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Naval Postgraduate School (NPS)
America's national security research university

History Highlights
1909 Founded at U.S. Naval Academy 

1951 Moved to Monterey, CA 
Operations Research Curriculum

• Facilities of a graduate research 
university and a military base

• Faculty who work for the U.S. 
Navy, with clearances

• Mid-career students with fresh 
operational experience 

2017:
• 65 M.S. and 15 Ph.D. programs
• 612 faculty
• 1432 resident students includes  

(166 international / 47 countries)
• 909 distributed learning students



• Operations Research (OR) is the science of helping people and 
organizations make better decisions using
– mathematical models, statistical analyses, simulations 
– analytical reasoning and common sense 
to the understanding and improvement of real-world operations. 

What is Operations Research?

4

Source: IDC/KDnuggets Advanced Analytics Survey, 2016
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• Operations Research (OR) is the science of helping people and 
organizations make better decisions using
– mathematical models, statistical analyses, simulations 
– analytical reasoning and common sense 
to the understanding and improvement of real-world operations. 

• OR originated during World War II.  The military uses OR at the 
strategic, operational, and tactical levels.

• Biggest users of OR: modern corporations.

• NPS has the oldest OR instructional program in existence. 

• We conduct analysis and develop decision support tools that are 
of immediate operational relevance to the decision-maker.

• Often centered around Masters theses.

What is Operations Research?
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My Focus: Critical Infrastructure Systems
• Critical Infrastructure (CI): “systems and assets, whether physical or virtual, 

so vital to the United States that the incapacity or destruction of such 
systems and assets would have a debilitating impact on security, national 
economic security, national public health or safety, or any combination of 
those matters” --Section 1016(e) of the USA PATRIOT Act of 2001
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Network-Centric Infrastructure Systems

• A mix of human and automated system operators to remotely 
monitor, manage, and control the physical world 

• via the Internet and related communication systems 

• These systems support the operation and management of 
modern society’s most vital functions 
– delivery of economic goods and services
– business processes
– global financial markets
– education
– health care
– government services
– military operations

(a.k.a. Cyber-Physical-Social Systems)
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The GOOD
Network technology (interpreted broadly) has been wildly 

successful…
… yielding a “networked planet” for energy, food, 

information, goods and materials,…

Network technology has been too successful…
… yielding a “networked planet” for good and bad…
… and creating vulnerabilities due to our dependence.

The BAD

These network-centric systems
Largely deliver what we design them to do.
But fail because they create new problems that we 

did not expect.

The UGLY
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• Designers & operators of the next-generation network-centric 
systems need to understand and manage their growing complexity. 

We know: 
how to design, build, and deploy network-centric systems 

Not so easy: 
predict or control their collective behavior once deployed

When things fail… 
they often do so cryptically and catastrophically. 

Main Challenge: Managing Complexity
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An All-Too-Common Pattern

• According to Plan, things appear to be going great.
• Getting better and better, or so it seems!
• Until it isn’t.  And then it’s bad…  
• And unclear how to respond.

Key Message #1
We need to study these patterns of complexity as 
empirical phenomena
• Need to understand these patterns
• Without getting caught up in all the ”noise” 
• Otherwise you will get lost



Where we agree…

• Oversimple abstractions don’t work (for long)
✘Linear systems with predictable cause-effect
✘Root-cause analysis (e.g., blame the human!)
✘Stationarity in time

Where it’s noisy…

• What are the patterns?
• What drives them?
• What to do about them?



Where does complexity come from?
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Where does complexity come from?

A common answer:
Complexity comes from increased system scale
• number of components
• number and types of interactions (often hidden)
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Answer #1: abstract the problem (in scale) to identify 
the few key parameters that drive the system

How to make sense of complexity?
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the few key parameters that drive the system
Answer #2: study the network (at scale), network science!

How to make sense of complexity?
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Where does complexity come from?

A common answer:
Complexity comes from increased system scale
• number of components
• number and types of interactions (often hidden)
What’s missing: organization…
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How to make sense of complexity?

Answer #1: abstract the problem (in scale) to identify    
the few key parameters that drive the system
Answer #2: study the network (at scale), network science!

rooted in physics and mathematics
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“problems of simplicity” 
(Weaver 1948)

example: billiard balls
• classical dynamics provide exact 

descriptions of a small number of 
balls interacting on a table

Weaver, W. 1948. Science and complexity. American Scientist 36 536-544. Also available electronically from 
http://www.ceptualinstitute.com/genre/weaver/weaver-1947b.htm.
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“disorganized complexity” (Weaver 1948)

• “The methods of statistical mechanics are valid only when 
the balls are distributed, in their positions and motions, in 
a helter-skelter, that is to say a disorganized, way.”

• “The physical scientists, with the mathematicians often in 
the vanguard, developed powerful techniques of probability 
theory and of statistical mechanics to deal with what may be 
called problems of disorganized complexity.”



1960s-Present: disorganized complexity 
+ chaos, criticality, scale-free

Common features:
• Simple abstractions
• Universal appeal
• Celebrate emergence

• Minimal role of:
– constraints, tradeoffs
– design

Features that arise from 
dis-organization:

• Unpredictabity
• Chaos, fractals
• Critical phase transitions
• Self-similarity
• Universality
• Pattern formation 
• Edge-of-chaos
• Order for free
• Self-organized criticality
• Scale-free networks

Dominates today’s 
scientific thinking 
about complexity
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“organized complexity” (Weaver 1948)
• “For example, the statistical methods would not apply if someone were 

to arrange the balls in a row parallel to one side rail of the table, and 
then start them all moving in precisely parallel paths perpendicular to 
the row in which they stand. Then the balls would never collide with each 
other nor with two of the rails, and one would not have a situation of 
disorganized complexity."

Systems exhibiting organized complexity:
• biological systems (Weaver)
• ecosystems
• economies
• social systems
• advanced technologies (e.g., network-centric systems)



organized complexity

• components are arranged in a very specialized way that 
enables functionality and/or robustness features

• even minimal random rearrangement of that structure tends 
to destroy its most salient features



organized complexity

• components are arranged in a very specialized way that 
enables functionality and/or robustness features

• even minimal random rearrangement of that structure tends 
to destroy its most salient features

claim: 
• this structure is a consequence of specific constraints that are 

placed on functionality and/or behavior
• largely independent of the process by which this organization 

arises, whether by design or evolution.



Component
constraints

System-level
constraints

Protocol-Based
Architecture

“design space”

a constraint-based view of organized complexity

“Hard Limits”

Fundamental claim: complex networks (that we care about) 
are the result of design (either evolution or engineering)



Component
constraints

System-level
constraints

a constraint-based view of organized complexity

Constraints on the 
system as a whole 

(e.g., functional 
requirements)

Constraints on 
individual components
(e.g., physical, energy, 

information)



• Hard limits on system characteristics 
• implied by the intersection of component and 

system constraints
• Most interesting when they do not follow trivially 

from the other constraints
• Examples:

– Entropy/2nd law in thermodynamics
– Channel capacity theorems in information 

theory
– Bode integral and related limits in control 

theory
– Undecidability, NP-hardness, etc in 

computational complexity theory

“Hard Limits”



• Emphasis on protocols 
(persistent rules of interaction) 
over modules
(that obey protocols and can change)

• In reverse engineering, 
• figure out what rules are being followed 
• and how they govern system features or 

behavior

• In forward engineering, 
• specify protocols that ensure such system 

behavior 

Protocol-Based
Architecture

“Constraints 
that  

deconstrain”



Component
constraints

System-level
constraints

“design space”

a constraint-based view of organized complexity

“Hard Limits” Protocol-Based
Architecture

REF: D. Alderson and J. Doyle, 2010, “Contrasting Views of Complexity and Their Implications for Network-
Centric Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics-Part A 40(4): 839-852.
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The Need to Study Organized Complexity 
(Weaver 1948)

• “Science must, over the next 50 years, learn to deal 
with these problems of organized complexity. Is there 
any promise on the horizon that this new advance can 
really be accomplished? 

• . . . Out of [World War II] have come two new 
developments that may well be of major importance in 
helping science to solve these complex twentieth-
century problems.

• The first piece of evidence is the wartime development 
of new types of electronic computing devices. . . . 

• The second of the wartime advances is the ‘mixed-
team’ approach of operations analysis."
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The Need to Study Organized Complexity 
(Weaver 1948)

• “Science must, over the next 50 years, learn to deal 
with these problems of organized complexity. Is there 
any promise on the horizon that this new advance can 
really be accomplished? 

• . . . Out of [World War II] have come two new 
developments that may well be of major importance in 
helping science to solve these complex twentieth-
century problems.

• The first piece of evidence is the wartime development 
of new types of electronic computing devices. . . . 

• The second of the wartime advances is the ‘mixed-
team’ approach of operations analysis."

Key Message #2
Is your system organized or disorganized?

How will you study its structure and function?



Where does complexity come from?

A common answer:
Complexity comes from increased system scale
• number of components
• number and types of interactions (often hidden)
What’s missing: organization…
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How to make sense of complexity?



Where does complexity come from?

A common answer:
Complexity comes from increased system scale
• number of components
• number and types of interactions (often hidden)
What’s missing: organization…
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rooted in biology and engineering (especially control)

Answer #3: Organized complexity arises naturally in the 
adaptation of highly evolved systems 
• from attempts to increase competitive advantage
• from attempts to increase system robustness

How to make sense of complexity?



Robustness

In order to talk in a meaningful way about robustness, we need to 
get specific about each of these:
• property e.g., a measure of performance (throughput)
• system e.g., components?  boundaries?  scope?
• invariance e.g., no change?  within 1%?  within 5%
• perturbations e.g., component loss?  changes in demand?

Def: A [property] of [a system] is robust if it is [invariant] 
for [a set of perturbations]

REF: D. Alderson and J. Doyle, 2010, “Contrasting Views of Complexity and Their Implications for Network-
Centric Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics-Part A 40(4): 839-852.

Ambiguity in our definitions leads to confusion.
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Robustness

Robustness to different kinds of perturbations:
Reliability component failures
Efficiency resource scarcity
Scalability changes in size and complexity of the 

system as a whole
Modularity structured component rearrangements
Evolvability lineages to possibly large changes over 

long time scales

Def: A [property] of [a system] is robust if it is [invariant] 
for [a set of perturbations]

Fragility = the lack of invariance
REF: D. Alderson and J. Doyle, 2010, “Contrasting Views of Complexity and Their Implications for Network-
Centric Infrastructures,” IEEE Transactions on Systems, Man, and Cybernetics-Part A 40(4): 839-852.
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Strategies for Creating System Robustness
1. Improve robustness of individual components
2. Functional redundancy: components or subsystems
3. Sensors that trigger human intervention

– Monitor system performance
– Detect individual component wear
– Identify external threats

4. Automated controlIn
cr

ea
si

ng
 C

om
pl

ex
ity

For many systems, much of the complexity they have 
is not the result of mechanisms for basic functionality, 

but from mechanisms intended to give robustness.

From “the outside looking in,” it can be hard to see.
36Alderson - NPS 



Brakes

Airbags

Seatbelts

MirrorsWipers

Headlights

Steering

GPS Radio

Shifting
Traction control

Anti-skid

Electronic ignition

Electronic fuel injection
Temperature control

Cruise control

Bumpers Fenders
Suspension (control)

Seats

Courtesy:
John Doyle 37



Brakes

Airbags

Seatbelts

MirrorsWipers

Headlights

Steering

GPS Radio

Shifting
Traction control

Anti-skid

Electronic ignition

Electronic fuel injection
Temperature control

Cruise control

Bumpers Fenders
Suspension (control)

Seats

Knockouts often lose robustness, 
not minimal functionality

Knockouts often lethal

Courtesy:
John Doyle 38



~2005 2014
essential: 230 302
nonessential: 2373 4439
unknown: 1804 5
total: 4407 4746

Profiling of E. Coli Chromosome
http://www.shigen.nig.ac.jp/ecoli/pec

Gene networks?

~2005

2014
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Strategies for Creating System Robustness
1. Improve robustness of individual components
2. Functional redundancy: components or subsystems
3. Sensors that trigger human intervention

– Monitor system performance
– Detect individual component wear
– Identify external threats

4. Automated controlIn
cr

ea
si

ng
 C

om
pl

ex
ity

• The same mechanisms responsible for 
robustness to most perturbations

• allows possible extreme fragilities to others
• usually involving hijacking the robustness 

mechanism in some way

Complexity – Robustness Spiral

40



[a system] can have
[a property] robust for 
[a set of perturbations]

Robust
Fragile

Robust Yet Fragile (RYF)

Yet be fragile for
[a different property]  
Or [a different perturbation]

Conjecture:  
The RYF tradeoff is a hard 
limit that cannot be overcome.

REF: J. M. Carlson and J. C. Doyle, “Complexity and robustness,” Proc. Nat. Acad. Sci. USA,
vol. 99, no. Suppl. 1, pp. 2539–2545, 2002.
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Robust Yet Fragile

Human complexity

J Efficient, flexible metabolism
J Complex development and
J Immune systems
J Regeneration & renewal 
4 Complex societies

L Obesity and diabetes
L Rich microbe ecosystem 
L Inflammation, AIDS
L Cancer
N Epidemics, war 

• Modern cars, planes, computers, etc have exploding 
internal complexity

• They are simpler to use and more robust.
• But suffer from new fragilities that are hard to understand.

And Technologies…?

Courtesy: John Doyle42



Robust Yet Fragile

Human complexity

J Efficient, flexible metabolism
J Complex development and
J Immune systems
J Regeneration & renewal 
4 Complex societies

L Obesity and diabetes
L Rich microbe ecosystem 
L Inflammation, AIDS
L Cancer
N Epidemics, war 

A few examples in the cyber domain:
J SMTP makes it easy to send 

email 
J IP dutifully forwards packets 

to its best effort

L Spammers clog our 
inboxes

L DDOS attacks are easy 
to launch, hard to stop

And Technologies…?
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Each addition has potential to create new fragilities that 
were not anticipated
• Interdiction = loss of components, loss of service
• Hijacking = components working in unintended ways

44

Key Message #3
The Robust Yet Fragile (RYF) tradeoff means that it is not 
sufficient merely to add more and more technologies to 
“solve” the problem

Alderson - NPS 



What about Big Data Analytics, ML, AI…?
Can’t we use Big Data to prevent / manage surprise?



resilience analytics = “the 
systematic use of advanced data-
driven methods to understand, 
visualize, design, and manage 
interdependent infrastructures to 
enhance their resilience and the 
resilience of the communities and 
services that rely upon them”

What about Big Data Analytics, ML, AI…?
Can’t we use Big Data to prevent / manage surprise?
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resilience analytics = “the 
systematic use of advanced data-
driven methods to understand, 
visualize, design, and manage 
interdependent infrastructures to 
enhance their resilience and the 
resilience of the communities and 
services that rely upon them”

Twitter Feeds + 
Machine Learning Models 

= 
More Resilience

What about Big Data Analytics, ML, AI…?
Can’t we use Big Data to prevent / manage surprise?



resilience analytics = “the 
systematic use of advanced data-
driven methods to understand, 
visualize, design, and manage 
interdependent infrastructures to 
enhance their resilience and the 
resilience of the communities and 
services that rely upon them”

Twitter Feeds + 
Machine Learning Models 

= 
More Resilience

Uhh… No

What about Big Data Analytics, ML, AI…?
Can’t we use Big Data to prevent / manage surprise?



What about Big Data Analytics, ML, AI…?
Can’t we use Big Data to prevent / manage surprise?



What about Big Data Analytics, ML, AI…?
Can’t we use Big Data to prevent / manage surprise?

Key Message #4
Big data analytics, ML, AI on their own

are insufficient to avoid surprise.



WORLD

MODEL

1. How BIG DATA ANALYTICS 
are intended to work…



WORLD

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

1. How BIG DATA ANALYTICS 
are intended to work…



USER

WORLD

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

1. How BIG DATA ANALYTICS 
are intended to work…

Frame of 
Reference:

• Background
• Beliefs
• Biases

• Describe
• Predict
• Prescribe

Goals:



WORLD

USER

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

action

query

Goals:

Frame: 

1. How BIG DATA ANALYTICS 
are intended to work…



MODELER

WORLD

USER

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

action

query

• Describe
• Predict
• Prescribe

Goals:Frame of 
Reference:

• Background
• Beliefs
• Biases

Goals:

Frame: 

2. The role of the MODELER…



MODELER

WORLD

USER

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

action

query

• Describe
• Predict
• Prescribe

Goals:Frame of 
Reference:

• Background
• Beliefs
• Biases

Goals:

Frame: 

communication & 
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2. The role of the MODELER…



3. SURPRISE happens…

Cognitive scientists* typically distinguish between two types of surprise: 

*References:
• Lanir Z. Fundamental surprise. Eugene, OR: Decision Research. 1986.
• Woods D et al., Behind Human Error, 1994 (1E), 2010 (2E)
• Wears RL, Webb LK. Fundamental on situational surprise: A case study with implications for resilience. 

In: Resilience engineering in practice. vol. 2; 2014. p. 33-46.
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3. SURPRISE happens…

Cognitive scientists* typically distinguish between two types of surprise: 

Situational Surprise Fundamental Surprise

• compatible with previous beliefs • refutes basic beliefs about 'how things work'

• one cannot define in advance the issues 
for which one must be alert

• can be averted or mitigated by 
information about the future

• advance information on fundamental 
surprise actually causes the surprise

• learning from situational surprise 
seems easy

• learning from fundamental surprise is 
difficult

• failures and system responses are 
well-modeled or measurableBuy a ticket and win. Don’t buy a ticket 

and win.

Buy a ticket and lose.
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5. Responding to Fundamental Surprise (I)

…the User and the Modeler can work together to fix the model.

Hurricane Ophelia 2017

What happens when the Modeler and User are both present…?

Hurricane Ophelia Oct 13, 2017 – 02:00 Hurricane Ophelia Oct 13, 2017 – 14:00
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5. Responding to Fundamental Surprise (II)
What happens when the Modeler goes away…?

…the User can only abandon the model and is forced to improvise!

Oroville Dam, February 2017



MODELER

WORLD

USER

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

Goals:

Frame: 

action

query

communication & 
alignment of goals

Frame of 
Reference:

• Background
• Beliefs
• Biases

• Describe
• Predict
• Prescribe

Goals:

6. Responding to Fundamental Surprise (III)

May
contain

situational
surprise

What happens when the User is automated…?

May contain
fundamental surprise



MODELER

WORLD

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

action

query

Frame of 
Reference:

• Background
• Beliefs
• Biases

• Describe
• Predict
• Prescribe

Goals:

6. Responding to Fundamental Surprise (III)

May
contain

situational
surprise

What happens when the User is automated…?

communication & 
alignment of goals

May contain
fundamental surprise



MODELER

WORLD

MODEL

“B
IG

DA
TA”

Volume
Velocity
Variety

ANALYTICS

action

query

Frame of 
Reference:

• Background
• Beliefs
• Biases

• Describe
• Predict
• Prescribe

Goals:

6. Responding to Fundamental Surprise (III)

May
contain

situational
surprise

What happens when the User is automated…?

communication & 
alignment of goals

In the face of fundamental surprise, the Modeler might be too slow to adapt.

May contain
fundamental surprise



6. Responding to Fundamental Surprise (2)
What happens when the User is automated…?

In the face of fundamental surprise, the Modeler might be too slow to adapt.

…again, there are many examples of this occurring.
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What happens when the Modeler goes away... and the User is automated…?

No longer any mechanism for adapting to fundamental surprise!



7. Responding to Fundamental Surprise (IV)
What happens when the Modeler goes away... and the User is automated…?

…we might be seeing more of these situations in the future.

No longer any mechanism for adapting to fundamental surprise!



8. Rethinking Resilience Analytics
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So we need analytics that can also adapt to fundamental surprise… but how?
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User / Modeler requirements

• Explicit Commands – implementing User / 
Modeler needs based strict requirements

• Working at Cross Purposes – inability to 
share tacit or explicit requirements. Collective 
action worsens situations.
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increase overall model deficiencies.

• Replace the Model – develop and deploy 
an entirely new model and analytic
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• Fail Silent / Fail Safe – automatic overrides 
shut down automated systems before they 
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• Safe Fail – system failures incur losses, but 
in a planned and expected way

• Cascade and Catastrophe – system failure 
is not arrested or absorbed in any effective 
way and causes even greater, compounding 
failures
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8. Rethinking Resilience Analytics

Key Message #5
How will you make your system “poised to adapt”

in the presence of surprise?



Key Points
• Organized vs. Disorganized complexity

– Organized complexity is more important (I argue)
• Organized systems must operate within constraints.  
• Tradeoffs are fundamental.
• Everyone is trying to pick a point in the design space.
• That’s not the issue.  Any point will not be good forever.
• Instead: how do you move the point?
• Because… you will be surprised!
• Architecture becomes the key to sustain adaptability
• How will you design your system to be poised to adapt?

89Alderson - NPS 



Contact Information
• Dr. David Alderson

Professor, Operations Research
Director, NPS Center for Infrastructure Defense
Naval Postgraduate School
831-656-1814, dlalders@nps.edu
http://faculty.nps.edu/dlalders

• NPS Center for Infrastructure Defense
http://www.nps.edu/cid  

Unclassified. Distribution unlimited. Material contained herein represents the sole opinion of the author and does 
not necessarily represent the views of the U.S. Department of Defense or its components.


