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History Highlights

1909 Founded at U.S. Naval Academy

1951 Moved to Monterey, CA
Operations Research Curriculum

 Facilities of a graduate research
university and a military base

e Faculty who work for the U.S.
Navy, with clearances

* Mid-career students with fresh
operational experience

2017:

65 M.S. and 15 Ph.D. programs
612 faculty

1432 resident students includes
(166 international / 47 countries)
909 distributed learning students




What is Operations Research?

* Operations Research (OR) is the science of helping people and
organizations make better decisions using
— mathematical models, statistical analyses, simulations
— analytical reasoning and common sense

to the understanding and improvement of real-world operations.
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What is Operations Research?

e QOperations Research (OR) is the science of helping people and
organizations make better decisions using
— mathematical models, statistical analyses, simulations
— analytical reasoning and common sense

to the understanding and improvement of real-world operations.

* OR originated during World War Il. The military uses OR at the
strategic, operational, and tactical levels.

* Biggest users of OR: modern corporations.
* NPS has the oldest OR instructional program in existence.

* We conduct analysis and develop decision support tools that are
of immediate operational relevance to the decision-maker.

e (Often centered around Masters theses.
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My Focus: Critical Infrastructure Systems

* Critical Infrastructure (Cl): “systems and assets, whether physical or virtual,
so vital to the United States that the incapacity or destruction of such
systems and assets would have a debilitating impact on security, national
economic security, national public health or safety, or any combination of
those matters” --Section 1016(e) of the USA PATRIOT Act of 2001
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Network-Centric Infrastructure Systems
(a.k.a. Cyber-Physical-Social Systems)

* A mix of human and automated system operators to remotely
monitor, manage, and control the physical world

e via the Internet and related communication systems

* These systems support the operation and management of
modern society’s most vital functions

— delivery of economic goods and services
— business processes

— global financial markets

— education

— health care

— government services

— military operations



The GOOD

Network technology (interpreted broadly) has been wildly
successful...

... yielding a “networked planet” for energy, food,
information, goods and materials, ...

The BAD
Network technology has been foo successful...

... yielding a “networked planet” for good and bad...
... and creating vulnerabilities due to our dependence.

The UGLY
These network-centric systems

Largely deliver what we design them to do.

But fail because they create new problems that we
did not expect.



_ Outmaneuvering .
Main Challenge:-Manragirg-Complexity

* Designers & operators of the next-generation network-centric
systems need to understand and manage their growing complexity.

We know:

how to design, build, and deploy network-centric systems

Not so easy:

predict or control their collective behavior once deployed

When things fail...
they often do so cryptically and catastrophically.



An All-Too-Common Pattern

* According to Plan, things appear to be going great.
* Getting better and better, or so it seems!
 Untilitisn’t. And then it’s bad...

* And unclear how to respond.

Key Message #1

We need to study these patterns of complexity as
empirical phenomena

 Need to understand these patterns

* Without getting caught up in all the “noise”
e Otherwise you will get lost




Where we agree...

Oversimple abstractions don’t work (for long)
X Linear systems with predictable cause-effect
X Root-cause analysis (e.g., blame the human!)
X Stationarity in time

Where it’s noisy...

hat are the patterns?

nat drives them?

S £ =

nat to do about them?
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Where does complexity come from?

A common answer:

Complexity comes from increased system scale

* number of components
 number and types of interactions (often hidden)
What’s missing: organization...

How to make sense of complexity?

Answer #1: abstract the problem (in scale) to identify
the few key parameters that drive the system

Answer #2: study the network (at scale), network science!

rooted in physics and mathematics



SCIENCE AND COMPLEXITY

By WARREN WEAVER
Rockefeller Foundation, New York City

CIENCE has led to a multitude of results that affect men’s lives.
Some of these results are embodied in mere conveniences of a
relatively trivial sort. Many of them, based on science and developed
through technology, are essential to the machinery of modern life.
Many other results, especially those associated with the biological and
medical sciences, are of unquestioned benefit and comfort. Certain
aspects of science have profoundly influenced men’s ideas and even their
ideals. Still other aspects of science are thoroughly awesome.

How can we get a view of the function that science should have in the
developing future of man? How can we appreciate what science really
is and, equally important, what science is not? It is, of course, possible
to discuss the nature of science in general philosophical terms. For some
purposes such a discussion is important and necessary, but for the pres-
ent a more direct approach is desirable. Let us, as a very realistic poli-
tician used to say, let us look at the record. Neglecting the older his-
tory of science, we shall go back only three and a half centuries and
take a broad view that tries to see the main features, and omits minor de-
tails. Let us begin with the physical sciences, rather than the biological,
for the place of the life sciences in the descriptive scheme will gradually
become evident.

Problems of Simplicity

Speaking roughly, it may be said that the seventeenth, cighteenth,
and nineteenth centuries formed the period in which physical science
learned variables, which brought us the telephone and the radio, the
automobile and the airplane, the phonograph and the moving pictures,
the turbine and the Diesel engine, and the modern hydroelectric power
plant.

The concurrent progress in biology and medicine was also impressive,
but that was of a different character. The significant problems of living
organisms are seldom those in which one can rigidly maintain constant
all but two variables. Living things are more likely to present situations
in which a half-dozen, or even several dozen quantities are all varying
simultaneously, and in subtly interconnected ways. Often they present
sitnations in which the essentially important guantities are either non-
quantitative, or have at any rate eluded identification or measurement
up to the moment. Thus biological and medical problems often involve
the consideration of a most complexly organized whole. It is not surpris-
ing that up to 1900 the life sciences were largely concerned with the
necessary preliminary stages in the application of the scientific method—
preliminary stages which chiefly involve collection, description, dassi-
fication, and the observation of concurrent and apparently correlated
Based upon materisl presented ix Chapter I, "The Scientists Speak,” Boni 4 Gaer, Inc.,

1947. Al rights reserved,
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“problems of simplicity”
(Weaver 1948)

example: billiard balls

* classical dynamics provide exact
¢ descriptions of a small number of
balls interacting on a table

D. Alderson - NPS

Weaver, W. 1948. Science and complexity. American Scientist 36 536-544. Also available electronically from
http://www.ceptualinstitute.com/genre/weaver/weaver-1947b.htm.
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“disorganized compIeX|ty” (Weaver 1948)

A A _ @ 4
* “The physical scientists, w:th the mathematicians often in

the vanguard, developed powerful techniques of probability )
theory and of statistical mechanics to deal with what may be
called problems of disorganized complexity.”

e __°

. ”The methods of statlstlcal mechanics are valid only when
O the balls are distributed, in their positions and motions, in
a helter-skelter, that is to say a disorganized, way.”
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1960s-Present: disorganized complexity
+ chaos, criticality, scale-free

Common features:

Simple abstractions
Universal appeal
Celebrate emergence

Dominates today’s
scientific thinking
about complexity

Minimal role of:
— constraints, tradeoffs
— design

Features that arise from

dis-organization:
Unpredictabity

Chaos, fractals

Critical phase transitions
Self-similarity
Universality

Pattern formation
Edge-of-chaos

Order for free
Self-organized criticality
Scale-free networks
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“organized complexity” (Weaver 1948)

“For example, the statistical methods would not apply if someone were
to arrange the balls in a row parallel to one side rail of the table, and

then start them all moving in precisely parallel paths perpendicular to
the row in which they stand. Then the balls would never collide with each

other nor with two of the rails, and one would not have a situation of
disorganized complexity."

TETERNPTRTSRASAN AN,

Systems exhibiting organized complexity:

biological systems (Weaver)

ecosystems

economies

social systems

advanced technologies (e.g., network-centric systems)

D. Alderson - NPS 22



organized complexity

 components are arranged in a very specialized way that
enables functionality and/or robustness features

* even minimal random rearrangement of that structure tends
to destroy its most salient features




organized complexity

 components are arranged in a very specialized way that
enables functionality and/or robustness features

* even minimal random rearrangement of that structure tends
to destroy its most salient features

claim:

* this structure is a consequence of specific constraints that are
placed on functionality and/or behavior

* largely independent of the process by which this organization
arises, whether by design or evolution.



a constraint-based view of organized complexity

System-level
constraints

—__constraints __-

“design space” Protocol-Based
Architecture

Component
constraints

Fundamental claim: complex networks (that we care about)
are the result of design (either evolution or engineering)




a constraint-based view of organized complexity

Constraints on the
System-level system as a whole

constraints (e.g., functional

\/ requirements)

Constraints on
individual components
(e.g., physical, energy,

information)

Component
constraints




e Hard limits on system characteristics

e implied by the intersection of component and
system constraints

e Most interesting when they do not follow trivially
from the other constraints

e Examples:
— Entropy/2" law in thermodynamics

— Channel capacity theorems in information
theory

— Bode integral and related limits in control
theory

— Undecidability, NP-hardness, etc in
computational complexity theory



“Constraints
that
deconstrain”

Emphasis on protocols

(persistent rules of interaction)

over modules

(that obey protocols and can change)

In reverse engineering,
Protocol-Based

e figure out what rules are being followed :
Architecture

e and how they govern system features or

behavior

In forward engineering,

e specify protocols that ensure such system
behavior



a constraint-based view of organized complexity

System-level
constraints

—__constraints __-

“design space” Protocol-Based
Architecture

Component
constraints

REF: D. Alderson and J. Doyle, 2010, “Contrasting Views of Complexity and Their Implications for Network-
Centric Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics-Part A 40(4): 839-852.



The Need to Study Organized Complexity
(Weaver 1948)

‘Science must, over the next 50 years, learn to deal
with these problems of organized complexity. Is there
any promise on the horizon that this new advance can
really be accomplished?

... Out of [World War IlI] have come two hew
developments that may well be of major importance in
helping science to solve these complex twentieth-
century problems.

The first piece of evidence is the wartime development
of new types of electronic computing devices. . . .

The second of the wartime advances is the ‘mixed-
team ~approach of operations analysis."

D. Alderson - NPS 30



The Need to Study Organized Complexity
(Weaver 1948)

e ‘Science must, over the next 50 years, learn to deal
with these problems of organized complexity. Is there
any promise on the horizon that this new advance can

Key Message #2
Is your system organized or disorganized?
How will you study its structure and function?

century problems.

e The first piece of evidence is the wartime development
of new types of electronic computing devices. . . .

e The second of the wartime advances is the mixed-
team ~approach of operations analysis."

D. Alderson - NPS 31



Where does complexity come from?

A common answer:

Complexity comes from increased system scale
* number of components

 number and types of interactions (often hidden)
What’s missing: organization...

How to make sense of complexity?



Where does complexity come from?

A common answer:

Complexity comes from increased system scale

* number of components
 number and types of interactions (often hidden)
What’s missing: organization...

How to make sense of complexity?

Answer #3: Organized complexity arises naturally in the
adaptation of highly evolved systems

* from attempts to increase competitive advantage
e from attempts to increase system robustness

rooted in biology and engineering (especially control)



Robustness

Def: Al[property] of [a system] is robust if it is [invariant]
for [a set of perturbations]

In order to talk in a meaningful way about robustness, we need to
get specific about each of these:

* property e.g., a measure of performance (throughput)
e system e.g., components? boundaries? scope?

* invariance e.g., no change? within 1%? within 5%

* perturbations e.g., component loss? changes in demand?

Ambiguity in our definitions leads to confusion.

REF: D. Alderson and J. Doyle, 2010, “Contrasting Views of Complexity and Their Implications for Network-
Centric Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics-Part A 40(4): 839-852.



Robustness

Def: Al[property] of [a system] is robust if it is [invariant]
for [a set of perturbations]

Robustness to different kinds of perturbations:

Reliability component failures

Efficiency resource scarcity

Scalability changes in size and complexity of the
system as a whole

Modularity structured component rearrangements

Evolvability lineages to possibly large changes over

long time scales

Fragility = the lack of invariance

REF: D. Alderson and J. Doyle, 2010, “Contrasting Views of Complexity and Their Implications for Network-
Centric Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics-Part A 40(4): 839-852.



Strategies for Creating System Robustness

Improve robustness of individual components
Functional redundancy: components or subsystems
Sensors that trigger human intervention

— Monitor system performance

— Detect individual component wear

— lIdentify external threats

4. Automated control

wnN =

Increasing Complexity

For many systems, much of the complexity they have
IS not the result of mechanisms for basic functionality,
but from mechanisms intended to give robustness.

From “the outside looking in,” it can be hard to see.




Steering
Brakes  Anti-skid Wipers Mirrors

Cruise control GPS Radio

raction control e ,
Shifting Headlights

Electronic 1gnition
Temperature control

lectronic fuel mjection Seatbelts

Bumpers Fenders

Courtesy: Suspension (control) Alrbags
John Doyle
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Steering
Brakes  Anti-skid Wipers Mirrors

Cruise control (DS
raction Knockouts often lose robustness,

not minimal functionality

‘emperature control
lectronic fuel injection

adio

Electronié 1gnition

Seatbelts

Bumpers Fenders

Courtesy: Suspension (control) Alrbags
John Doyle




Gene networks?
E.coli (K12 MG1655 ) ~2005 2014

S essential: 230 302

\
Wil (g

_\\\\\&\.\‘%\ L

‘\\\'\ﬂn

nonessential: 2373 4439
unknown;: 1804 5
total: 4407 4746

Color list
B ORF(essential)
B ORF(nonessential)
B ORF(unknown)
?® (RNA
Deletion Mask

. ( Profiling of E. Coli Chromosome
Alderson - NPS http://www.shigen.nig.ac.jp/ecoli/pec,



Strategies for Creating System Robustness

Improve robustness of individual components

wnN =

Sensors that trigger human intervention
— Monitor system performance
— Detect individual component wear
— lIdentify external threats
4. Automated control

Increasing Complexity

Complexity — Robustness Spiral

Functional redundancy: components or subsystems

* The same mechanisms responsible for
robustness to most perturbations

e allows possible extreme fragilities to others

e usually involving hijacking the robustness
mechanism in some way

~

/

40



Robust Yet Fragile (RYF)

a system] can have
a property] robust for
a set of perturbations]

Yet be fragile for
[a different property]

Fragile Or [a different perturbation]

4

Robust

: ¥

Conjecture:
The RYF tradeoff is a hard
limit that cannot be overcome.

REF: J. M. Carlson and J. C. Doyle, “Complexity and robustness,” Proc. Nat. Acad. Sci. USA,
vol. 99, no. Suppl. 1, pp. 2539-2545, 2002.
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Human complexity

Robust Yet Fragile
© Efficient, flexible metabolism @ Obesity and diabetes
© Complex development @ Rich microbe ecosystem
© Immune systems @ Inflammation, AIDS
© Regeneration & renewal @ Cancer
Complex societies 2 Epidemics, war

And Technologies...?

 Modern cars, planes, computers, etc have exploding
internal complexity

* They are simpler to use and more robust.
* But suffer from new fragilities that are hard to understand.

Courtesy: John Doyle



Human complexity

Robust Yet Fragile
© Efficient, flexible metabolism @ Obesity and diabetes
© Complex development @ Rich microbe ecosystem
© Immune systems @ Inflammation, AIDS
© Regeneration & renewal @ Cancer
Complex societies 2 Epidemics, war

And Technologies...?
A few examples in the cyber domain:

© SMTP makes it easy tosend @ Spammers clog our
email inboxes

© IP dutifully forwards packets @ DDOS attacks are easy
to its best effort to launch, hard to stop



Key Message #3

The Robust Yet Fragile (RYF) tradeoff means that it is not
sufficient merely to add more and more technologies to
“solve” the problem

Each addition has potential to create new fragilities that
were not anticipated

* Interdiction = |loss of components, loss of service
* Hijacking = components working in unintended ways




What about Big Data Analytics, ML, Al...?

Can’t we use Big Data to prevent / manage surprise?

Taylor & Francis

Taylor & Francis Group

VOL. 2,NO. 2,59-67

SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 2017 e
http://dx.doi.org/10.1080/23789689.2017.1294859
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Defining resilience analytics for interdependent cyber-physical-social networks

Kash Barker?, James H. Lambert®, Christopher W. Zobel<, Andrea H. Tapiad, Jose E. Ramirez-Marquez®,
Laura Albertf, Charles D. Nicholson® ' and Cornelia Caragea?®
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ABSTRACT ARTICLE HISTORY
Theory, methodology, and applications of risk analysis contribute to the quantification and Received 10 April 2016
management of resilience. For risk analysis, numerous complementary frameworks, guidelines,  Accepted 1 September 2016
case studies, etc., are available in the literature. For resilience, the documented applications are KEYWORDS

sparse relative to numerous untested definitions and concepts. This essay on resilience analytics Resilience; analytics:
motivates the methodology, tools, and processes that will achieve resilience of real systems. The networks: disruptions:
paper describes how risk analysts will lead in the modeling, quantification, and management of interdependendies
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an example. Descriptive, predictive, and prescriptive analytics are differentiated. A key outcome will

be the recognition, adoption, and advancement of resilience analytics by scholars and practitioners

of risk analysis.
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What about Big Data Analytics, ML, Al...?

Can’t we use Big Data to prevent / manage surprise?

Risk Analvsis DOT: 1L 111 risa 13328
Perspective

Rethinking Resilience Analytics

Daniel Eisenberg,' Thomas Seager,” and David L. Alderson'*

The concept of “resilience analytics™ has recently been proposed as a means to leverage the
promise of big data to improve the resilience of interdependent critical infrastructure sys-
tems and the commur

ities supported by them. Given recent advances in machine learning
and other data-driven analytic techmgues, as well as the prevalence of high-profile natu-
ral and man-made disasters. the temptation to pursue resilience analytics without gquestion
is almost overwhelming. Indeed. we find big data analytics capable to support resilience to
rare, situational surprises captured in analytic models. Nonetheless, this article examines the
efficacy of resilience analytics by answering a single motivating question: Can hig data ana-
Ivtics help cyber—physical-social (CPS) systems adapt to surprise? This article explains the
limitations of resilience analytics when critical infrastructure systems are challenged by tun-
damental surprises never conceived during model development. In these cases, adoption of
resilience analytics may prove either useless for decision support or harmful by increasing
dangers during unprecedented events. We demonstrate that these dangers are not limited
to a single CPS context by highlighting the limits of analytic models during hurnicanes, dam
failures, blackouts, and stock market crashes. We conclude that resilience analytics alone are
not able to adapt to the very events that motivate their use and may. ironically, make CPS
systems more vulnerable. We present avenues for future research to address this deficiency.
with emphasis on improvisation to adapt CPS systems to fundamental surprise.

KEY WORDS: Analyiics: infrastructure; resilience: surprise




What about Big Data Analytics, ML, Al...?

Can’t we use Big Data to prevent / manage surprise?

Risk Analvsis DOT: 1L 111 risa 13328
Perspective

Rethinking Resilience Analytics

Daniel Eisenberg,' Thomas Seager,” and David L. Alderson'*

Key Message #4
Big data analytics, ML, Al on their own
are insufficient to avoid surprise.

TSSO ATV IS THRdY }'ll.'\L CILIET WACTESS TUT URRISIUHT SUPFEAI T U TEATIITNLL Oy LT CASITTE
dangers during unprecedented events. We demonstrate that these dangers are not limited
to a single CPS context by highlighting the limits of analytic models during hurnicanes, dam
failures, blackouts, and stock market crashes. We conclude that resilience analytics alone are
not able to adapt to the very events that motivate their use and may. ironically, make CPS
systems more vulnerable. We present avenues for future research to address this deficiency.
with emphasis on improvisation to adapt CPS systems to fundamental surprise.

KEY WORDS: Analvtics: infrastructure; resilience: surprise
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2. The role of the MODELER...
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2. The role of the MODELER...
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2. SURPRISE happews...

Cognitive scientists™ typically distinguish between two types of surprise:

Situational Surprise Fundamental Surprise

*References:
* Lanir Z. Fundamental surprise. Eugene, OR: Decision Research. 1986.

*  Woods D et al., Behind Human Error, 1994 (1E), 2010 (2E)
*  Wears RL, Webb LK. Fundamental on situational surprise: A case study with implications for resilience.
In: Resilience engineering in practice. vol. 2; 2014. p. 33-46.
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2. SURPRISE happews...

Cognitive scientists™ typically distinguish between two types of surprise:

Situational Surprise

* compatible with previous beliefs

* failures and system responses are
well-modeled or measurable

e can be averted or mitigated by
information about the future

* |learning from situational surprise
seems easy

*References:

Fundamental Surprise

refutes basic beliefs about 'how things work'

one cannot define in advance the issues
for which one must be alert

advance information on fundamental
surprise actually causes the surprise

learning from fundamental surprise is
difficult

* Lanir Z. Fundamental surprise. Eugene, OR: Decision Research. 1986.

*  Woods D et al., Behind Human Error, 1994 (1E), 2010 (2E)

*  Wears RL, Webb LK. Fundamental on situational surprise: A case study with implications for resilience.
In: Resilience engineering in practice. vol. 2; 2014. p. 33-46.
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5. Responding to Fundamental Surprise (1)

what happens whew the Modeler and User are both present...?
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5. Responding to Fundamental Surprise (1)

what happens whew the Modeler and User are both present...?
...the User and the Modeler can work together to fix the wmodel.

P i, = i,
(/ﬂ Tropical-Storm-Force Wind Speed Probabilities .* (® Tropical-Storm-Force Wind Speed Probabilities (Preliminary) "
w For the 120 hours (5.00 days) from 2 AM AST FRI OCT 13 to 2 AM AST WED OCT 18 e | | For the 120 hours (5.0 days) from 2 PM AST FRI OCT 13 to 2 PM AST WED OCT 18 —_
e &
%

Probability of tropical-storm-force winds (1-minute aveﬁge >= 39 mph) from all tropical cyclones
O indicates Hurricane Ophelia center location at 2 PM AST FRI OCT 13, 2017 (Forecast/Advisory #19)

Probability of tropical-storm-force winds (1-minute average >= 39 mph) from all tropical cyclones
O indicates Hurricane Ophelia center location at 2 AM AST FRI OCT 13, 2017 (Forecast/Advisory #17)
- I I [ ] G
5 10 2_0 30 40 50 60 70 80 90 % 5 10 2_0 30 40 50 60 70 80 90 %

Hurricane Ophelia Oct 13, 2017 - 02:00 Hurricane Ophelia Oct 13, 2017 - 14:00



5. Responding to Fundamental Surprise (1)

what happens whew the Modeler goes away...?
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5. Responding to Fundamental Surprise (1)

what happens whew the Modeler goes away...?
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5. Responding to Fundamental Surprise (1)

what happens whew the Modeler goes away...?

..the User can only abandon the model and s forced to improvise!

Oroville Dam, February 2017



&. Responding to Fundamental Surprise (I1t)

what happens whew the User Ls automated...?
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&. Responding to Fundamental Surprise (I1t)

what happens whew the User Ls automated...?
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n the face of fundamental surprise, the Modeler might be too slow to adapt.



&. Responding to Fundamental Surprise (2)

what happens whew the User Ls automated...?
..again, there are many examples of this oceurring.

THE SAN DIEGO sivraikin , o1t B DO

« Massive outage: 1.4 million SDG&E customers powerless
@ « The cause: Failure in Arizona triggered cascade of events

« No school: Al county public schools are closed today

« Water worries: City issues boil-water order in some areas

UNION-TRIBUNE . thl;'s;ngt: Power to be restored in waves into Saturday |

downtown San Diego as the reglon endures Thursday’s massive power outage, ‘which began al :wmmhn.wimir sUT

Darkness eavelops

BLACKOUT

2 MAIN LINKS 70

n the face of fundamental surprise, the Modeler might be too slow to adapt.
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F. Responding to Fundamental Surprise (1v)

What happens whew the Modeler goes away... and the User is automated...?
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F. Responding to Fundamental Surprise (1v)

What happens whew the Modeler goes away... and the User is automated...?

...we might be seetng more of these situations twn the future.

o

No longer any wmechanism for adapting to fundamental surprise!



g. Rethinking Resilience Analytics
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So we need awaLgt’ws that can also adapt to fundamental surpri,se... but how?
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Abandon the Model and Apply Heuristics
— ignore analytics and base decisions on
expert judgement gained in past or similar
conditions.

Guess or Gamble — make decisions
without decision support based on luck.
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MODELER
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Collective Improvisation — unconstrained,
improvised actions tacit knowledge from User
/ Modeler shared experiences.

Phronesis — shared intent, ability to disobey
User / Modeler requirements

Explicit Commands — implementing User /
Modeler needs based strict requirements
Working at Cross Purposes — inability to
share tacit or explicit requirements. Collective
action worsens situations.
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ABSENT

Override the Model — slow down, isolate,
or turn off analytics before they cause
damage.

Roll Back the Model — revert the model to
a previous version that worked.

Kludge the Model — implement a “quick fix
that improves current decisions but may
increase overall model deficiencies.
Replace the Model — develop and deploy
an entirely new model and analytic

Query the Model — experiment with
existing analytics to find new ways they can
support decisions during surprise
Augment the Model — find new data or
observations not captured in current
analytics to augment decision-making..
Abandon the Model and Apply Heuristics
— ignore analytics and base decisions on
expert judgement gained in past or similar
conditions.

Guess or Gamble — make decisions
without decision support based on luck.

Fail Silent / Fail Safe — automatic overrides
shut down automated systems before they
incur human or economic loss

Safe Fail — system failures incur losses, but
in a planned and expected way

Cascade and Catastrophe — system failure
is not arrested or absorbed in any effective
way and causes even greater, compounding
failures
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Key Message #5

% How will you make your system “poised to adapt”
D in the presence of surprise?
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conditions.
* Guess or Gamble — make decisions
without decision support based on luck.



Key Points
Organized vs. Disorganized complexity

— Organized complexity is more important (| argue)
Organized systems must operate within constraints.
Tradeoffs are fundamental.

Everyone is trying to pick a point in the design space.
That’s not the issue. Any point will not be good forever.
Instead: how do you move the point?

Because... you will be surprised!

Architecture becomes the key to sustain adaptability

How will you design your system to be poised to adapt?
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