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Abstract

We review network formation models, contrast their be-
havior, and conduct numerical experiments to investigate
the structural features of the networks they generate. We
focus primarily on problems related to minimum spanning
trees and consider the cost of selfish behavior, more com-
monly known as the price of anarchy, in network forma-
tion. We also explore differences between local, decentral-
ized methods for network formation and their global, cen-
tralized counterparts.

1. Introduction

Networks are prevalent in man-made and natural systems
throughout the world. Despite recent efforts to character-
ize and catalog networks of all kinds (e.g., [24, 25]), con-
siderably less is known about the forces that drive network
formation. More specifically, significant effort has been de-
voted to studying the “what” of these networks, but much
less is known about the “how” and the “why.” A funda-
mental question is whether networks form to achieve some
overarching global objective, or if network structure is just
a byproduct of local, selfish, or even random decisions, or
a combination of all these. It is also not clear how differ-
ences between global, centralized network formation and
local, decentralized formation affect the properties of the
resulting network.

Understanding the forces that drive network formation is
becoming increasingly important. Of particular interest is
the Internet. This is an extremely complex network that has
managed to evolve and grow at an amazing pace. To some
researchers, the Internet exemplifies a system that has self-
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organized. They argue that the network was not built by a
central designer, but arose rather as a result of the localized
actions of the users and service providers. In spite of its ad-
hoc construction, the Internet is still relatively robust [34].
The ability to model such a complex network and to under-
stand its underlying properties is relevant for the study of
both man-made and natural systems.

Research in the “how” of network formation has ranged
from random graph generation to system design. Erdös and
Rényi pioneered the exploration of random graphs models
[11], which generated interest in graph and network the-
ory. More recently, the study of network science has fo-
cused attention on “small-world networks” and “scale-free
networks” (see [3] for a review).

In this paper, we review some of the recent models used
for network formation and conduct numerical experiments
to contrast the structural features of the graphs they gen-
erate. We focus on problems related to the formation of
minimum spanning trees and consider the cost of selfish be-
havior, more commonly known as the “price of anarchy”,
in network formation. We then contrast some of the local,
decentralized methods for network formation to the global,
centralized methods. Our results help clarify the tensions in
network formation problems for both man-made and natural
systems.

2. Network Formation Models

A graph, G = (N,A) consists of a set N of nodes and
a set A of arcs. The number of nodes is n = |N | and the
number of arcs is m = |A|. An arc from node i to node
j is denoted as (i, j) where i, j ∈ N . If G is a directed
graph then (i, j) 6= (j, i), but if G is an undirected graph
then (i, j) = (j, i).

A subgraph of G is a graph G′(N ′, A′) if N ′ ⊆ N and
A′ ⊆ A. It is a spanning subgraph of G if N ′ = N . A tree
is a connected graph that contains no cycles. A spanning



tree of G is a tree that is a spanning subgraph of G and has
exactly n− 1 arcs.

A cut is a partition of node set N into two parts, K and
K̄. A cut defines the set of arcs that have one node in K
and the other in K̄. The degree of node i, denoted degi, is
the total number of arcs connected to node i.

A network is a graph with additional data attributes. For
example, we use cij to denote the cost of arc (i, j). We
measure the total cost of a network as

∑
(i,j)∈A cij .

In many of the problems that we consider, we associate
each abstract node iwith a location xi = (xi1, x2,

i , . . . , xid)
in the d-dimensional Euclidean space <d. In such cases,
the cost of arc (i, j) is simply the Euclidean distance, cij =√∑d

k=1(xik − x
j
k)2.

A minimum spanning tree (MST) is a spanning tree hav-
ing minimum network cost.

2.1. Classical Random Graph Models

The modern treatment of networks was forged by Paul
Erdös and Alfréd Rényi [11], who examined a class of ran-
dom graphs denoted G(n, p). In this construction, there are
n nodes and each node has an independent probability p
of connecting to each other node in the graph. By altering
the parameter p, the measurable properties of the connect-
edness of random graphs change quite suddenly (see [7] for
an in depth review). For small values of p, the graph demon-
strates low connectivity with several isolated nodes. Inter-
estingly though, as p approaches 1/n, a majority of nodes
form a cluster and the graph becomes almost completely
connected. For values p ≈ 1, the graph becomes highly
connected with several cycles. This phenomenon is known
as the “emergence of the giant component.”

Another important property is the distribution of the
node degrees. The degree of node i, degi, follows a bi-
nomial (n-1, p) distribution. For large values of n, this dis-
tribution can be approximated with the Poisson distribution
[2].

2.2. Random Geometric Graph Models

Another approach to generating random graphs builds on
the notion of a geometric graph. Given a set of nodes N in-
dexed i = 1, 2, . . . , n, having locations {x1, x2, . . . , xn},
and a positive parameter r, the geometric graph G(N, r) is
the undirected graph induced by all arcs (i, j) having dis-
tance cij ≤ r. When the locations {x1, x2, . . . , xn} are
the result of an independent and identically distributed (IID)
random process, the resulting graph is called a random ge-
ometric graph.

Most of the theoretic results for random geometric
graphs are cumbersome, especially in higher dimensions
(see [26], for an in-depth treatment). Unlike classical

Erdös-Rényi graphs in which the presence of arcs is inde-
pendent, the role of proximity in random geometric graphs
makes the appearance of (nearby) arcs dependent. How-
ever, these graphs share remarkably similar behavior in the
emergence of the giant component (see [17], and references
therein).

Random geometric graphs are often used in classifica-
tion problems in statistics. For example, suppose that indi-
viduals have d characteristics and each can be represented
by a continuous variable. Using an appropriately defined
measure of distance in this d-dimensional space, one can
classify two individuals as being “similar” if their distance
is less than some constant parameter r. This makes it possi-
ble to identify clusters of similar individuals, which can be
useful in many practical applications.

2.3. Preferential Attachment Models

Unlike the graphs produced in the Erdös-Rényi model,
the degree distribution of many real world networks does
not follow a Poisson distribution. Albert and Barabási [2]
observe that many networks have a skewed distribution, in
which the majority of nodes have small degrees while very
few nodes have high degrees. The connectivity of these net-
works can be characterized by a power law distribution, in
which the probability that a node has a degree distribution
k is P (k) ≈ k−γ , where typically 2 ≤ γ ≤ 3.

Research in a multitude of disciplines has demonstrated
power law distributions within networks. Price [27] demon-
strates that the network of bibliographic citations in scien-
tific publications has a connectivity distribution whose tail
is “heavier” than an exponential distribution. West [33] ar-
gues that several characteristics of biological systems, such
as metabolic rate, sizes and time scales can be modeled with
a power law for several species. Faloutsos, Faloutsos and
Faloutsos [14] argue that power laws could be used to pre-
dict characteristics of the Internet topology. In finance and
economics, Gabaix [15] provides a good summary of power
law distributions exhibited in a variety of areas such as firm
size, city size, and the distribution of income and wealth.

Because the random graph model does not produce the
power law distribution of node degrees as observed in real-
world networks, Barabsi and Albert [4] present an alterna-
tive model based on preferential attachment. This model
explicitly incorporates network growth, and it assumes that
newly added nodes are more likely to attach to nodes with
high connectivity. The probability p that the new node
will attach to node i depends on the connectivity of node
i, specifically in proportion to the ratio of node i’s de-
gree to the sum of the degrees of all other nodes, such that
p ∝ degi/

∑
j degj . This model of network formation pro-

duces a scale-free network, a graph whose resulting node
degree distribution follows a power law. For some systems,
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the scale-free network produced by the model is more sim-
ilar in its connectivity than a graph generated from the ran-
dom graph model.

2.4. Optimization-Based Models

Carlson and Doyle [8] propose a different mechanism,
called highly optimized tolerance (HOT), that produces
power law distributions. They suggest that complex net-
works are optimized for robust performance and that the
observed power law distributions are a result of the trade-
offs that must be made due to system constraints. Key fea-
tures of their HOT model include “(1) high efficiency, per-
formance and robustness to designed-for uncertainties; (2)
hypersensitivity to design flaws and unanticipated pertur-
bations; (3) nongeneric, specialized, structured configura-
tions; and (4) power laws” [8].

Fabrikant, Koutsoupias and Papadimitriou [12] suggest
a simple model, which we will refer to as the FKP model,
for network formation that is based on the tradeoff concept
present in the HOT model. Like the Barabási-Albert model,
they grow a network one node at a time, but they also give
each node a location in the unit square. When deciding to
which node in the network the new node should attach, they
propose two logical considerations. First, they assume the
node would want to minimize its connection “cost” (repre-
sented by the Euclidian distance between itself and the node
it attaches to). Second, the node would desire to connect to
one that is more centrally located. These objectives can be
weighted in order to alter the relative importance between
the two. Specifically in their model, node i will attach to
node j according to:

min
j:j<i

α cij + hj (1)

where cij is the Euclidean distance between nodes i and j
and hj is a measure of centrality for node j. The weighting
factor, α ≥ 0, is usually defined as a function of the final
number of nodes n. The centrality h can be defined in sev-
eral ways, such as the average number of hops to all other
nodes, the average Euclidian distance to all other nodes or
the distance to some predefined central node [12].

Fabrikant et al. [12] show that by varying the value of α,
graphs with very different properties result. They prove that
when centrality is measured as the number of hops to a de-
fined node, n0, then for α < 1/

√
2, distance is relatively in-

significant compared to centrality, and the resultant network
is a star with the center at n0. As α approaches

√
n, there

is a closer trade-off between distance and centrality, and the
node degree distribution can be represented by a power law.
(Berger et al. [5] later argue that the resulting distribution is
not a strict power law, but has an exponential cutoff.) Once
α exceeds

√
n, distance becomes the overriding factor, and

a form of a Euclidean spanning tree results.

The FKP model introduces a novel idea for network for-
mation. Unlike the Erdös-Rényi graphs that are entirely
based on a random selection of arcs, this model suggests
a highly organized, locally optimized model that still pro-
duces a power law in the node degree distribution.

2.5. Game Theoretic Models

Fabrikant et al. [13] propose a network formation game
to explore how an undirected network created from selfish-
acting nodes would affect the network performance as a
whole. The game is as follows: There are n players, each
representing a node in the network. The entire set of players
is N , with |N | = n. Each player i ∈ 1, 2, . . . , n chooses a
strategy set si = {si1, si2, . . . , sij , . . . , sin}, which defines
the network edges to build from i to other nodes j. The set
s = {s1, s2, . . . , sn} denotes the collective strategy of all
players.

Let A(s) be the set of arcs resulting from strategy s.
Therefore, A(s) = {(i, j) : i 6= j, sij = 1 or sji = 1}
and G(s) = (N,A(s)) is the undirected graph that re-
sults from strategy s. Once a strategy is chosen, each
player i ∈ 1, 2, . . . , n incurs a cost ci(s) = α · |si| +∑
j∈N d(i,j)(G(s)) where α is the fixed cost of forming a

single connection between two players, and d(i,j)(G(s)) is
the distance, measured in hop count, between nodes i and
j in the resulting graph G(s). If no path exists between i
and j, then d(i,j)(G(s)) =∞. This is called the Unilateral
Connection Game (UCG) because each node is able to use
an arc, regardless of who paid for it.

An extension of this game is the Bilateral Connection
Game (BCG) described by Corbo and Parks [10]. The major
difference from the UCG is that in the BCG an arc only
forms if both node strategies contain that arc. So in this
game A(s) = {(i, j) : i 6= j, sij = 1 and sji = 1} and any
connection cost is incurred equally by the two nodes.

In both cases, the interest is in the network that forms
from selfish node decisions. In this context, the Nash equi-
librium is a strategy s that satisfies ci(s) = ci(si, sNi) ≤
ci(s

′
i, sNi),∀i ∈ N, si ∈ Si. In other words, at the Nash

equilibrium, no node has incentive to change its strategy.
The social cost of the network is defined as:

C(G(s)) =
∑
i∈N

ci(s)

=


α · |A(s)|+

∑
i,j∈N

d(i,j)(G(s)) (UCG)

2α · |A(s)|+
∑
i,j∈N

d(i,j)(G(s)) (BCG).

The term price of anarchy is the ratio of the social cost
of the worst-case Nash equilibrium and the social optimum
[20, 29] and is used to measure the lack of coordination
when the nodes act selfishly.
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Fabrikant et al. [13] show that the results of the UCG
vary based on the value of the parameter α . When α < 1,
the social optimum is a complete graph, and this is the only
Nash equilibrium. When 1 ≤ α < 2, the complete graph
still results in a Nash equilibrium, but it is no longer unique.
The worst Nash equilibrium is the star, leading to a price of
anarchy of C(star)/C(complete graph) ≤ 4/3. When
α ≥ 2, the social optimum is a star, although there can be
worse Nash equilibria.

These game theoretic models focus on different proper-
ties of the networks formed from the UCG and BCG than
the previously reviewed models. Similar to the HOT model,
the connection cost is associated with Euclidian distance
and the number of arcs in the network and by tuning the
weighting factor α, networks ranging from the complete
graph to a star can be produced. However, unlike the pre-
vious models, these concentrate on quantifying the cost as-
sociated with selfish behavior to compare it to the social
optimum. Also, the BCG introduces a unique feature of
restricting the arcs in network to those formed through the
agreement of the two nodes. Both models provide an inter-
esting way of looking at network formation.

2.6. Discussion

The key insight of Fabrikant et al. [12] is that the power
laws observed in the structure of many man-made and nat-
ural systems can result from design tradeoffs that can be
captured in simple optimization models. Their model was
inspired by tensions perceived in the Internet—a desire to
minimize the cost of connecting while also wanting to have
low delay (i.e., be central) when communicating. But their
model reflects a local, myopic decision process. It is un-
clear how, if at all, this local process relates to the global
behavior of the network.

The price of anarchy in the study of network formation
games explicitly addresses the difference between the social
optimum for some system (as achieved, for example, by a
central decision maker) with the aggregate outcome of local
agents. The focus in [12] is on the global connectivity prop-
erties (e.g., degree distributions) of the graph, but is there an
interpretation for a system-wide objective?

In the case of large α the Eq. (1) objective emphasizes
only the local connection cost, and it is possible to interpret
the collective behavior as trying to minimize the distance of
the resulting tree, albeit in a heuristic manner. With this in
mind, we now consider the classic minimum spanning tree
problem.

3. The Minimum Spanning Tree

A classic case in the study of networks is the minimum
spanning tree (MST) with the first algorithm for finding

a MST published by Otakar Borüvka in 1926 (see [18],
for history of MST). Minimum spanning trees have several
practical applications such as the minimum amount of wire
to connect several electrical components, or the minimum
amount of piping required to connect houses in a neighbor-
hood to a water system.

3.1. Finding a MST

Finding a MST for a network G(N,A) can be formu-
lated as a global optimization problem. This formulation
is an integer linear program, where H ⊆ N and the arc set
for H , A(H) ⊆ A.

Indices
i ∈ N node (i = 1, 2, . . . , n) (alias j)
(i, j) ∈ A undirected arc between node i and node j

Data
cij ∈ A cost of arc (i, j)

Decision Variable
Zij ∈ {0, 1} indicates if arc (i, j) is in tree

Formulation
min
Z

∑
(i,j)∈A

cijZij (2)

s.t.
∑

(i,j)∈A

Zij = n− 1 (3)

∑
(i,j)∈A(H)

Zij ≤ |H| − 1,∀ sets H ⊆ N (4)

Zij ∈ {0, 1} (5)

The objective function (2) sums the costs of the arcs cho-
sen. Eq. (3) is a cardinality constraint that ensures that ex-
actly n−1 arcs are selected, while Eq. (4) ensures that there
are no resulting cycles. Although this problem is simple to
formulate, solving it with linear programming is nontrivial
for large n. The number of sets H ⊆ N grows exponen-
tially with n, so the total number of constraints arising from
Eq. (4) becomes exponential, making the problem increas-
ingly difficult to solve as n grows.

Fortunately, the MST has a special tree structure that al-
lows for customized algorithms that can solve it efficiently.

Kruskal’s algorithm [21] makes use of a necessary and
sufficient condition known as the cut optimality condition,
which states:

A spanning tree T is a MST if and only if for
every tree arc (i, j) ∈ T , cij ≤ ckl for every arc
(k, l) contained in the cut formed by deleting arc
(i, j) from T .
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Kruskal’s algorithm uses this condition to build the MST
one arc at a time. The algorithm initializes by sorting all the
arcs in increasing order of cost, and it then iterates over the
list to add new arcs to the tree. This algorithm, as presented,
requires O(m log n) time to sort the arcs and O(nm) time
to detect a cycle, although Ahuja et al. [1] provides a more
efficient algorithm that operates in O(m+ n log n) time.

Prim’s algorithm [28] is based on the path optimality
condition, which states:

A spanning tree T is a MST if and only if for ev-
ery nontree arc (k, l) ∈ A of G, cij ≤ ckl for
every arc (i, j) contained in the path in T con-
necting nodes k and l.

This algorithm initiates with a cut, in which an arbitrary
start node of the network is in subset K, while the remain-
der of the nodes are in subset K̄. The minimum-weight arc
from the start node is then added to the list of MST arcs,
and the node at the other end of that arc is removed from
K̄ and placed in K, creating a new cut. This method con-
tinues to create cuts between the two subsets until all nodes
have been placed into K, and the resulting MST list will
contain n − 1 arcs. Prim’s algorithm requires O(mn) time
because of the work required to search for the minimum arc
in the cut. Ahuja et al. [1] also present a more efficient data
structure that can reduce the time to O(m+ n log n).

Decentralized “GHS” Algorithm. Gallager, Humblet
and Spira [16] present a distributed algorithm that also uses
the path optimality condition to solve this problem in an
undirected network. Their algorithm relies on a node’s lo-
calized information and its ability to receive, process and
send “messages.” The algorithm works by combining sep-
arate graph “fragments” together into a final MST. Initially
each node is its own fragment. Nodes pass messages to one
another along their minimum-weight edges and then com-
bine with other nodes to create new fragments, finally com-
bining into a final fragment containing the MST. By pass-
ing messages, each node eventually discovers which of its
arcs are in the MST. See [23] for a detailed description.
The complexity of this algorithm is therefore measured by
the number of messages that are passed, which is at most
2m+ 5n log 2n.

3.2. Why Study the MST?

Finding a MST is a simple problem whose objective cor-
responds to a social optimum (i.e., the minimum cost for the
entire network). This is simple to state and solve as a global
optimization problem. This problem can also be solved
by incremental graph formation, specifically by adding one
node at a time, as in Kruskal’s algorithm. Moreover, a sim-
ple myopic FKP-style network construction can yield an op-
timal solution if nodes are added in the right order. How-
ever, finding a MST using only local, decentralized, and

asynchronous activities is considerably more complicated.
The GHS algorithm shows that individual nodes, making
local decisions, can solve this problem correctly and effi-
ciently.

These features make finding the MST an ideal problem
with which to experiment on the interaction of local, possi-
bly selfish decisions of nodes during graph formation.

4. Numerical Experiments

In the sequential selection models considered here, the
network grows incrementally by the addition of one node
and arc at a time. A basic question is: What is the role of
precedence and node ordering in these network formation
models?

In the classical Erdös-Renyı́ random graph and the ran-
dom geometric graph, nodes “arrive” at the same time. Sim-
ilarly, the UCG and BCG network formation games are
simultaneous-play games. For these models, node prece-
dence plays no role in their structure.

In preferential attachment models, nodes are added to the
network one at a time. Nodes that arrive “earlier” have an
advantage in obtaining more connections—indeed the high-
connectivity “hubs” tend to be the “oldest” nodes in the net-
work [2]. However, the nodes are essentially interchange-
able, so if the order of the nodes is different, their relative
placement within the network would change, but the statisti-
cal properties of the global network would remain the same,
including the power law distribution of the node degrees.

In models where network growth is incremental and
where nodes have unique locations, precedence plays a role.
In the FKP model, because an arriving node can only attach
to a preceding node, changing that arrival order can lead to
different (and possibly improved) networks. We seek to ex-
plore the extent to which this kind of precedence plays a
role in the overall cost of the network.

4.1. Reordering Experiments

We generate an FKP-style network of n = 100 nodes,
each having a location in the unit square, and where each
node has the local objective function minj:j<i α cij , with
α = 1 (see Fig. 1a). We then compute the total network
cost. This is essentially a greedy heuristic applied to the
problem of finding a MST.

We then generate other networks using the same nodes,
but where the order of node “arrivals” is different. We con-
sider two variations. The first uses the same node sequence,
but chooses a different start node (Fig. 1b). The second
completely randomizes the order of the nodes (Fig. 1c). In
both cases, the network that forms is different than the ini-
tial network. Although the nodes have the same locations,
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Figure 1. Spanning trees of size n = 100. (a) The initial graph generated from FKP-style construction.
(b) FKP-style construction for the same nodes in the same sequence, but with a different start point.
(c) FKP-style construction for the same nodes but in a different sequence. (d) The minimum spanning
tree for these nodes. (e) Equilibrium network based on rewiring the graph based on the original node
sequence. (f) Equilibrium network based on rewiring the graph using arbitrary node sequence.

and the result is always a spanning tree, the arcs can dif-
fer greatly. We compare this result to MST for these nodes
(Fig. 1d).

4.2. Rewiring Experiments

In a second numerical experiment, we examine the ef-
fects of allowing the nodes to change their connections, a
process that we call rewiring. Once all nodes have been
added to the network, we allow each the opportunity to
change its initial connection and thereby (possibly) improve
its local cost in Eq. (1). We continue this until none of the
nodes in the network can benefit from connecting to a dif-
ferent node, at which point we say the network is in equi-
librium. We then compare the cost of the rewired network
with that of the original graph and the MST.

We generate networks of n = 100 nodes as described
above. Once all nodes are added, we permit the nodes to
rewire, subject to two constraints: (1) a node is only able
to rewire the arc it formed when it joined the network and
not any of the arcs from other nodes that attached to it; and
(2) the rewiring must preserve the connectivity of the entire
network.

We alter, in two ways, the order that the nodes rewire.
We first give the nodes the opportunity to rewire in the same

sequence they arrived in the network (Fig. 1e). In the sec-
ond case, we randomly select the order in which nodes can
rewire (Fig. 1f).

We compare the cost of the equilibrium network to that
of the MST. We repeat the rewiring experiments 10,000
times, generating the initial network, rewiring it to equi-
librium, and then determining the MST. Fig. 2 shows the
distribution of network costs associated with each type of
network and compares them to the cost of the MST. For net-
works with n = 100, the initial network cost is 46.5% greater
than the MST. However, the sequential rewiring process and
the random rewiring process substantially improve the net-
work cost, with the sequential rewiring providing a lower
cost in 51.4% of cases; the improvement in total network
cost had a 99% confidence interval of [0.090, 0.132]. These
sequential and random rewiring schemes result in networks
that are on average still 14.2% and 15.0% costlier than the
MST, respectively. In 26% of the experiments, both the se-
quential rewiring and the random rewiring methods produce
equilibrium networks with the same costs.

We observe that both rewiring schemes can improve the
overall cost of the network. Moreover, sequential rewiring
seems to perform slightly better. We speculate that this
could be because sequential rewiring guarantees that every
node gets an chance to rewire following each change in the
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Figure 2. Distribution of costs for initial FKP-style network, rewired equilibrium networks, and MST
for n = 100. We conduct 10,000 experiments where we (1) generate a FKP-style network, (2) conduct
rewiring experiments using “sequential” and “randomized” heuristics, and (3) solve for the corre-
sponding MST. The rewiring heuristics improve the cost from the initial construction, but typically
fall short of the MST. Inset: summary statistics for each of these distributions.

network. In contrast, under the random rewiring scheme,
the interval between successive rewiring opportunities for
each node will vary. In some cases, this could mean more
rapid improvement, while in other cases this could mean
that some nodes must wait a long time before they can im-
prove their cost.

Both rewiring schemes fall short of the socially opti-
mal MST solution, which is not surprising. Because all
spanning trees for the same nodes have the same number
of arcs, there exists some rewiring scheme that would al-
low us to convert any spanning tree into the MST, this
scheme could require multiple rewiring operations in par-
allel, something that we have restricted here. Such rewiring
operations would require coordination between the nodes,
possibly at the global level.

These experiments focus on incremental network con-
struction based on local, myopic decisions. The major dif-
ference between this model and the FKP model is that we
remove the tradeoff aspect by not using the centrality term
in the local objective function. We simplify the objective
function so we can compare the results of the formed net-
works to the optimal network, the MST.

There is obviously room for more complex numerical
experiments and deeper analyses. Heuristic rewiring im-
proves the total network cost substantially, but does not
achieve a MST. Developing heuristics based on more so-
phisticated rewiring schemes could lend insight into the
information sharing and incentive requirements needed to
solve this problem as a decentralized game.

5. Conclusions and Future Work

Understanding the drivers of network formation is non-
trivial. In this paper, we focus on models of network forma-
tion with emphasis on both centralized and localized algo-
rithms for finding the minimum spanning tree. We develop
a local, heuristic model based on a FKP-style construction,
which uses rewiring to produce networks in equilibrium.
Although heuristic rewiring does not typically produce a
MST, we know that for any spanning tree there exists some
rewiring that will transform it into a MST. This leads to the
question: Is there an interpretation of the local, myopic de-
cision process of the FKP-style construction that lends itself
to an equivalent global optimization problem? If the answer
is yes, then the local and global methods would provide the
optimal solution and the price of anarchy would be zero.
This could have significant implications for the formation
of real network systems when global information and cen-
tral decision processes are not possible.

Is there evidence to suggest that such an interpretation is
possible? Here, we appeal to the notion of dual decomposi-
tion in network optimization problems and note that there is
a considerable literature in the use of duality arguments for
the development of decentralized algorithms (see [6], for an
in-depth treatment).

The Internet is an example where duality arguments have
recently enhanced our understanding of network behavior.
The Transmission Control Protocol (TCP) is fundamental to
the operation of the Internet. It guarantees end-to-end deliv-
ery of data packets by recognizing and retransmitting pack-
ets that are lost, and it also controls the rate at which indi-
vidual computers inject packets into the network. Like most
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of the protocols used in the Internet, TCP was developed in
an ad hoc manner, based on engineering intuition and trial-
and-error more than mathematical theory. To researchers in
network science, the behavior of TCP seemed like a case
of self-organization [31]. However, research over the last
decade has shown that TCP and its complementary protocol
Active Queue Management (or AQM, which runs in routers
to manage the size of their limited buffers) work together as
a primal-dual algorithm to solve a global resource alloca-
tion problem in a decentralized and asynchronous manner
[19, 22]. This type of analysis is not only bringing greater
understanding to the way that the existing Internet works
[30], but it is also helping to influence the design of future
network protocols [9].

While considerable work remains to understand the
forces governing network behavior, it is clear that optimiza-
tion is an important tool for exploring the tradeoffs at work
in network formation. Identifying the precise mechanisms
at work in specific applications, as well as how to improve
them, will be a topic of future research.
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