherent diversity
even at higher levels of variation.2 Graph assortativity as
measured by the range �rmin,rmax� is also qualitatively the
same as for trees, in that high CV�D� is enough to dictate that
r	0 but considerable diversity exists for low values of
CV�D�. Although such results are not conclusive, we view
them as generally supportive of graph diversity as we have
discussed it here.

Finally, while this paper has focused on degree sequences
and has used the s metric to highlight the differences in
graphs sharing the same D, we conjecture that a similar story
is apt to apply to other graph metrics �even higher-order ones

2However, when the degree sequence D corresponds to a multistar
�e.g., double star, triple star�, the overall picture in the upper row of
Fig. 4 looks the same, except that the smin/smax values jump
abruptly to 1 at CV

max�D�, since all multistars are isomorphic to one
another in G�D�.
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FIG. 4. �Color online� Graph diversity among nontrees. In this experiment, an additional k�n−1� links were added to initial trees of size
n=100. �a� k=1, 
d�=3.96, CV

max=3.4451. �b� k=2, 
d�=5.94, CV
max=2.7672. �c� k=4, 
d�=9.9, CV

max=2.0701. In the bottom graphs, variation
is measured with CV�D� while in the top graphs it is represented as the normalized CV�D� /CV

max�D�.
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like the JDD�. A detailed exploration of these issues for other
metrics will be important in the development of new graph
analysis and generation techniques.

ACKNOWLEDGMENTS

The authors thank Daniel Whitney for the use of his
implementation of a rewiring algorithm to obtain smin values.
The authors gratefully acknowledge John Doyle, Walter
Willinger, and Daniel Whitney for many stimulating and in-
sightful discussions. They also thank Aaron Clauset and two
anonymous referees for comments that helped to improve the
presentation of this work. Both authors were supported at
Caltech by Boeing, AFOSR Grant No. URI 49620-01-1-0365
“Architectures for Secure and Robust Distributed Infrastruc-
tures,” the Army Institute for Collaborative Biotechnologies,
AFOSR Grant No. FA9550-05-1-0032 “Bio Inspired Net-
works,” and Caltech’s Lee Center for Advanced Networking.
D.A.’s work at NPS was supported by Grant No. NIFR-RIP-
BORYB.

APPENDIX

In order to see when a degree sequence D can achieve
r�g�=−1, we introduce a simplified version of the Cauchy-
Schwarz-Burnyakovskii inequality, which states that for any
vector �b1 ,b2 , . . . ,bn�, it must be that

�
i=1

n

bi
2 �

1

n
��

i=1

n

bi2

,

with the equality holding if and only if b1=b2= ¯ =bn.
Applying this inequality to a graph with l links, it follows

that

�
�i,j��E

�di + dj�2 �
1

l � �
�i,j��E

�di + dj�2
.

Expanding the squared term on the left-hand side and divid-
ing both sides by 2, we have from relations �8� and �9� that

�
�i,j��E

2didj/2 + �
�i,j��E

�di
2 + dj

2�/2 �
1

2l� �
�i,j��E

�di + dj�2
,

s�g� + smax
G�D� � 2s�gc� ,

s�g� − s�gc�
smax
G�D� − s�gc�

� − 1,

which is simply another way of showing that r�g��−1, but it
proves that r�g�=−1 if and only if di+dj =d �a constant� for
all �i , j��E.

Recall that within G�D� one has smin=Z+ Ẑ as defined by
�4�, and thus this smin graph corresponds to r=−1 if and only
if for each element k one has zk+ ẑk=z �a constant�.
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