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2. Literature Review
The modern study of roadway traffic dates back to

Wardrop (1952) and Beckmann, McGuire, andWinsten

(1956); see also Boyce, Mahmassani, and Nagurney

(2005) for a retrospective.Dafermos andSparrow (1969)

formalized the distinction between user equilibrium

(UE) and system optimization (SO) solutions, respec-

tively, to the traffic assignment problem. See also

Beckmann (1967); Florian andNguyen (1976); Dowling,

Singh, and Cheng (1998); Gazis (2002, pp. 185–236);

Boyce and Bar-Gera (2003); and Correa and Stier-Moses

(2010) for background on modeling and assessment of

roadway systems.

More recently, there is a growing literature focused

on the performance of transportation systems in the

presence of disruptive events. Faturechi and Miller-

Hooks (2014b) review over 200 articles focused on

the performance of transportation infrastructure sys-

tems in the presence of disasters, categorizing them in

terms of the applied performance measure, their mod-

eling technique, their assessment methodology, and

the strategy used for managing these infrastructures

during crisis. In this section, we review selected works

most relevant to our study to place our contribution in

context.

2.1. Recent Studies on Transportation Resilience
Liu, Fan, andOrdóñez (2009, p. 1582) consider the chal-

lenge of “allocating limited retrofit resources over mul-

tiple highway bridges to improve the resilience and

robustness of the entire transportation system in ques-

tion.” Theirs is a multicommodity flow model defined

by origin-destination (OD) pairs, where the travel time

on a link depends on its flow, as described by the

Bureau of Public Roads (BPR) function (Bureau of Pub-

lic Roads 1964). Seismic damage to highway bridges

is uncertain and modeled using a finite number of

damage scenarios. Decisions and scenario damages are

binary. They present a two-stage stochastic program

with the first stage predisaster preparations for bridge

retrofit and the second postdisaster operations, i.e.,

user network flows resulting from a SOmodel. The best

retrofit solution is the one that minimizes a combina-

tion of expected reconstruction costs and travel delays.

They solve their problem with an L-shaped decompo-

sition (Van Slyke and Wets 1969) and generalized Ben-

ders decomposition (Geoffrion 1972). They apply their

analysis to two examples: (1) a small Sioux Falls road

network with 24 nodes, 76 arcs, and only six bridges

vulnerable; and (2) an example from Alameda County

with 510 nodes and 1,424 arcs (resulting in 2,401 OD

traffic pairs), and 13 vulnerable bridges.

Fan and Liu (2010) extend this work for essentially

the same problem by solving it with a progressive

hedging technique (Rockafellar and Wets 1991). They

use the BPR function for traffic congestion and also

include a penalty cost for unsatisfied travel demand.

Here, trafficflows followaUEmodel. Theyuse the same

Sioux Falls example with six vulnerable bridges, and

they completely enumerate 2
6

scenarios. Theyadmit the

method requires careful tuning—computation times

can be long and solutions can oscillate.

Peeta et al. (2010) study how to strengthen the seg-

ments of a road network in preparation for a potential

earthquake disruption, with the explicit objective to

preserve OD connectivity for emergency responders.

They consider a hypothetical earthquake in Istanbul for

a road network consisting of 25 nodes and 30 arcs. The

network model does not include road segment flow

capacities or congestion, and they restrict attention to

five OD pairs representing connectivity to the districts

with the highest expected number of injured people

for the earthquake scenarios under consideration. They

pose a two-stage stochastic program in which the first

stage involves seismic retrofit of bridges or viaducts to

reduce their failure probability, and the second stage

reveals the residual connectivity and path distances

following the disaster. They solve the problem using a

Monte Carlo sampling procedure.

Chen and Miller-Hooks (2012) study the resilience

of an intermodal freight transport network in which

recovery activities can be taken following a disaster.

Specifically, they define resilience as the postdisaster

expected fraction of demand that can be delivered in a

specified recovery time and budget. Arc traversal times

and capacities are random variables (realized follow-

ing the disruption), however these can be improved

by undertaking one of several recovery activities. Their

model does not include preevent decisions. They for-

mulate a stochastic mixed-integer program that max-

imizes the expected fraction of deliveries that can be

satisfied. They consider the example of an 8-node, 12-

arc network faced with six possible scenarios involv-

ing both natural and man-made disruptions, and with

the possibility of six recovery activities, each of which

improves a subset of network arcs. They solve their

problem using a combination of Benders decomposi-

tion, column generation, and Monte Carlo simulation.

Miller-Hooks, Zhang, and Faturechi (2012) extend

this work by considering a two-stage problem in which

preparedness decisions are made in the first stage and

recovery actions are made in the second stage. Again,

resilience is defined as the fraction of demand that

can be satisfied postdisaster. They propose a stochas-

tic two-stage integer program in which the aim is to

determine the optional portion of the budget to spend

on preparedness and the amount of the budget to

reserve for postdisaster recovery given an uncertain

future network state. The probability of each disas-

ter scenario is assumed to be known in advance, and

the optimal investment plan is the one that yields the

maximum expected network resilience. They study an
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intermodel freight network with eight nodes, 24 one-

way rail arcs, and 22 bidirectional virtual highway arcs.

They consider two possible preparedness activities and

five potential recovery activities. They useMonte Carlo

estimation to generate 100 realizations for each of five

disaster scenarios, and they solve the overall problem

using an L-shaped decomposition technique.

Faturechi and Miller-Hooks (2014a) generalize the

previous concept to an optimization problem to max-

imize the expected performance of an infrastruc-

ture system given first-stage preparedness actions and

second-stage recourse actions. Here, “performance”

could be any one of several measures (e.g., robustness,

flexibility, recovery, resilience), subject to constraints on

service guarantees and budget limitations. They for-

mulate a two-stage stochastic program that is, in gen-

eral, both nonlinear and nonconvex, and propose var-

ious decomposition techniques to solve it. As an illus-

trative example, they consider thepreviousmultimodal

shipping network, with the performance measured in

terms of OD flows and under the same five disaster

scenarios.

Faturechi and Miller-Hooks (2014c) apply this gen-

eralized framework to a three-stage stochastic program

for the travel time resilience of roadway networks. Sys-

tem performance is the total travel time to serve a

given OD demand. The travel times and capacities on

individual roadway links are random variables that

depend on the occurrence of a disaster. Disasters are

characterized in terms of type, location, and conse-

quences (imposed on link travel times and capacities),

and the problem as a whole evolves in three stages.

In the first stage, the possible disaster type, location,

and consequences are known probabilistically. Deci-

sion variables in this first stage include capacity expan-

sion and retrofit (protection of links). In the second

stage, the disaster event type and location are known,

but consequences are probabilistic. Decision variables

in the second stage are preparedness actions that affect

the efficiency of postdisaster response actions. In the

third stage, the disaster event has occurred and con-

sequences are known. Decisions at this stage include

response actions and postresponse traffic flows. Sys-

tem users are assumed to select their routes unselfishly,

and traffic demand is assumed to be unchanged follow-

ing the disaster. Link travel times are estimated using

the BPR function for congestion and approximated as a

piecewise-linear function. It is assumed that aUE exists

before the disaster and once recovery has happened,

and a partial user equilibrium (PUE)—in which only

affected users reconsider their routes—adequately cap-

tures driver route-choice postdisaster. They present a

progressive hedging algorithm to solve the problem,

noting that Benders decomposition is too computa-

tionally intensive. They illustrate the technique with a

small example involving six nodes and 16 links, involv-

ing four OD pairs of traffic, and considering three dis-

aster scenarios (earthquake, flood, and malicious acts).

They solve this example using GAMS (GAMS Devel-

opment Corp 2013) on a personal computer, obtaining

optimal solutions in three to four hours.

2.2. Sequential Games for Infrastructure
Defense Analysis

We use a sequential-game model called a DAD model

for assessing and improving system resilience against

disruptions. The model, first defined in Brown et al.

(2006), is a three-stage Stackelberg game (e.g., Luh,

Chang, and Chang 1984) whose name originates with

our assumption that there is a decision maker cor-

responding to each stage of the game. We asso-

ciate the first decision with a defender of an infras-

tructure system, i.e., the individual or group that is

charged with improving the operational resilience of

the system. A defender could be a system operator,

owner-company executives, or a group of policy mak-

ers. First-stage decisions suggest structural changes for

the system of interest, such as adding a new system

component that contributes new or redundant capabil-

ity, modifying an existing component (e.g., increasing

its capacity), or protecting a component to reduce the

impact of any damage to that component, subject to

budgetary constraints. We refer to these decisions col-

lectively as the defense options, and any set of defense

options that can be selected simultaneously is a defense.
We associate the second decision with an attacker

representing a hypothetical, intelligent adversary who

uses a plausible set of resources and capabilities to

carry out a worst case attack (a deliberate, disruptive

event) to damage or destroy components of the modi-

fied system; the attacker can observe the consequence

of any first-stage defense decision and, accordingly,

the resulting changes made to the operational system.

Throughout, “worst case” means that system function-

ality is maximally reduced or, equivalently, the system

operating cost is maximized. We are not trying to pre-

dict the decision of any specific attacker; rather, we are

using the notion of an omniscient, rational attacker as a

means to discover operational vulnerabilities. In prac-

tice, an attacker may not be smart enough to act opti-

mally or may have motives that lead him to attack in

a less-than-optimal fashion in the view of the defender

and operator. Trying to build a model of such a situa-

tionwould force us to represent an attacker’s intent, his

intelligence, or even his modeling skills. Such models

are simply impossible to validate (see Brown and Cox

2011a, b), and we believe it is more prudent to assume

a worst case.

We associate the third decision with an operator (or
“defender-as-operator”) who selects among a set of

feasible operational decisions to minimize the operat-

ing cost of the defended, and subsequently attacked,
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system. The notion of an operator is certainly appro-

priate for systems like an electric power grid controlled

by an independent system operator (“ISO”; see O’Neill

et al. 2006), but for simplicity we also apply the term to

system optimization or equilibrium models that rep-

resent the interactions of the system’s users, perhaps

influenced by centralized or decentralized controls.

When working to minimize the operating cost of

the attacked system we assume the system opera-

tor is indifferent to the source of disruptive events.

In practice, real infrastructure owners and operators

must routinely contend with disruptive events caused

by Mother Nature, accidents, failures, and sometimes

even deliberate acts; in each of these cases the opera-

tor’s first priority is maintaining the best possible sys-

tem performance for the degraded system. In reality,

a worst-case disruption might be caused by a combi-

nation of deliberate and/or nondeliberate events that

leads to a “perfect storm,” and initiating these events

might be beyond the capability of any single specific

attacker. The intent of modeling the attacker is to iden-

tify the disruptive events that lead to worst-case sys-

tem performance, so that the operator understands in

advance what is possible (even if history or intelligence

suggests such combinations of events are unlikely) and

to prepare appropriately for those possibilities.

As described in Alderson et al. (2013), the DAD for-

mulation builds on a class of system interdiction models
that have their roots in military planning problems; see

also Danskin (1967); Wollmer (1964, 1968); McMasters

and Mustin (1970); Ghare, Montgomery, and Turner

(1971); Fulkerson and Harding (1977); Golden (1977);

and Wood (1993). For applications and additional

background, we refer the reader to Wood (2011);

Cappanera and Scaparra (2011); Alderson et al. (2011);

Scaparra and Church (2012); Dimitrov and Morton

(2013); Alguacil, Delgadillo, and Arroyo (2014); and

Yuan, Zhao, and Zeng (2014). These models have been

applied to a variety of infrastructure domains, includ-

ing electric power grids (Salmerón, Wood, and Baldick

2009), facility-location problems (Church and Scaparra

2006), supply chain networks (Snyder et al. 2006), and

telecommunications networks (Murray, Matisziw, and

Grubesic 2007).

Notably, Bell et al. (2008, p. 1897) apply the DAD con-

cept to identify a risk-averse routing strategy for the

traversal of a single ODpath across the road network in

London, under the assumption that “link travel cost is

directly influenced by link status and is not a function

of link flow.” That is, the traversal cost of an individ-

ual disrupted road segment is assumed to be a scalar

multiple of that under normal conditions, where these

costs are precomputed (i.e., traffic congestion result-

ing from rerouting after the failure of individual road

segments is not explicitly considered). Alderson et al.

(2011) describe a DAD analysis of a road network that

is similar to the one in this paper, but apply a simplified

operating model and test only a small, hypothetical

example.

2.3. Contributions of the Current Work
Building on the recent tutorial by Alderson, Brown,

and Carlyle (2014), the current paper addresses the

challenge of assessing and improving regional road-

way resilience using the DAD perspective. We present

an operator model that reflects traffic routing to satisfy

OD travel demands according to a system optimization

that minimizes overall travel time. Travel times follow

the BPR function for congestion, and the model allows

for individual travelers to stay at home if their overall

travel time is excessive. The modeled impact of a dis-

ruption on an individual road segment is different for

highway segments (for which alternate surface routing

might be available) and bridges or tunnels (where alter-

nate surface routes are unlikely to exist). We present a

multiperiod model that reflects nonuniform recovery

times for individual roads, bridges, and tunnels fol-

lowing a disruption. We solve for the worst-case loss of

one or more highway, bridge, or tunnel segments and

identify the defensive investments that mitigate such

losses in the best possible way.

We apply this model to a full-scale regional high-

way network in the United States using recent census

data on commuters and a road-network model based

on parameters endorsed by the relevant regional trans-

portation agency. Our representation has 91 nodes,

133 edges, 266 arcs, and 8,190 OD pairs. We solve the

complete trilevel DADmodel using nested, generalized

Benders decomposition.

We believe this paper presents the most complete

description of a realistic application of DAD available

in the literature, and that it can serve as a template for

future studies seeking to improve the resilience of an

infrastructure system to worst-case losses.

3. DAD for a Highway Network
We seek a method to identify a budget-limited design

that modifies the regional highway infrastructure sys-

tem to maximally improve that system’s operational

resilience to worst-case losses. We use a hypothetical

attacker to discover worst-case losses. The model has

several key components.

System operation and performance measure. Given

estimated demands for point-to-point travel during

periods of peak demand, over a specified time horizon,

the operating decisions for the system (specifically, the

routes of individual travelers) are computed for each

morning commute period. We use a standard model of

traffic flow, extended appropriately, and measure per-

formance as total vehicle-hours of travel (vht), plus cer-

tain penalties. We assume that the morning commute

 



Alderson et al.: Operational Resilience of Highway Infrastructure
Transportation Science, Articles in Advance, pp. 1–23, ©2017 INFORMS 5

period is much like the evening commute period and

that nonpeak demand for travel is relatively low and

will be accommodated with relatively little difficulty.

As in Petersen (1975) and other papers, we call this

cost delay (or “system delay”) although it means total

travel time, as opposed to that quantity less nominal,

total travel time under ideal conditions (which would

be called “incremental delay”).

As in other recent work, we assume that users choose

their routes unselfishly. That is, we use an SO model

of traffic assignment that minimizes the total system

delay given available routes for OD traffic. Modern

metropolitan highway systems are thoroughly instru-

mented with traffic sensors and displays of traffic con-

ditions, obstructions, and estimated transit times to

destinations. Real-time traffic information and auto-

mated routing from services such as Google Maps

(Google 2016) andWaze (2016) arewidely used. Collec-

tively, with the advent of driverless vehicles, SOmodels

are becoming more realistic representations of traffic.

Moreover, we are interested in assessing the capability

of a network to respond to disruptive events, so a best-

case response from an SO model is appropriate as an

upper bound on what is possible.

Attacks. An attack is a shock that damages one or more

targets, each target being a road segment, bridge, or

tunnel. For simplicity, we ignore the possibility of dam-

aging highway interchanges, so every target is an edge
[i , j] connecting two nodes i and j in a network.

We are interested in the resilience of an infrastruc-

ture system not to a random shock, but to one that

yields the “worst” possible consequence. When eval-

uating the operational resilience of an infrastructure

system, it is prudent to ask the question, “How bad

could things be?” One way to answer this question is

to consider the vulnerability of system performance to

the targeted loss of sets of components.

In what follows, we consider the role of a hypotheti-

cal, intelligent adversary called the attacker who delib-

erately chooses component losses for the system. The

goal of our hypothetical attacker is to discover the set(s)

of components that, if lost, hurt the performance of

the system in the worst possible way. We refer to these

sets as the worst-case component losses, or simply worst-
case losses. The importance of understandingworst-case

losses follows from several observations.

• The performance of infrastructure systems is typ-

ically more vulnerable to the loss of targeted sets of

components than to a random set of components. This

is because of the specific way in which system compo-

nents work together to achieve performance, and it is

nontrivial to determine which sets of components are

“most vital” (see Alderson et al. 2013, for a discussion).

It is often the case that the simultaneous loss of a small

number of seemingly insignificant components can be

devastating to system performance.

• Infrastructure systems do face threats of deliber-

ate attack (e.g., the April 2013 attacks on the Pacific

Gas and Electric Metcalf electric substation in San Jose,

California), and in general these systems have not been

designed to be resilient to deliberate threats. For exam-

ple, electric power transformers are often constructed

from high-quality ceramics that provide a mean time

between random failure of hundreds of years. How-

ever, these same components can be easily destroyed

by a high-powered rifle.

• It is the losses of system components that matter,

more so than the process that leads to those losses. In

practice, infrastructure owners and operators are often

agnostic to the source of a disruption—accident, fail-

ure, natural disaster, or attack—once one or more com-

ponents are lost, the operator’s focus is on doing the

best she can to maintain function with whatever is left

of the system (see Alderson, Brown, and Carlyle 2015,

for a discussion).

• Strictly speaking, the worst-case situation for an

infrastructure system would be the simultaneous loss

of all system components. However, in practice our

interest is understanding the worst among a specific

set of possible losses; thus, our notion of worst-case

losses is conditioned on a given set of possibilities.

Specifically, we introduce the notion of the attacker’s
resource(s), which simply reflects a plausible limit on

the number and type of targets that a coordinated

attack might damage, explained in detail below.

In summary, the use of a hypothetical attacker pro-

vides a mechanism that is convenient, both concep-

tually and mathematically, for discovering worst-case

losses. We emphasize that our goal is the discovery of

worst-case losses and their implication for the opera-

tional resilience of the infrastructure system, not the

intent, values, or behavior of any particular attacker

(see Keeney 2007, for an example of the considerable

effort already devoted to this).

Repair epochs. Following an attack that damages one

or more targets, we assume that traffic patterns will

adjust in accordance to our model of traffic flow to

satisfy the original OD demands as best as possible

given available road segments. However, in general

we should expect that the amount of time required to

restore the functionality of different components will

differ, perhaps significantly. Our interest is in under-

standing the performance of the system, not just in

the immediate aftermath of the attack but as the sys-
tem recovers. To capture this, our model includes repair
epochs, discrete intervals of time (perhaps different in

duration) that collectively reflect the points in time

where individual components will be restored. Thus,

our representation of system operation is a multi-

periodmodel that reflects the schedule of repairs in the

days, weeks, or months following an attack. At each

point along the way, we assume that traffic adapts to
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take advantage of restored roadway segments as they

become available.

System designs. The designs of interest apply to an

existing system, and cover budget-limited defenses of

potential targets, e.g., structural hardening of a tunnel,

or access control via checkpoints to a bridge. A more

general model might consider adding lanes to road

segments, building new road segments or bridges, etc.

(see Alderson, Brown, and Carlyle 2014, for a descrip-

tion of the mathematics to support general design

options), but this paper only covers designs that can be

represented as defenses of edges.

3.1. Full Formulation
This section presents a full DAD model for a regional

highway network; we label this “T-DAD” for “trans-

portation DADmodel.” The three stages of T-DAD are

difficult to see, sowe clarify by showing how (a) assum-

ing a null defense and no attacks, the model specializes

to theunderlyingoperationalmodel, (b) addinga repre-

sentation of optimized attacks to the operational model

results in a two-stage Attacker-Defender (AD) model,

and (c) adding a representation of optimized defenses

to the ADmodel produces the full model T-DAD.

Sets and Indices:

i , j, p , n ∈ N nodes in a highway network;

[i , j] ∈ E undirected edge in a highway network

(i < j);
(i , j) ∈ A directed arc in a highway network; if

[i , j] ∈ E, then (i , j) ∈ A and ( j, i) ∈ A;

t ∈ T repair epoch in planning horizon;

d ∈ D defense options;

d ∈ Di j ⊆ D defense options available for edge

[i , j] ∈ E (e.g., do nothing, add

checkpoints);

d
0
∈ Di j ⊆ D null defense option that leaves edge

[i , j] ∈ E unchanged (i.e., undefended).

Data (units):

bp j for each commute period, bpp denotes the

total supply rate for vehicles originating at

node p, and −bp j , j , p, denotes the demand

rate at j for vehicles originating at p (vehicles

per hour, “vph”);

ui jt capacity of arc (i , j) ∈ A during repair epoch t
(vph);

qi jt penalty for traversing targeted arc (i , j) ∈ A
during epoch t (hours);

q
max

maximum tolerable commute duration

(hours);

nt number of commute periods during epoch t
(periods);

h duration of commute period (hours);

ht h × nt , total commute time t (hours);

ai j cost to target edge [i , j] ∈ E as part of an

attack (attack dollars);

ā total attack resource (attack dollars);

ui jdt under defense option d in epoch t, the
baseline capacity of arc (i , j) ∈ A (vph);

u′pi jdt upper bound on flow rate originating from p
and traversing (i , j) ∈ A under defense option

d in epoch t (vph); in practice,

u′pi jdt � min{2ui jdt , bpp};
qi jdt if arc (i , j) ∈ A is targeted by an attack, the

penalty (if any) for traversing that arc under

defense option d during epoch t (hours);
F0

i jdt( · ) travel time as a function of traffic flow rate on

arc (i , j) ∈ A, if that arc is not targeted by an

attack under defense option d during epoch t
(hours);

F1

i jdt( · ) travel time on arc (i , j) ∈ A that is targeted by

an attack under defense option d during

epoch t as a function of traffic flow rate

(hours);

ci jd cost to defend edge [i , j] ∈ E using defense

option d ∈ Di j (defense dollars);

c̄ total defense budget (defense dollars).

Decision Variables (units, when appropriate):

wi jd 1 if edge [i , j] ∈ E is defended using defense

option d ∈ Di j , and 0 otherwise;

xi j , x ji 1 if edge [i , j] ∈ E is attacked, and 0 otherwise

(Note: Defining x ji simplifies notation here,

but x ji ≡ xi j for all [i , j] ∈ E, and is substituted

out in practice.);

y′pi jdt for each commute period during epoch t, the
flow rate for traffic that originates from p and

that traverses arc (i , j) ∈ A under defense

option d ∈ Di j (vph);

y′′i jdt for each commute period during epoch t, the
total flow rate for traffic on arc (i , j) ∈ A under

defense option d ∈ Di j (vph);

y′′′p jt for each commute period during epoch t, the
rate for unmet demand (“dropped demand”)

having origin p and destination j (vph).

Formulation of T-DAD(w, x,y)

z∗
DAD
≡min

w
max

x
min

y′ ,y′′ ,y′′′

{ ∑
(i , j)∈A,

d∈Di j , t∈T

ht(y′′i jdt F
0

i jdt(y′′i jdt)(1−xi j)

+ y′′i jdt F
1

i jdt(y′′i jdt)xi j)+
∑
(i , j)∈A,

d∈Di j , t∈T

ht qi jdt y′′i jdt xi j

+
∑

p , j∈N,p, j,
t∈T

ht qmax
y′′′p jt

}
(1)

s.t.

∑
j | (n , j)∈A,

d∈Dn j

y′pn jdt−
∑

i | (i ,n)∈A,
d∈Din

y′pindt− y′′′pnt �bpn

∀p ,n∈N, p,n , t∈T, (2)
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p∈N− j
y′pi jdt− y′′i jdt �0

∀(i , j)∈A, d∈Di j , t∈T, (3)∑
p∈N

y′pi jdt ≤ui jdt wi jd

∀[i , j]∈E, d∈Di j , t∈T, (4)∑
p∈N

y′p jidt ≤u jidt wi jd

∀[i , j]∈E, d∈Di j , t∈T, (5)∑
[i , j]∈E

ai j xi j≤ ā , (6)∑
[i , j]∈E,
d∈Di j

ci jd wi jd≤ c̄ , (7)

∑
d∈Di j

wi jd �1 ∀[i , j]∈E, (8)

xi j ∈{0,1} ∀[i , j]∈E, (9)

x ji≡xi j ∀[i , j]∈E, (10)

wi jd ∈{0,1} ∀[i , j]∈E,d∈Di j , (11)

y′≥0, y′′≥0, y′′′≥0. (12)

Our notation T-DAD(w, x,y) emphasizes the sequence

of decisions associated with defenses w, attacks x, and
operation y, and allows us to specify fixed values for

some of these decision variables. The rationale behind

the form for this trilevel model is presented in the

tutorial by Alderson, Brown, and Carlyle (2014). In

the remainder of this section, we explain T-DAD by

extracting and discussing its “submodels.”

3.2. The Operational Model
The need to track defense options d and repair epochs t
makes T-DAD complicated. To understand the under-

lying operational model, consider the following (tem-

porary) simplifications:

1. T � {t
0
}, i.e., we consider only a single repair

epoch;

2. nt
0

� 1, i.e., epoch t
0
contains only a single com-

mute period;

3. wi jd
0

≡ 1 for all [i , j] ∈ E, i.e., only the null defense

option is relevant;

4. xi j ≡ 0 for all [i , j] ∈ E, i.e., no attack is carried out.

Then, letting ŵ
0
denote the vector of null defenses

and 0 denote the vector of zeroes to represent the case

of no attacks, T-DAD simplifies to

T-DAD(ŵ
0
, 0,y):

min

y,y′′ ,y′′′

{ ∑
(i , j)∈A

ht
0

y′′i jd
0
t
0

F0

i jd
0
t
0

(y′′i jd
0
t
0

)+
∑

p , j∈N, p, j
ht

0

q
max

y′′′p jt
0

}
s.t. (2)–(5), (12). (13)

With fixed defenses and zero attacks, we drop the

respective min and max operators for the outer two

problems. The first term in the objective function (13)

evaluates system delay (vht) by summing, for each arc

(i , j) in the network, [hours in the commute period]×

[vehicle flow rate on (i , j) during that period] × [the

travel time on (i , j) given the flow rate]. In practice,

we use BPR travel times for F0

i jdt( · )—Appendix A

describes the generic travel-time function Fi j(y′′i j) and
the implementation of the total travel-time function

y′′i jFi j(y′′i j) using a piecewise-linear approximation—

but the framework is general and could accommodate

other travel time models.

To allow for the extreme conditions that might occur

after a severe shock—for instance, all unattacked paths

between two nodes might actually be eliminated—we

modify the standard model slightly by incorporating

a second term in (13) that represents a penalty for

“dropped demand” (i.e., commuters who elect to stay

at home rather than travel). Specifically, we incorporate

elastic flow-balance constraints that allow for demand

to go unmet given that a sufficiently high penalty is

paid. In our case study to follow (see Section 4), we set

the penalty for this dropped demand to six hours per

commuter who stays home, assuming that a commuter

will choose to stay at home if the best available com-

mute time exceeds three quarters of the length of a stan-

dard workday. (The nominal, inelastic model assumes

that constant demand rates for point-to-point travel are

presented to the system over a four-hour period, but

does not limit observed travel times. This “six-hour

safety valve” could be seen as an alternate OD path

with a fixed length, and so we refer to our model as an

“enhanced” model that has an implicit six-hour bound

on travel times because of these alternate paths.)

For a single period of time, and for each possible

origin of traffic, each constraint (2) maintains “balance

of vehicle flow rate” at a node, adjusted for dropped

demand. Each constraint (3) accumulates the total flow

rate on an arc in each time period, so that the objec-

tive function may be expressed succinctly; these vari-

ables may be substituted out, however. Constraints (4)

and (5) fix certain variables to 0 or these constraints

are assumed slack and can thus be omitted. Stipula-

tions (12) enforce nonnegativity of decision variables.

3.3. An Attacker-Defender Model
Next, keeping w≡ ŵ

0
, T � {t

0
}, and nt

0

� 1, we allow x
to vary

x ∈ X ≡ {xi j ∀ (i , j) ∈ A | (6), (9), (10)}. (14)

This results in the AD model T-DAD(ŵ
0
, x,y)

max

x∈X
min

y,y′′ ,y′′′

{ ∑
(i , j)∈A

(ht y′′i jd
0
t
0

F0

i jd
0
t
0

(y′′i jd
0
t
0

)(1− xi j)

+ ht
0

y′′i jd
0
t
0

F1

i jd
0
t
0

(y′′i jd
0
t
0

)xi j)
+

∑
(i , j)∈A

ht
0

qi jd
0
t
0

y′′i jd
0
t
0

xi j

+
∑

p , j∈N, p, j
ht

0

q
max

y′′′p jt
0

}
s.t. (2)–(5), (12). (15)
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With fixed defenses we drop the outermost min oper-

ator. The solution to this model identifies a worst-case

attack against the nominal system. The variables x ∈ X
primarily control which “version” of the travel-time

function applies: F0

i jd
0
t
0

if xi j � 0, and F1

i jd
0
t
0

if xi j � 1.

They also impose an additive penalty qi jd
0
t
0

to the travel

time for arc (i , j) if xi j � 1.

These twomechanisms are used to increase the travel

time on an attacked arc in the following manner. As

described in Appendix A, we use a piecewise-linear

approximation to the BPR function for both F0

i jdt and

F1

i jdt . However, we parameterize function F1

i jdt so that

it represents a 50% reduction in lane capacity and

a 20% reduction in free-flow speed when compared

with F0

i jdt . Thus by construction, we have F1

i jd
0
t
0

(y′′i jd
0
t
0

)>
F0

i jd
0
t
0

(y′′i jd
0
t
0

) for y′′i jd
0
t
0

> 0. Moreover, an attacked arc

is not only slower but also more sensitive to conges-

tion. The idea is that a road segment might lie adjacent

to surface streets onto which traffic could be rerouted

locally, at some penalty, in the event of an attack. Thus

the attacked segment is still “passable” but expensive

from a travel-time perspective.

Alternatively, we recognize that some segments,

such as a bridge, might be impossible to traverse or

bypass if targeted in an attack. In such cases, we use

the additive penalty qi jdt , which in practice we set to

q
max

(six hours), making it effectively infinite because it

will always be less costly for a traveler to stay at home

(be dropped) than to attempt to traverse an attacked

bridge. From this point on, we refer to all such impass-

able edges, bridges, or otherwise, as bridge-like; all oth-
ers are standard edges.
Thus, attacks do not restrict flow via capacity con-

straints (4) and (5). Rather, we rely entirely on this

form of cost-based interdiction because it avoids compu-

tational complications if the incumbent solution to sys-

tem operation suddenly becomes infeasible as a result

of an attack (see Alderson, Brown, and Carlyle 2014,

for a discussion).

3.4. The Full DAD Model
Next, we release w to

w ∈W ≡ {wi j ∀ [i , j] ∈ E | (7), (8), (11)}, (16)

and obtain the three-stage model T-DAD � T-DAD(w,
x,y). In effect, the variables wi jd control which ver-

sions of the arcs (i , j) and ( j, i) the operator must

use, and the variables xi j determine which travel-time

functions apply. For example, if wi j d̂ � 1, then only

the variables yi j d̂t and y ji d̂t can take on positive val-

ues, and thus only the functions F0

i j d̂t
(yi j d̂t), F0

ji d̂t
(y ji d̂t),

F1

i j d̂t
(yi j d̂t), and F1

ji d̂t
(y ji d̂t) are relevant. If defense option

d̂ ∈ Di j completely protects [i , j] from attack, then

F1

i j d̂t
( · )� F0

i j d̂t
( · ) and F1

ji d̂t
( · )� F0

ji d̂t
( · ). If not, then we

expect that F1

i j d̂t
(yi j d̂t) > F0

i j d̂t
(yi j d̂t) for any yi j d̂t > 0 as

before.

Each defense option d has its own set of data. Each

edge has a special null defense (d
0
) that represents

“doing nothing,” i.e., leaving the arc in its original

condition. The data associated with this option are

nonzero; the corresponding arcs have nominal capac-

ity, travel time, etc. However, if we choose a defense

option that means “do something special to defend this

edge” then the attack penalty will be lower, but the

cost might increase, or the capacity might drop, etc. We

handle the dependence between the flow rate and the

attack through the travel-time functions F0

i jdt and F1

i jdt .

Constraints (8) ensure that a single defense option is

chosen for each edge.

The full model allows for the possibility of an attack

that causes structural damage to edges, and that the

time to repair such damage can vary by edge, so repair

epochs t ∈T nowcome into play.ModelT-DAD(w, x,y)
is instrumented so that the repairs to individual edges

are independent and follow a predetermined sched-

ule. Specifically, if an attack would not be repaired

by epoch t then, in general, F1

i jd
0
t(y′′i jd

0
t) > F0

i jd
0
t(y′′i jd

0
t)

for y′′i jd
0
t > 0; otherwise F1

i jd
0
t(y′′i jd

0
t) � F0

i jd
0
t(y′′i jd

0
t) for

all y′′i jd
0
t ≥ 0. If an arc has been completely defended

by defense option d̂ ∈ Di j , then F1

i j d̂t
( · ) � F0

i j d̂t
( · ) and

F1

ji d̂t
( · )� F0

ji d̂t
( · ) for all t ∈ T.

Remark 1. Commensurate restoration cost could be

added to total system operating cost, if desired. If we

estimate defense option d for edge [i , j] incurs restora-
tion cost cR

i jt during repair epoch t, then the follow-

ing term, linearized and scaled, could be added to the

objective function (1) for T-DAD:∑
[i , j]∈E, d∈Di j

cR
i jd wi jd xi j . (17)

Converting units of dollars into believable units of

vehicle-hours traveled, or vice versa, might be difficult,

but the dollar cost of congestion could be estimated

(e.g., Weisbrod, Vary, and Treyz 2003) and those could

be combined with the dollar cost of restoration.

3.5. Solving T-DAD
We have explored a number of techniques for solv-

ing T-DAD. All are based on converting the inner

AD model into a mixed-integer program using the

technique described by Cormican, Morton, and Wood

(1999). Given that the AD “subproblems” can be solved

by standard LP-based branch and bound, and given

the modest number of defenses and attacks that might

arise in our situation, T-DAD can be solved in a num-

ber of ways, including the following:

1. Applying the decompositionmethod described in

Alderson et al. (2011).
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2. Viewing T-DAD as a simple DA problem, and

applying the “covering decomposition” described by

Israeli and Wood (2002) for a network-interdiction

problem.

3. Applying the implicit-enumeration technique de-

scribed by Alguacil, Delgadillo, and Arroyo (2014) for

defending an electric power grid.

We combine methods 1 and 2 to solve the case-study

problems described in Section 4. The algebraic mod-

eling system GAMS (GAMS Development Corp 2013)

generates models and implements the decomposition

algorithms, with master problems and subproblems

solved by CPLEX, version 12.6.0 (IBM 2014). The oper-

ator’s problem has more than 200,000 variables and

40,000 constraints and takes more than a second to

solve on a Windows-based Lenovo W530 laptop com-

puter with 32 GB RAM and using a single thread.

As an example of empirical computational efficiency,

we note that the 15 DAD models in Table 9 require

a total of 6.5 hours of computation time. By contrast,

the results in Table 9 would require solving the oper-

ator model approximately 1.17 × 10
14

times to achieve

the same results by exhaustive enumeration. If we

could solve the operator model in one millisecond, this

would still take more than 3,700 years.

4. A Case Study: The Major Highway
Bridges, Roads, and Tunnels of the
San Francisco Bay Area

We present an illustrative case study that investigates

the resilience to worst-case losses of a regional high-

way system, specifically, the major roads, bridges, and

tunnels of the San Francisco (SF) Bay Area. Several

caveats not already mentioned apply: (a) data model-

ing was carried out in early 2013, so data reflect the

infrastructure system at that time (for example, the

Caldecott Tunnel is modeled as having three operat-

ing bores, rather than the four it now has); (b) we do

not account for how mass transit (buses, the “BART”

train system, ferries, etc.) might alleviate some traffic

congestion after an attack; (c) we do not account for

the possibility of converting nominally unidirectional

roadways into bidirectional roadways to alleviate con-

gestion after an attack; (d) we ignore random events

such as traffic accidents and emergency lane closures;

(e) we ignore any error induced by the piecewise-linear

approximating functions used in the operating model;

and (f) we implement the attack-resource constraint (6)

as a cardinality constraint on the number of edges

attacked rather than as a (set of) general knapsack con-

straint(s).

Our operational transportationmodel covers the San

Francisco Bay Area with a network of 91 nodes and

133 edges; see Figure 1. This study models the morn-

ing commute period, between 5 a.m. and 9 a.m., as one

of the two periods of highest demand on the system.

We consider only the morning commute to simplify

exposition and to reduce the data-processing work-

load in this example. The road network represents all

of Alameda, Contra Costa, Marin, San Francisco, San

Mateo, and Santa Clara counties, and parts of Napa,

San Joaquin, Solano, and Sonoma counties. Commuter

data cover the populations of those counties as well as

the populations of the peripheral counties of Merced,

Sacramento, San Benito, and Santa Cruz.

For simplicity, all bridges are treated as single edges,

even though some bridges have parallel spans that

might be viewed as separate targets. Similarly, all bores

of the Caldecott Tunnel are treated as a single edge.

(For the morning commute, the tunnel has four lanes

westbound and two lanes eastbound.) We do not sep-

arately model the arcs for the Waldo Tunnel on U.S.

Highway 101 (US 101) north of the Golden Gate Bridge

(edge [8, 9]), because the tunnel has a single bore with

fixed lanes that do not differ from the highway.

We extract highway-network data fromGoogle Earth

imagery and compute travel distances between nodes

using the Google Maps calculator (Google 2016). Data

on the commuting population derive from (a) the

Quarterly Workforce Indicators for 2009 (U.S. Cen-

sus Bureau 2009b), (b) Table 32226C from the Census

Transportation Planning Products for 2009 (U.S. Cen-

sus Bureau 2009a), and (c) Table 32106 from the same

source. Data source (a) identifies the home and work

locations, by census tract, for about 90% of the popu-

lation in any region. Data source (b) provides an esti-

mate for the fraction of commuters who commute by

car during the morning commute period of 5:00 a.m.

to 9:00 a.m., and data source (c) provides an estimate

of the number of passengers per vehicle depending on

origin and destination counties. We ignore truck traf-

fic, assuming this to be light during commute hours

(Hallenbeck et al. 1997), and make no attempt to adjust

for theworkers not covered by the QuarterlyWorkforce

Indicators (e.g., federal government employees). With

certain exceptions, a commuter living in one census

tract and working in another contributes a fraction of a

vehicle (based on carpooling rates) to the demand for

traffic between the two nodes closest to the population

centroids of those two tracts. If these are the same node,

we assume that the trip for that commuter is short

enough that a highway is not used, and therefore does

not contribute to traffic demand. Our final estimates

have 834,200 vehicles traveling through the road net-

work during the morning commute period when there

is no major traffic accident or any significant damage

to any of the infrastructure in the area.
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Figure 1. (Color online) The Roads and Bridges of the San Francisco Bay Area

Notes. A network of major highway and seven bridge edges connects 91 nodes, numbered for identification. Each node can be both an origin

and a destination for vehicular traffic. For simplicity, the edges representing roads, bridges, and tunnels are drawn as straight connections,

and some node locations have been perturbed to avoid overlaps that hide smaller features.

Source. Background image from Google Maps.
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4.1. Nominal Morning-Commute Traffic in the
SF Bay Road Network

In the absence of an attack, vehicles may use any of the

edges. The baseline solution of T-DAD(ŵ
0
, 0,y), which

represents the flows in the nominal network, calculates

an optimal delay of 0.797×10
6

vht for a singlemorning-

commute period (approximately 57 minutes per vehi-

cle), and no demand is dropped. (See the data extracts

in Appendix B.) We cannot illustrate the individual

routes followed between each OD pair, but Figure 2

does provide a graphical indication of traffic density

during the morning commute for the undamaged road

network.

Table 1 lists the 30 most-congested arcs identified in

the baseline results, ranked by delay. Our validation

work shows model-estimated traffic congestion pat-

terns closely match observed patterns. For example,

a report by the Metropolitan Transportation Commis-

sion (2013) lists the top 10 traffic “hotspots” in the SF

Bay Area for 2013, ranked by daily (weekday) added

delay measured in vht. This list covers both morning

and evening commutes, and one hotspot can actually

correspond to multiple arcs in our model, or multiple

hotspots can correspond to a subset of one of our net-

work’s arcs.

All 10 top hotspots on this 2013 list correspond to

arcs within the first 24 entries in Table 1. Our data

have approximately twice the number of arcs indi-

cated (graphically) in the 2013 report, so our top 24

correspond quite well to the top 10 in that report.

The vehicle-hours reported here are 10%–30% lower

than those reported in the 2013 report, but we do not

account for accidents, temporarily closed lanes, repairs,

and construction that occur from time to time in a real

road network.

4.2. Basic Modeling of Attacks and Defenses
Initial testing considers only two defense options:

d
0
∈ Di j means “do not defend” and d

1
∈ Di j means

“defend.” A defended edge becomes invulnerable to

attack, i.e., we set the penalty qi jd
1
t � 0.

We assume that an edge corresponding to a bridge,

or bridge-like edge, cannot be traversed or bypassed if

targeted in an attack, so the corresponding travel-time

function is modified by adding a penalty of six hours,

which is effectively infinite, to the nominal travel time

as discussed for Equation (15). We have also identified

several edges in the SF Bay Area that are not bridges

but, because of their location, allow little rerouting of

the traffic they carry onto local streets. In particular, we

model the Caldecott Tunnel (edge [54, 65] in Figure 1),

the section of I-680 connecting Fremont to Sunol (edge

[40, 43]), and SR 37 connecting Sears Point to Vallejo

(edge [3, 75]) as bridge-like, in that an attack on any

one of these edges renders it unusable.

To demonstrate attackers with differing technolog-

ical capabilities in T-DAD, we consider two extreme

cases. We assume a low-capability attacker can only

remove an edge from service for a single commute

period, perhaps by releasing a hazardous material on

a roadway or simply blocking traffic (e.g., protesters

in Berkeley, California recently did exactly that; see

Pogash and Grady 2014).

Weassumeahigh-capability attacker candamageedges

structurally, resulting in repair epochs summarized in

Table 2. Specifically, “simple” highway segments (i.e.,

standard edges) require only onemonth to repair, but a

bridge could take years to repair, depending on its con-

struction. We model this situation using repair epochs

t � 1, . . . , 4 such that the most easily repaired edges

are repaired after n
1
commute periods, the second eas-

iest after n
1
+ n

2
commute periods, etc. The disrup-

tion caused by an attack now depends on the repair

times and the corresponding repair epochs. The first

epoch has a duration of 1 month (22 commute peri-

ods), the second has a duration of 11 months (242 com-

mute periods), and the last two each have durations of

24 months (528 commute periods). The total time hori-

zon under consideration in this paper is therefore five

years (1,320 commute periods).

4.3. The Most-Damaging Attacks to the
Nominal Network

We assume no defenses, and consider a hypothetical

intelligent adversary who can mount an attack target-

ing one or more edges in the San Francisco Bay Area

highway network. The adversary seeks to maximize

the network’s operating cost (system delay).

4.3.1. Single-Period Losses from a Low-Capability At-
tacker. To get a better sense of the relative importance

of segments individually and in combination, we begin

by simply identifying the 10 most damaging single-

edge attacks (ai j � 1 for all [i , j] ∈ E, ā � 1) and the 10

most damaging two-edge attacks (ai j �1 for all [i , j] ∈E,
ā � 2) for a low-capability attacker who can cause losses

for only a single epoch. Because the number of attacks

is small, it may be possible to produce these results by

enumerating solutions to the operational model, but

we actually solve T-DAD(ŵ
0
, x,y) for the most damag-

ing attack, add a solution-elimination constraint (e.g.,

Alderson et al. 2011), solve for the secondmost damag-

ing attack, and so on. The key purpose of investigating

these scenarios is to demonstrate the varying superad-

ditive effects of lost edges.

Table 3 presents the 10 most-damaging single-edge

losses for a low-capability attacker. Eight of the top 10

single-edge losses are bridge-like edges. Losing the Bay

Bridge connecting San Francisco and Oakland (edge

[11, 53]) increases the system delay by nearly 29%; the

bridge-like edge [40, 43], part of I-680, is second worst,

with a 24% increase; the Golden Gate Bridge (edge

[9, 10]), the cultural icon of the San Francisco Bay, ranks
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Table 1. Arcs Associated with the Top 30 Most-Congested Road Segments, Bridges, or Tunnels in the San Francisco Bay Area

Under Morning-Commute Conditions

Rank Road, bridge, or tunnel From To Lanes Speed limit (mph) Speed (mph) Observed delay (vht)

1 I-680 63_ConcordS 64_WalnutCreek 5 65 19.9 7,057.7

2 I-680 43_Sunol 40_FremontSE 4 65 26.8 6,202.1

3 Bay Bridge 53_BayBridgeE 11_BayBridgeW 5 65 25.9 6,071.8

4 I-80 55_Albany 53_BayBridgeE 5 65 21.7 5,649.8

5 I-880 46_SanLeandro 45_Hayward 5 65 21.4 5,264.8

6 US 101 38_Gilroy 37_CoyoteValley 4 65 41.0 5,184.7

7 US 101 05_Novato 06_SanRafael 4 65 30.6 5,070.3

8 I-580 87_Tracy 49_Livermore 4 65 35.6 4,972.1

9 I-80 58_Hercules 57_Richmond 4 65 25.7 4,497.7

10 SR 24 64_WalnutCreek 65_CaldecottTunnE 4 65 32.6 4,009.3

11 SR 4 69_AntiochOakley 68_Pittsburgh 2 65 21.7 3,889.2

12 I-580 48_Dublin 47_CastroValley 4 65 35.5 3,761.8

13 I-80 57_Richmond 55_Albany 4 65 26.9 3,468.6

14 US 101 01_Petaluma 05_Novato 3 65 35.6 3,418.3

15 I-280 29_Cupertino 22_Woodside 4 65 40.7 3,405.5

16 US 101 24_MountainViewN 23_PaloAlto 4 65 30.6 2,858.8

17 I-5 86_Manteca 85_Stockton 2 65 33.7 2,786.9

18 I-880 39_FremontSW 42_Fremont 4 65 36.7 2,782.4

19 I-580 49_Livermore 48_Dublin 4 65 35.6 2,486.1

20 I-880 45_Hayward 46_SanLeandro 5 65 31.9 2,399.6

21 US 101 12_SanFranciscoS 11_BayBridgeW 6 65 34.8 2,329.2

22 I-680 40_FremontSE 43_Sunol 4 65 40.7 2,244.5

23 US 101 08_MillValley 09_GGBridgeN 4 65 38.0 1,959.3

24 US 101 32_SanJoseE 31_SanJoseN 4 65 30.6 1,887.9

25 I-80 78_Vacaville 80_Davis 3 65 45.7 1,867.5

26 I-880 46_SanLeandro 51_Oakland 4 65 47.5 1,664.1

27 US 101 06_SanRafael 08_MillValley 4 65 35.6 1,657.4

28 SR 152 91_LosBanos 38_Gilroy 2 55 45.8 1,650.9

29 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 4 50 22.8 1,511.9

30 Caldecott Tunn. 65_CaldecottTunnE 54_CaldecottTunnW 4 55 21.0 1,485.9

Note. For each arc, we list its name, two end points, number of lanes, speed limit (mph), calculated vehicle speed (mph), and observed delay

(in vht for a single commute period).

Table 2. Repair Epochs Following a High-Capability Attack

Repair epochs

Type Road, bridge, or tunnel Edge t
1
mos. 0–1 t

2
mos. 2–12 t

3
mos. 13–36 t

4
mos. 37–60

I Golden Gate Bridge [9, 10] 0 0 0 0

II Bay Bridge [11, 53] 0 0 0 1

Carquinez Bridge [59, 72]
III Benicia Bridge [60, 73] 0 0 1 1

Dumbarton Bridge [20, 41]
Nejedly Bridge [70, 83]
Richmond Bridge [7, 56]
Rio Vista Bridge [79, 82]
San Mateo Bridge [16, 44]

IV SR 37 [3, 5] 0 1 1 1

SR 37 [3, 75]
SR 84 [43, 49]
SR 152 [38, 91]
Caldecott Tunnel [54, 65]
I-680 [40, 43]
Kirker Pass Road [64, 68]

V Standard edges Other R 1 1 1

Notes. For edge [i , j] in epoch t, “0” indicates that y′′i jt ≡ 0, that is, the arc is unavailable for use; “1” indicates that arc [i , j] is fully operational

and that the travel-time function is defined with nominal parameters; “R” indicates that lane capacities u′i j and u′ji are reduced by 50% and

free-flow speeds si j and s ji are reduced by 20%. (See Appendix A.1 for a description of the travel-time function.)
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Table 3. The Most Disruptive Single-Edge Losses in the San Francisco Bay Area, and Three Others, Assuming a

Low-Capability Attacker

Edge lost

Sys. delay Delay

Rank Road, bridge, or tunnel Junction 1 Junction 2 (vht× 10
−6

) increase (%)

1 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.025 28.6
2 I-680 40_FremontSE 43_Sunol 0.985 23.6
3 Golden Gate Bridge 09_GGBridgeN 10_GGBridgeS 0.933 17.1
4 Caldecott Tunnel 65_CaldecottTunnE 54_CaldecottTunnW 0.916 14.9
5 Carquinez Bridge 72_CarquinezN 59_CarquinezS 0.858 7.7
6 I-880 45_Hayward 46_SanLeandro 0.857 7.6
7 Benicia Bridge 73_Benicia 60_Martinez 0.853 7.1
8 I-680 63_ConcordS 64_WalnutCreek 0.851 6.8
9 I-80 53_BayBridgeE 55_Albany 0.847 6.3
10 Richmond Bridge 07_RichmondBridgeW 56_RichmondBridgeE 0.844 5.9
17 SR 37 03_SearsPoint 75_VallejoW 0.831 4.3
18 San Mateo Bridge 16_SanMateoBridgeW 44_SanMateoBridgeE 0.828 3.9
24 US 101 08_MillValley 09_GGBridgeN 0.825 3.5

Notes. An attacked edge is lost from service for only a single commute period, and thus delay is measured only for one such period. “Delay

increase” is measured from the nominal delay of 0.797 × 10
6

vht for a single commute period. The last three entries in the table enable

computation of “synergy” in Table 4.

only third, with a 17% increase; and the Caldecott Tun-

nel (edge [54, 65]), which feeds the Bay Bridge, ranks

fourth, with a 15% increase. The single-edge losses

ranked fifth through 10th (and beyond) are signifi-

cantly less disruptive.

Table 4 presents the 10 most-damaging two-edge

losses for a low-capability attacker. The most disrup-

tive of these combines the top two single-edge losses

(the Bay Bridge and a segment of I-680); it results in a

system delay of 60.8% or 1.281× 10
6

vht. All of the top

10 most disruptive two-edge losses involve one of the

two most disruptive single-edge losses. We observe,

however, that for each of these pairs, the loss of two

edges in combination is more disruptive (by 3%–32%)

than would be predicted by the sum of the single-edge

losses based solely on the data in Table 3. For exam-

ple, the San Mateo Bridge (edge [16, 44]) ranks as the

18th most disruptive single-edge loss, but paired with

the Bay Bridge it ranks as part of the fifth most disrup-

tive two-edge loss. This can be understood intuitively

because the Bay Bridge and the San Mateo Bridge are

components of substitute paths that connect the east

and west sides of the bay.

We end this section by solving T-DAD(ŵ
0
, x,y) to

identify the most damaging attacks for ā � 1, . . . , 5,
for a low-capability attacker (see Table 5). We observe

that these worst-case attacks represent monotonically

increasing sets.

4.3.2. Multiperiod Losses from a High-Capability At-
tacker. We repeat the previous analyses for the case

of a high-capability attacker who can damage compo-

nents for multiple periods, as specified in Table 2.

Table 6 presents the 10 most-damaging single-edge

losses for a high-capability attacker. The effect of repair

times now becomes apparent: bridge-like edges that

are not bridges (e.g., edge [40, 43] on I-680) drop in

importance compared to preceding results, because

they are repaired quickly, and true bridges rise in

importance because they will take years to repair.

Table 7 presents the 10 most-damaging two-edge

losses for a high-capability attacker. Here, each of the

top 10 entries consist solely of components with longer

repair times.

Table 8 lists the worst possible attacks by a high-

capability attacker on the undefended system, with the

attacker’s resource ranging from zero to five edges.

We observe that edges that are road segments such

as I-680, although bridge-like in terms of their penalty

cost in the short term, do not show up as a worst-case

loss when considering actual bridges having longer

repair times. The five worst single-edge losses are all

bridges. The length of the repair time alone is not

enough to determine the worst-case attacks; however,

losing the Bay Bridge for three years is more costly in

travel delays than losing the Golden Gate Bridge for

five years (with the longest repair time).

4.4. Improving Operational Resilience
Our ultimate goal is to determine how to reconfigure

or defend edges in a road network to improve that net-

work’s operational resilience. For simplicity, we con-

sider only the case of a highly capable adversary.

Table 9 presents the best defenses and the resulting

worst-case losses for T-DAD with the heterogeneous

repair times in Table 2. We observe that defending

the Bay Bridge is the best way to mitigate the worst-

case loss of one or two other edges. However, the best

defense against the loss of three to five edges protects

the Golden Gate Bridge. In our experience, this kind
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Table 4. The 10 Most Disruptive Two-Edge Losses, Assuming a Low-Capability Attacker

Edges lost

Sys. delay Delay

Rank Road, bridge, or tunnel Junction 1 Junction 2 (vht× 10
−6

) increase (%) Synergy (%)

1 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.281 60.8 16.3
I-680 40_FremontSE 43_Sunol

2 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 1.254 57.4 25.5
Bay Bridge 11_BayBridgeW 53_BayBridgeE

3 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.183 48.4 34.0
I-880 45_Hayward 46_SanLeandro

4 Richmond Bridge 07_RichmondBridgeW 56_RichmondBridgeE 1.152 44.5 29.1
Bay Bridge 11_BayBridgeW 53_BayBridgeE

5 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.137 42.7 31.3
San Mateo Bridge 16_SanMateoBridgeW 44_SanMateoBridgeE

6 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 1.134 42.3 4.0
I-680 40_FremontSE 43_Sunol

7 I-680 40_FremontSE 43_Sunol 1.126 41.3 7.2
Caldecott Tunn. 65_CaldecottTunnE 54_CaldecottTunnW

8 I-680 40_FremontSE 43_Sunol 1.110 39.3 26.2
I-880 45_Hayward 46_SanLeandro

9 US 101 08_MillValley 09_GGBridgeN 1.083 35.9 11.7
Bay Bridge 11_BayBridgeW 53_BayBridgeE

10 SR 37 03_SearsPoint 75_VallejoW 1.081 35.6 8.4
Bay Bridge 11_BayBridgeW 53_BayBridgeE

Notes. See the caption of Table 3 for a description of the results except for “Synergy.” Synergy represents as a percentage the incremental

cost that the two-edge loss incurs above the sum of the costs of the constituent one-edge losses. (For example, the synergy of function g(a , b)
over f (a)+ f (b), given baseline g(0, 0) � f (0), is 100%× (∆g(a , b) − (∆ f (a)+∆ f (b)))/(∆ f (a)+∆ f (b)) − 100%, where ∆g(a , b) � g(a , b) − g(0, 0),
∆ f (a)� f (a) − f (0), and ∆ f (b)� f (b) − f (0).)

Table 5. Worst-Case Single-Period Losses for the Undefended System, as Discovered by a Low-Capability Attacker

Edges lost

Attacker Sys. delay Delay

resource Road, bridge, or tunnel Junction 1 Junction 2 (vht× 10
−6

) increase (%)

0 — — — 0.797 —

1 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.025 28.6
2 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.281 60.7

I-680 43_Sunol 40_FremontSE

3 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.521 90.8
I-680 43_Sunol 40_FremontSE

Golden Gate Br. 09_GGBridgeN 10_GGBridgeS

4 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.735 117.7
I-680 43_Sunol 40_FremontSE

Golden Gate Br. 09_GGBridgeN 10_GGBridgeS

I-880 46_SanLeandro 45_Hayward

5 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.813 127.5
I-680 43_Sunol 40_FremontSE

Golden Gate Br. 09_GGBridgeN 10_GGBridgeS

I-880 46_SanLeandro 45_Hayward

Richmond Bridge 07_RichmondBridgeW 56_RichmondBridgeE

Notes. The table reports the baseline system operating cost and the worst losses for one to five edges lost. For each attack, the table lists the

operating cost and the percentage increase over the baseline cost. All solutions are optimal.

of nonmonotonicity often appears in the solutions to

AD and DAD problems. This means that prioritized

(ranked) target lists, for either defense or attack, may

provide poor guidance to decision makers, even if cre-

ated using a complicated scoring scheme (e.g., Leung,

Lambert, andMosenthal 2004, Apostolakis and Lemon

2005, Tranchita, Hadjsaid, and Torres 2006); see Alder-

son et al. (2013) for a discussion.

Figure 3 shows the impact of optimal defenses of up

to three edges on the worst-case delay that an adver-

sary can inflict on the system, as a function of an

increasing number of losses.

The case of no defenses in Figure 3 provides a base-

line for measuring the operational resilience of the

highway infrastructure to various levels of attack: with

no defense in place, an adversary could inflict consid-
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Table 6. The 10 Most Disruptive Single-Edge Losses, Assuming a High-Capability Attacker

Edge lost

Sys. delay Delay

Rank Road, bridge, or tunnel Junction 1 Junction 2 (vht× 10
−9

) increase (%)

1 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.232 17.1
2 Golden Gate Bridge 09_GGBridgeN 10_GGBridgeS 1.231 17.0
3 Carquinez Bridge 59_CarquinezS 72_CarquinezN 1.093 3.9
4 Benicia Bridge 73_Benicia 60_Martinez 1.067 1.4
5 Richmond Bridge 07_RichmondBridgeW 56_RichmondBridgeE 1.064 1.1
6 San Mateo Bridge 16_SanMateoBridgeW 44_SanMateoBridgeE 1.060 0.8
7 Dumbarton Bridge 20_DumbartonBridgeW 41_DumbartonBridgeE 1.058 0.6
8 I-680 40_FremontSE 43_Sunol 1.056 0.4
9 Caldecott Tunnel 65_CaldecottTunnE 54_CaldecottTunnW 1.054 0.2
10 Rio Vista Bridge 79_RioVistaBrN 82_RioVistaBrS 1.053 0.1

Notes. Table 2 specifies repair times, which can cover as many as 1,320 commute periods (five years). Consequently, “Delay increase” is

measured with respect to the nominal delay of 1.052× 10
9

vht over 1,320 commute periods.

Table 7. The 10 Most Disruptive Two-Edge Losses, Assuming a High-Capability Attacker

Edges lost

Sys. delay Delay

Rank Road, bridge, or tunnel Junction 1 Junction 2 (vht× 10
−9

) increase (%) Synergy (%)

1 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.486 41.3 20.9
Golden Gate Br. 09_GGBridgeN 10_GGBridgeS

2 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 1.267 20.4 12.5
Richmond Bridge 07_RichmondBridgeW 56_RichmondBridgeE

3 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.266 20.3 11.5
Richmond Bridge 07_RichmondBridgeW 56_RichmondBridgeE

4 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 1.264 20.2 −3.6
Carquinez Bridge 59_CarquinezS 72_CarquinezN

5 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.261 19.9 11.1
San Mateo Bridge 16_SanMateoBridgeW 44_SanMateoBridgeE

6 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.253 18.7 −9.0
Carquinez Bridge 59_CarquinezS 72_CarquinezN

7 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 1.249 18.4 1.5
Benicia Bridge 73_Benicia 60_Martinez

8 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.246 18.2 4.3
Dumbarton Bridge 20_DumbartonBridgeW 41_DumbartonBridgeE

9 Golden Gate Br. 09_GGBridgeN 10_GGBridgeS 1.243 18.1 2.1
San Mateo Bridge 16_SanMateoBridgeW 44_SanMateoBridgeE

10 Bay Bridge 11_BayBridgeW 53_BayBridgeE 1.242 35.7 −2.6
Benicia Bridge 73_Benicia 60_Martinez

Notes. See the captions in Tables 3 and 4 for further explanation. Here, positive synergy means that the total increase in delay is greater

than the sum of the increase from the delay resulting from each individual loss; negative synergy means the total is less than the sum. Two

components in parallel tend to exhibit positive synergy, while components in series tend to exhibit negative synergy.

erable additional delay on the system and, as expected,

this cost increases with an increasing number of lost

edges.

However, when the defender can implement the op-

timal single-edge defense for each separate number of

attacks, the resulting worst-case attacks produce sig-

nificantly less disruption. With the optimal two-edge

defense, the disruptions caused by worst-case attacks

are less, andwith the optimal three-edge defense, these

are mitigated even more. This illustrates the improve-

ment in resilience that comes with increasing optimal

defensive investments.

Collectively, these resilience curves characterize the

returns on investment a decision maker could achieve.

For example, we see that the first bridge defended

reduces disruption the most for the worst-case attacks,

and therefore offers the most significant improvement

in operational resilience. Similar curves should apply

to any infrastructure system for which an industry-

standard operational model exists; see Alderson et al.

(2013) and Alderson, Brown, and Carlyle (2015) for fur-

ther discussion.

Although Figure 3 quantifies the benefit for each

additional defended edge, it does not specify how

many bridges should be defended. That decision be-

longs to the system defender or a policy maker, based

on an assessment of the actual costs of implementing

each defense plan and the decision-maker’s willing-

ness to trade those costs for the benefits they provide.
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Table 9. Best Defenses and Worst-Case Losses Against a High-Capability Attacker

Num. def. Num. lost Defended edges Lost edges Sys. delay (vht× 10
−9

) Delay increase (%)

1 1 Bay Bridge [11, 53] Golden Gate Bridge [9, 10] 1.231 17.1
1 2 Golden Gate Bridge [9, 10] Bay Bridge [11, 53] 1.266 20.3

Richmond Bridge [7, 56]
1 3 Golden Gate Bridge [9, 10] Bay Bridge [11, 53] 1.304 24.0

Carquinez Bridge [59, 72]
Benicia Bridge [73, 60]

1 4 Golden Gate Bridge [9, 10] Bay Bridge [11, 53] 1.345 27.9
Richmond Bridge [7, 56]
Carquinez Bridge [72, 59]
Benicia Bridge [73, 60]

1 5 Golden Gate Bridge [9, 10] Bay Bridge [11, 53] 1.376 30.8
Richmond Bridge [7, 56]
Carquinez Bridge [72, 59]
Benicia Bridge [73, 60]
San Mateo Bridge [16, 44]

2 1 Bay Bridge [11, 53] Carquinez Bridge [72, 59] 1.093 3.9
Golden Gate Bridge [9, 10]

2 2 Bay Bridge [11, 53] Carquinez Bridge [72, 59] 1.145 8.8
Golden Gate Bridge [9, 10] Benicia Bridge [73, 60]

2 3 Bay Bridge [11, 53] Carquinez Bridge [59, 72] 1.172 11.4
Golden Gate Bridge [9, 10] Benicia Bridge [73, 60]

Richmond Bridge [7, 56]
2 4 Bay Bridge [11, 53] Carquinez Bridge [72, 59] 1.180 12.2

Golden Gate Bridge [9, 10] Benicia Bridge [73, 60]
Richmond Bridge [7, 56]
Nejedly Bridge [70, 83]

2 5 Bay Bridge [11, 53] Carquinez Bridge [72, 59] 1.198 13.9
Golden Gate Bridge [9, 10] Benicia Bridge [73, 60]

Richmond Bridge [7, 56]
San Mateo Bridge [16, 44]
Dumbarton Bridge [20, 41]

3 1 Bay Bridge [11, 53] Benicia Bridge [73, 60] 1.067 1.4
Golden Gate Bridge [9, 10]
Carquinez Bridge [72, 59]

3 2 Bay Bridge [11, 53] Carquinez Bridge [72, 59] 1.082 2.9
Golden Gate Bridge [9, 10] Benicia Bridge [73, 60]
Carquinez Bridge [72, 59]

3 3 Bay Bridge [11, 53] Richmond Bridge [7, 56] 1.104 4.9
Golden Gate Bridge [9, 10] San Mateo Bridge [16, 44]
Carquinez Bridge [72, 59] Dumbarton Bridge [20, 41]

3 4 Bay Bridge [11, 53] Richmond Bridge [7, 56] 1.114 5.9
Golden Gate Bridge [9, 10] San Mateo Bridge [16, 44]
Carquinez Bridge [72, 59] Dumbarton Bridge [20, 41]

Benicia Bridge [73, 60]
3 5 Bay Bridge [11, 53] Richmond Bridge [7, 56] 1.124 6.8

Golden Gate Bridge [9, 10] San Mateo Bridge [16, 44]
Carquinez Bridge [72, 59] Dumbarton Bridge [20, 41]

Benicia Bridge [73, 60]
I-680 (Fremont–Sunol) [40, 43]

Notes. For each combination of number of defended edges (Num. defs.) and number of losses (Num. lost), the table reports the best edges

to defend and worst loss(es) by solution rank, along with the resulting total system operating cost, and percentage increase over the baseline

objective value of 1.052×10
9

. Percentage increases are computed assuming that solutions are optimal, although a relative optimality gap of up

to 1% is allowed.

We have evaluated stochastic optimization, and

Monte Carlo simulation of scenarios versus those that

an intelligent adversary can plan. The results have

shown uniformly that the worst case is much worse
than typically revealed by Monte Carlo simulation (see

Alderson et al. 2013 and Alderson, Brown, and Carlyle

2014 for a detailed discussion). Because our goal is

understanding and mitigating against worst-case dis-

ruptions no matter how they result, we believe it is

prudent to begin with an assessment from our hypo-

thetical intelligent adversary, provided it is practical to

do so.

None of the existing work lets an attacker view all

defensive preparations before committing to the most-

damaging attack he can afford, and perhaps for prac-

tical reasons. This is a trilevel optimization, with deci-

sions at each level, and as noted by some of the recent

work, there is an exponential number of admissible
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Table 10. Best Defenses Given 10 Units of Variable Defense Against an Attacker Who Can

Strike Any Five Bridge-Like Edges

Repair epochs

t
1

t
2

t
3

t
4

Defended edges

Golden Gate Bridge [9, 10] D D D D D�Defended

Bay Bridge [11, 53] V D D — —�Never vulnerable

Carquinez Bridge [59, 72] V V D — V� Still vulnerable

Richmond Bridge [7, 56] V D — —

San Mateo Bridge [16, 44] V D — —

Benicia Bridge [60, 73] V D — —

Attacked edges

Bay Bridge [11, 53] 0 1 1 1 1�Available

San Mateo Bridge [16, 44] 0 1 1 1 0�Unavailable

I-680 (FremontSE–Sunol) [40, 43] 0 1 1 1

Dumbarton Bridge [20, 41] 0 0 1 1

Carquinez Bridge [59, 72] 0 0 1 1

Note. The total cost of these attacks is 1.085× 10
9

vht compared to a baseline of 1.052× 10
9

vht.

attacks. So, a distinguishing difference we bring here

is the trilevel successive decisions with full visibility of

the sequential actions of opponents, and we can solve

it for a realistic case study using generalized Benders

decomposition.We demonstratewith this example that

it is practical to solve problems at a regional scale,

but considerable work remains to solve problems at a

higher fidelity and/or a national scale.

5. Conclusion
This paper studies the regional highway transporta-

tion system of the San Francisco Bay Area. Focusing

on peak periods for commuter traffic, traffic patterns

are computed from an enhanced traffic model that

includes nonlinear congestion behavior and reflects

actual travel demands as captured by U.S. Census

demographic data. We have instrumented our model

so that one can assess the consequence (measured as

increased systemwide travel time) associated with the

loss of a combination of one or more major road seg-

ments, bridges, and/or tunnels, each of which might

require a different length of time to restore. Using

this model, we systematically assess the operational

resilience of the highway system to worst-case losses

of segments, and we evaluate the extent to which dam-

age to a small number of them can impact system

performance.

We observe three features that are key to under-

standing why a major road segment, bridge, or tunnel

is critical to the overall performance of this system. The

first is the location of the segment within the overall

network topology and in relation to the origins and

destinations of commuter traffic. Bridges and tunnels,

which tend to connect geographically isolated areas,

often provide critical connectivity, and their loss can

dramatically increase travel times. This is the case for

the Golden Gate Bridge and the Bay Bridge. However,

we also observe that the loss of some seemingly less

significant road segments (e.g., I-880, I-680), can signif-

icantly increase travel time for the system.

The second feature that makes loss of a major road

segment, bridge, or tunnel critical to system perfor-

mance is restoration time. Because bridges and tunnels

tend to have longer repair times, their loss impacts

performance for more commute periods. Indeed, the

last numerical case shows an effective strategy for allo-

cating defenses is to invest to decrease all restoration

epochs so they are about the same in duration.

The final key insight is that, in general, the contribu-

tion to system function by a single component depends

on the status of other components. That is, it is the com-

bination of highway segments that when working (or

lost) together has the greatest impact on system func-

tion. This type of dependence can only be uncovered

when studying the system as a whole, and for assess-

ing operational resilience this means that one needs

to be concerned with the loss of sets of components.

A primary question is,Which sets of components are most
worrisome?

In this paper, we have concentrated on sets of compo-

nents whose loss results in a worst-case consequence.

Our experience in studying many types of infrastruc-

ture systems is that the loss of a relatively small num-

ber of components at specific locations can dramati-

cally affect performance. One way of uncovering such

sets is to take the perspective of an intelligent adver-

sary (our attacker), even if in practice the “attack” itself

comes in the form of an accident, failure, or just plain

bad luck. The point is to uncover these critical sets in

advance of a disruptive event.

Annually, the United States spends billions of dollars

to build, maintain, and strengthen its infrastructure
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systems. Given these huge expenditures, any return-

on-investment analysis should quantify rigorously the

resilience of such systems to natural disasters, attacks,

and other disruptive events. For a well-understood

system like the regional highway network studied

in this paper, we have presented methods that can

assess a system’s resilience to component loss and even

produce a maximally resilient, resource-constrained

design. Future research will meld worst-case and prob-

abilistic analysis to balance resilience to attacks with

resilience to random events like natural disasters.
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Appendix A. Evaluating Travel Times
This appendix describes the function used to measure the

total travel time associated with each arc in the road network,

and the piecewise-linear approximation used for computa-

tional purposes.

A.1. A Travel-Time Function for Each Arc
We begin with a model of traffic congestion originally devel-

oped by the Bureau of Public Roads (1964, TrafficAssignment

Manual) and fitted to traffic data from the Highway Research

Board (1965, Highway Capacity Manual). The model, known

as the BPR function, calculates the average travel speed on

each highway arc (i , j) based on traffic-flow rate and empiri-

cal characteristics of the arc.

Definitions for parameters and variables:

y′′i j traffic flow rate on (i , j), i.e., the number of vehicles

per hour (vph) that arrive at i and seeking to

traverse (i , j);
si j unobstructed travel speed on (i , j) (mph);

li j length of (i , j) (miles);

ti j = li j/si j ; unobstructed travel time on (i , j) (mph);

mi j number of lanes on (i , j);
u′i j capacity per lane on (i , j) (vph);
ui j � mi j u′i j ; baseline capacity of (i , j) (vph);

α, β, γ empirical parameters chosen to fit observed traffic

flows; we use α � 0.20, β � 6, and γ � 4/3 (California

Metropolitan Transportation Commission 2012).

BPR function: The function Si j( · ) represents the traffic-flow

speed on arc (i , j), defined by

Si j(y′′i j)� si j

(
1+ α

(
γ

y′′i j

ui j

) β)−1

. (A.1)

Table B.1. Node Data, Including Node Name, and Location in Latitude (Decimal Degrees North of the Equator) and

Longitude (Decimal Degrees West of the Prime Meridian)

Node name Lat (
◦
N) Lon (

◦
E) Node name Lat (

◦
N) Lon (

◦
E)

01_Petaluma 38.2343 −122.6184 47_CastroValley 37.6901 −122.0978

02_Sonoma 38.2362 −122.4615 48_Dublin 37.7010 −121.9227

03_SearsPoint 38.1506 −122.4495 49_Livermore 37.7012 −121.8022

04_Napa 38.2232 −122.2578 50_OaklandE 37.7834 −122.1774

Then, given the relationships between time, speed, and

arc length, the inverse of the BPR function estimates travel

time for every vehicle traversing arc (i , j), as exploited from

Section 3 forward.

Travel-time function: The function Fi j( · ) represents the

travel time arc (i , j), defined as

Fi j(y′′i j)� li j/Si j(y′′i j)� ti j

(
1+ α

(
γ

y′′i j

ui j

) β)
. (A.2)

This function is relatively flat until y′′i j ≈ ui j , and then rises

steeply.

A.2. A Piecewise-Linear Approximation for the
Travel-Time Function

Let Fi j(y′′i j) denote a generic form of the various travel-time

functions used to defineT-DAD (i.e., F1

i jdt(y′′i jdt) or F1

i jdt(y′′i jdt)),
and define

¯fi j(y′′i j) � y′′i j Fi j(y′′i j). In effect, the nonlinear func-

tion
¯fi j(y′′i j) appears many times in T-DAD’s objective func-

tion, but that is the only nonlinear function of concern.

To use linear programming and mixed-integer linear pro-

gramming in a solution algorithm for T-DAD,
¯fi j(y′′i j) always

replaces y′′i j Fi j(y′′i j), in a primal or dualized form. In a stan-

dard fashion, we define the approximation through the solu-

tion of a linear program

¯fi j(y′′i j) ≈ ming

r̄∑
r�1

si jr gi jr (A.3)

s.t.

r̄∑
r�1

gi jr � y′′i j , (A.4)

0 ≤ gi jr ≤ λi j , (A.5)

where the variables gi jr represent the traffic flow on arc (i , j)
on each subsequent piece r in the piecewise linear represen-

tation of fi j , si jr ≡ λ−1

i j [ ¯fi j(rλi j) − ¯fi j((r − 1)λi j)] for all (i , j),
and r; λi j ≡ 2ui j/r̄ for all (i , j); and testing has shown that

r̄ � 40 yields an adequate approximation given other defini-

tions. We note that these definitions imply that y′′i j ≤ 2ui j , but

travel time on any arc (i , j) with y′′i j � 2ui j would exceed the

total allowed travel time for a commute period, except in a

few minor instances.

We note that this linearization would work for other non-

linear travel time functions, should there be a need to replace

the BPR function with something else.

Appendix B. Case-Study Data
This appendix presents excerpts of the data tables used in

our models. Table B.1 provides a complete list of nodes, and

Table B.2 presents representative arc data.
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Table B.1. (Continued)

Node name Lat (
◦
N) Lon (

◦
E) Node name Lat (

◦
N) Lon (

◦
E)

05_Novato 38.0799 −122.5458 51_Oakland 37.8002 −122.2792

06_SanRafael 37.9624 −122.5103 52_OaklandN 37.8243 −122.2683

07_RichmondBridgeW 37.9427 −122.4787 53_BayBridgeE 37.8273 −122.2954

08_MillValley 37.9027 −122.5157 54_CaldecottTunnW 37.8487 −122.2280

09_GGBridgeN 37.8325 −122.4810 55_Albany 37.8877 −122.3091

10_GGBridgeS 37.8035 −122.4704 56_RichmondBridgeE 37.9328 −122.4095

11_BayBridgeW 37.7856 −122.3916 57_Richmond 37.9560 −122.3299

12_SanFranciscoS 37.7352 −122.4068 58_Hercules 38.0150 −122.2694

13_DalyCity 37.7050 −122.4715 59_CarquinezS 38.0526 −122.2276

14_SanBruno 37.6276 −122.4313 60_Martinez 38.0325 −122.1170

15_SFO 37.6346 −122.4032 61_ConcordNW 37.9946 −122.0698

16_SanMateoBridgeW 37.5647 −122.2722 62_ConcordNE 38.0051 −122.0367

17_SanMateo 37.5532 −122.2960 63_ConcordS 37.9580 −122.0525

18_CrystalSprings 37.5062 −122.3375 64_WalnutCreek 37.8963 −122.0716

19_RedwoodCity 37.4889 −122.2130 65_CaldecottTunnE 37.8634 −122.2092

20_DumbartonBridgeW 37.4864 −122.1426 66_SanRamon 37.7600 −121.9654

21_MenloPark 37.4834 −122.1807 67_Baypoint 38.0190 −121.9419

22_Woodside 37.4353 −122.2433 68_Pittsburgh 38.0170 −121.8900

23_PaloAlto 37.4604 −122.1409 69_AntiochOakley 37.9905 −121.7600

24_MountainViewN 37.4087 −122.0705 70_NejedlyBrS 38.0190 −121.7510

25_Sunnyvale 37.4006 −122.0357 71_Brentwood 37.8960 −121.7130

26_MountainViewS 37.3842 −122.0683 72_CarquinezN 38.0712 −122.2280

27_MilpitasE 37.4347 −121.8885 73_Benicia 38.0506 −122.1298

28_MilpitasW 37.4257 −121.9165 74_VallejoS 38.0915 −122.2305

29_Cupertino 37.3324 −122.0557 75_VallejoW 38.1400 −122.2560

30_SJC 37.3737 −121.9275 76_VallejoN 38.1393 −122.2200

31_SanJoseN 37.3642 −121.9019 77_Fairfield 38.2166 −122.1379

32_SanJoseE 37.3397 −121.8519 78_Vacaville 38.3710 −121.9560

33_SanJoseCentral 37.3238 −121.8922 79_RioVistaBrN 38.1610 −121.6880

34_SanJoseW 37.3173 −121.9403 80_Davis 38.5200 −121.7700

35_LosGatos 37.2557 −121.9559 81_Sacramento 38.5770 −121.5260

36_SanJoseS 37.2555 −121.8589 82_RioVistaBrS 38.1550 −121.6760

37_CoyoteValley 37.2402 −121.7664 83_NejedlyBrN 38.0300 −121.7510

38_Gilroy 37.0030 −121.5565 84_Lodi 38.1160 −121.3970

39_FremontSW 37.4836 −121.9369 85_Stockton 37.9370 −121.2980

40_FremontSE 37.4955 −121.9232 86_Manteca 37.7670 −121.3320

41_DumbartonBridgeE 37.5372 −122.0716 87_Tracy 37.7419 −121.5735

42_Fremont 37.5635 −122.0385 88_Vernalis 37.6000 −121.3420

43_Sunol 37.5887 −121.8709 89_Patterson 37.4637 −121.1804

44_SanMateoBridgeE 37.6282 −122.1210 90_Gustine 37.2462 −121.0890

45_Hayward 37.6448 −122.0939 91_LosBanos 37.0567 −120.9698

46_SanLeandro 37.6890 −122.1356

Table B.2. Roadway Types, Associated Data, and Example for the Highway Network Arcs

Example

FFS si j Capacity u′i j

Roadway type (mph) (veh./hr/lane) Arc Road or bridge Lanes

1_Freeway65 65 1,950 (05_Novato, 06_SanRafael) US 101 4

2_GGBridge50 50 1,780 (09_GGBridgeN, 10_GGBridgeS) Golden Gate Br. 4

3_Freeway55 55 1,850 (25_Sunnyvale, 26_Milpitas) US 237 3

4_Rural55 55 1,530 (03_SearsPoint, 75_Novato) SR 37 1

5_SigCoor30 30 950 (72_CarquinezNorth, 07_VallejoWest) SR 29 2

6_LocalStreet25 25 900 (22_Woodside, 19_RedwoodCity) SR 84 3

7_Collector45 45 1,500 (20_DumbartonBridgeW, 21_MenloPark) Bayfront Expwy. 3

Notes. For each type, the table shows free-flow speed (FFS) in miles per hour (mph) and capacity in vehicles per hour per lane. (See

Appendix A.1 for definitions.) For each roadway type, an example is given from the network specified in Figure 1, including the number of

lanes modeled. Note that an arc of type “3_Freeway55” also represents the Caldecott Tunnel in computational tests.
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