
7. Knuth, D.E. and Bendix, P.B. Simple word problems in universal
algebras. In Computational Problems in Universal Algebras, J. Leech,
Ed., Pergamon Press, Oxford, 1969, pp. 263-297,
8. Lankford, D.S. Canonical algebraic simplification in
computational logic. Memo ATP-25, Automatic Theorem Proving
Project, U. of Texas, Austin, Texas, May 1975.
9. Lipton, R.J. and Snyder, L. On the halting of tree replacement
systems. Proc. Conf. on Theoret. Comptr. Sci., Waterloo, Ontario,
Aug. 1977, pp. 43~16.
10. Manna, Z. and Ness, S. On the termination of Markov
algorithms. Proc. Third Hawaii Int. Conf. on Syst. Sci., Honolulu,
Hawaii, Jan. 1970, pp. 789-792.
!1. Manna, Z. and Waldinger, R.J. Is SOMETIME sometimes better
than ALWAYS? Intermittent assertions in proving program
correctness. Comm. ACM 21, 2 (Feb. 1978), 159-172.
12. Plaisted, D. Well-founded orderings for proving the termination
of rewrite rules. Memo R-78-932, Dept. of Comptr. Sci., U. of
Illinois, Urbana, IlL, July 1978.
13. ~laisted, D. A recursively defined ordering for proving
termination of term rewriting systems. Memo R-78-943, Dept. of
Comptr. Sci., U. of Illinois, Urbana, I11., Oct. 1978.

Operating R. Stockton Gaines
Systems Editor

Secure Personal
Computing in an
Insecure Network

Dorothy E. Denning
Purdue University

A method for implementing secure personal
computing in a network with one or more central
facilities is proposed. The method employs a public-key
encryption device and hardware keys. Each user is
responsible for his own security and need not rely on
the security of the central facility or the communication
links. A user can safely store confidential files in the
central facility or transmit confidential data to other
users on the network.

Key Words and Phrases: personal computing,
security, privacy, networks, public-key encryption

CR Categories: 2.12, 6.20

476

I. Introduction

Within the next ten years many of us will have
personal computers linked to a central facility. The
central facility (CF) will offer many attractive features:
long-term storage, text editors, language processors, spe-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported in part by National Science Foundation
Grant MCS77-04835.

Author's address: D.E. Denning, Computer Science Department,
Purdue University, West Lafayette, IN 47907.
© 1979 ACM 0001-0782/79/0800-0476 $00.75

Communications August 1979
of Volume 22
the ACM Number 8

cial-purpose software, video games, access to large data
banks, and electronic mail. The CF could also pose a
serious threat: Any or all of the secrets we entrust to it
could be stolen surreptitiously; personal communications
over the network could be intercepted; files stored in the
CF could be copied; booby-trapped software borrowed
from the CF could transmit confidential data back to its
owner via the CF.

This paper describes a simple method for safeguard-
ing personal data in the network. The method evolved
from three basic premises: Users must be responsible for
their own security, the CF may be insecure, and users
will share confidential information in limited ways.

The first premise is that each user should be respon-
sible for the security of his electronic possessions, just as
he is for his other possessions. He should be able to
protect his electronic possessions to the same degree and
with the same precautions as he protects his other prop-
erty. Numerous options are available for safeguarding
jewelry or important papers--e.g, an unlocked drawer,
a locked cabinet, a steel vault, or a safe deposit box. One
evaluates the risks, cost, and convenience of each option
to select the most suitable alternative. For the proposed
system, each user can select safeguards for computer files
and communication, applying the same criteria for risks,
cost, and convenience as he does for his other posses-
sions. It is important that the user feel confident in
understanding the limitations of the safeguards he se-
lects.

The second premise is that a user should not have to
rely on the CF or the communication links of the network
for the safety of his data. The proof of a complex CF
should not be a prerequisite for security to the customers.
Even if the CF could be proved secure, there would be
no guarantee that its specifications were complete or that
an unsuspected compromise could not occur. Neverthe-
less, there are strong economic reasons for the designers
of the CF to build a secure and reliable system: An
unreliable or insecure CF will lose its customers; no user
will entrust a CF with files or mail that may be subject
to accidental (or intentional) loss or destruction. Whereas
a user can tell when his data has been lost or destroyed,
he cannot tell when it has illegitimately been copied. Yet
the customers of the CF must feel that their personal
data cannot be copied even in the presence of hardware
faults, software errors, or malicious attacks.

The third premise is that sharing of confidential
information among users of the CF is limited. In MUL-
TICS, for example, whose design facilitates sharing and
whose philosophy encourages it, there is in fact little
interuser sharing [10]. Consequently, users can share
copies of confidential files rather than originals without
unduly loading the resources of the CF. Users can share
originals of nonconfidential files, however.

In the proposed system, the responsibility for safe-
guarding personal data belongs primarily to the owner.
The security of data stored in the CF or transmitted
through the CF does not depend on the security or

477

correctness of the CF or the communication links. The
principal mechanism is a public-key encryption device
and hardware keys. The mechanism allows a user to
protect personal data to the extent that he protects the
hardware unit containing his secret key. The method
differs from those described by Popek and Kline [13]
and Needham and Schroeder [12] in that both of these
approaches rely on the security and correctness of the
network, principally its key management facifities.

The encryption scheme proposed here applies to any
network with one or more central nodes that provide
message processing, software, file storage, or database
facilities. The basic inspiration came not from "personal
computing," but from Tanenbaum's distributed interac-
tive system [18]. Tanenbaum proposed that each user
have his own dedicated LSI microcomputer connected
to a central minicomputer that provides file storage and
software. The central machine sends a copy of a program
to the user's computer for execution. Although Tanen-
baum did not discuss data security, his system's principal
feature--user isolation--is a sound basis for security.
The simple encryption mechanism proposed here could
make his system secure.

Section 2 outlines the mechanism. Section 3 describes
how the mechanism solves three important security prob-
lems: personal security, secure communications and shar-
ing, and secure signatures. Section 4 outlines the require-
ments of the interface with the CF. Finally, Section 5
treats cost and convenience.

2. The Security Mechanism

The security mechanism consists of an encryption
device and hardware keys. The encryption device imple-
ments public-key encryption, a concept introduced by
Diffie and Hellman [1].

2.1 Public-Key Encryption
Under public-key encryption, a plaintext message is

enciphered using a publ ic k e y P and deciphered using a
secret (or private) key S. Let X Y denote the enciphering
or deciphering of message X with key y.1 For a given
plaintext message M, the corresponding ciphertext C is
related to M by the relations

C = M P and P = C s.

To implement digital signatures, we shall further assume
the enciphering algorithm is onto the same message
space and that the keys P and S are commutative;
therefore, for either plaintext or ciphertext message X,

The notation used here follows that of Needham and Schroeder
[12] rather than that of Diffie and Hellman [1], who used "E" and "D"
to denote encryption and decryption transformations, respectively.

Communications August 1979
of Volume 22
the ACM Number 8

(xP) s = (XS) P = X.

Simmons calls this asymmetric encryption because dif-
ferent keys are used at the end of the channel [17].
Specific algorithms are proposed in [1, 8, 9, 14] and
surveyed in [3, 5, 7].

Public-key encryption has the important property
that given a ciphertext C and public-key P, it i.s compu-
tationally infeasible to compute the corresponding plain-
text message M = C s without knowing the secret key S.
Consequently, public keys can be freely distributed with-
out risking the security of enciphered data.

Fig. 1. The encryption mechanism.

public key toggle
"soft" \ F"hard"
public ~ [public

key \ / k e y

l I ico,,on

"hard"
secret
key

_1
line Y--~ CF

2.2 Hardware Keys
Each public-secret key pair is recorded on a pair of

Read Only Memory (ROM) chips. The owner of the
keys is told what sequence is engraved in the memory
chip of the public "P-key" so that he can give it to his
associates or list it with the CF. However, the sequence
engraved in the memory chip of the secret "S-key" can
remain secret, even to the key's owner. Flynn and Cam-
pasano discuss hardware-implemented keys in [2].

The key manufacturer may keep records of keys in
order to handle lost or stolen keys, but these could be
securely stored in a steel vault. The risk associated with
this is no greater than that found in other areas; we do
not worry about lock manufacturers breaking into our
homes or stealing our cars. An alternative would be to
give the user a mechanism for generating a random key
pair on a writeable memory chip and sealing the chip
from further alteration.

2.3 Encryption Device
The encryption device (Figure 1) has separate units

for enciphering and deciphering. The P and S keys plug
into separate sockets in the enciphering and deciphering
units respectively. There is an additional facility for
setting an alternate "soft" public key, ALT-P, and a
toggle switch for selecting between the P and A L T - P
keys. The encryption device and hardware keys could be
built as a single unit. However, it is essential that the
device containing the memory chip for the S-key be
detachable and sufficiently small that the user can pro-
tect it as he would any other key.

Figure 1 shows how the device would be used to
encipher and decipher data transmitted between a user's
personal computer (PC) and the CF. A message X
originating from the user's PC passes through the enci-
phering unit and is enciphered with the P-key (or the
A L T - P key) before it is transmitted to the CF. A message
Y originating from the CF passes through the decipher-
ing unit and is deciphered with the S-key when it is
received. The encryption device is an integral part of the
PC-CF channel; all data transmitted between a PC and
the CF passes through this device. This contrasts with
the suggestion in [14] that the device not be wired in

478

between the PC and the communication channel so that
data can be successively enciphered with two keys in
order to implement digital signatures. We will show
(Section 3.3) that messages can be signed via an addi-
tional data path between the PC and the encryption
device. However, no other communication lines between
the PC and CF are permitted, thus assuring a user that
his confidential data is properly enciphered and deci-
phered.

The purpose of the soft public key (ALT-P) is to
enable a user to transmit messages to the CF and other
users on the network. When the toggle is set to the P-
key, information transmitted from the user's PC cannot
be deciphered by anyone but the user. In order to
transmit messages to the CF or another user, the sender
must assign the receiver's public key P ' to A L T - P and
manually set the toggle to use ALT-P. The assignment
to A L T - P could be done under the control of a program
running on the user's PC. Moreover, i fAL T-P is assigned
the user's public key P, the user need not move the toggle
manually to use his personal public key. However, this
is less secure than enciphering with the hard P-key, as
the user must rely on (possibly borrowed) software to
supply the correct key. There is no need for an " A L T - S "
key since each user has a single secret key for deciphering
information which has been enciphered with his public
key.

2.4 Security of Keys
An important principle of this mechanism is that the

CF keeps no records of secret keys. This is the primary
reason this system uses public-key encryption rather than
single-key encryption. Under single-key encryption, such
as the Data Encryption Standard (DES) [11], the same
secret key is used both for encryption and decryption. If
keys are to be managed by the system, the CF must
maintain and safeguard lists of secret keys. To transmit
ciphertext to a user, the CF must know the user's secret
key; in order that two users may communicate, the CF
must provide a secret communication key. This violates
the premise that the users should not have to rely on the
security mechanisms of the CF. Under single-key en-
cryption, users could exchange communications keys
outside of the system. However, this may not be conven-

Communications August 1979
of Volume 22
the ACM Number 8

Fig. 2. Transmission of plaintext X from central facility to user 's
personal computer.

L-I ,,.._

ient, and the CF still needs a user's secret key in order to
encipher messages sent to him.

Users may reveal their public keys to the CF. Since
all information arriving at a user's PC is automatically
deciphered with the user's S-key, it must previously have
been enciphered with his P-key in order to appear in
plaintext in his PC. If the user reveals his public key to
the CF, the CF can, for example, encipher plaintext
programs requested by him before transmitting them to
his PC. Moreover, the CF can provide directory service
for public keys registered with the CF (see Section 4).

Although the user may optionally give a copy of his
public key to the CF, it is not necessary for him to do so;
he can perform the encryption himself. This works as
follows: The CF transmits plaintext message X, which is
then deciphered upon arrival at the user's PC, giving X s.

The user then routes X s back through his encryption
device to get (x S) e = X (see Figure 2). This requires an
extra data path through the enciphering unit; however,
this data path is also required to implement digital
signatures (see Section 3.3). Alternatively, it might seem
desirable to provide a means whereby plaintext trans-
mitted from the CF could bypass the encryption device.
The problem with this is that the user may have no way
of knowing if confidential data sent from the CF was
properly enciphered before transmission.

3. Applications

3.1 Personal Security
To safeguard personal data, a user sets the toggle

switch of his encryption device to his public P-key. Since
all information transmitted from his PC is automatically
enciphered using his P-key, it is computationally infeas-
ible for anyone to decipher information outside of his
PC without acquiring his secret S-key. But the S-key is
engraved in a memory chip and there is no copy of it in
the CF; thus a perpetrator must steal or duplicate it in
order to decipher the data. 2

2 It may be possible for a perpetrator to rig an encryption device
to record secret keys. If this posed a serious threat, it would be
necessary for a user to safeguard the encryption device he used as well
a s the key. There is some advantage to a single device containing both
the encryption algorithms and the memory chips implementing the
keys.

479

With this mechanism a user can safely store (enci-
phered) confidential documents in the CF. No perpetra-
tor will be able to break into the CF and decipher the
documents.

A user could safely run software supplied by the CF
on his PC without fear of a "trojan horse" theft. If the
program attempted to transmit the user's data back to
the program's owner, the data would be automatically
enciphered with the user's key, thereby rendering it
useless.

A compiler, for example, could not steal proprietary
software under development, nor could an income tax
program steal confidential financial records. The mech-
anism can thus be used to implement confined (or mem-
ory-less) subsystems [6] although it may be possible to
leak information on "covert channels" (e.g. by encoding
it in the rate or quantity of transmitted ciphertext). The
mechanism does not, however, safeguard data supplied
(in plaintext) to programs run at the CF. To safeguard
data in this case requires sophisticated protection mech-
anisms within the CF. For a limited number of applica-
tions, it may be possible to use an encryption algorithm
which allows the programs to operate directly on ci-
phertext [15].

The above approach can be used to implement per-
sonal security in single-key systems as well. A user would
select a secret "personal" key which would be used to
encipher secret documents. Unlike the secret keys used
to communicate with the CF or other users on the
network, this personal key would not be known outside
the user's PC. However, this is slightly less attractive
than the public-key implementation, as it requires the
use of additional secret keys. Under public-key encryp-
tion, a user needs but a single secret key.

3.2 Secure Communication and Sharing
Secure communication is achieved with end-to-end

encryption; that is, the sender enciphers the message
before transmission and the receiver deciphers the mes-
sage upon receipt. Suppose users A and B wish to
communicate securely through the CF. This is easily
done if A and B exchange their public keys PA and PB
respectively. As suggested by Diffie and Hellman [1], A
sends messages enciphered with PB to B; similarly B
sends messages enciphered with PA to A (see Figure 3).

There is clearly no danger of an intruder intercepting
and deciphering messages exchanged this way. To guard
against an intruder recording and later replaying these
messages, a sequence number or time stamp can be
inserted into a message before it is enciphered.

The method also permits sharing of confidential files.
Suppose user A has a confidential file F stored in the CF
and enciphered under PA. TO share F with another user
B, A requests a copy of F from the CF. Since F is
automatically deciphered under SA when it reaches A's
PC, A has only to send it back to the CF enciphered
under PB in order that B, and only B, be able to decipher

Communica t ions August 1979
of Volume 22
the ACM Number 8

Fig. 3. Secure Communicat ion between Two Users A and B.

ALT-P. AL'I'- P

Fig. 4. User A Shares Confidential File F with User B.

ALT-P ~

N;

FeB

FPA_ --D
CF

Fig. 5. Message X Securely Signed by A and Transmit ted to B.

CF

x

it (see Figure 4). (A must also instruct the CF to add this
new version of F to B's file directory.) Should A update
F and wish to share the updated version with B, the
process would be repeated.

The important point is that all confidential informa-
tion traveling through the network or stored in the CF
is enciphered. At no time does the CF have access to
plaintext or to the secret keys required to decipher the
information.

3.3 Secure Signatures
The proposed system can also be used to implement

secure signatures as described in [1, 14]. To send a signed
message X to B, A first operates on X with his secret key
SA before transmitting it, enciphered under B's public
key PB. When B receives the message, it is automatically
deciphered under SB, so that B has only to operate on it
with PA to obtain the original message and know that it
came from A, since only A could have used SA (see
Figure 5).

As outlined above, the method suffers from a prob-
lem pointed out by Saltzer [16]: B has no assurance that
A did not lend or lose his secret key. Indeed, A could
simply pretend to have lost his secret keyT This problem
does not arise with written signatures, since one cannot

480

simply lend the ability to write his own signature. The
problem of A's intentional loan or loss of his secret key
can be solved by requiring that A sign (by hand!) a prior
agreement making him responsible for all use of his key.
Preventing signature misuse due to lost or stolen keys
requires that the loss or theft be reported. On the other
hand, digital signatures have two advantages: They can-
not be forged (without acquiring the secret key), and it
is possible when needed to lend one's key to an associate
or secretary for signing documents and correspondence.

Another potential problem remains. To implement
message-signing, an additional data path is required
from the user's PC, through the deciphering unit, and
back to the user's PC. This path could be a threat.
Imagine, for example, a borrowed program processing
confidential data X on a user's PC. Suppose that this
program operates on X with the user's secret key S and
then transmits the result X s to the CF; this automatically
causes encipherment with the user's public key P as the
message enters the channel. Since (x S) P = X, the confi-
dential data X is sent to the CF in plaintext! To prevent
this "trojan horse" attack, a switch is needed whereby
the user can control the use of the message-signing data
path. This problem is even more difficult to solve in the
implementation suggested by Rivest, Shamir, and Adle-
man [14], which allows the encryption unit to be invoked

Communica t ions August 1979
of Volume 22
the ACM N u m b e r 8

as a "hardware subroutine." Their scheme has the ad-
vantage that a message can easily be transformed under
any sequence of public and/or private keys; it has the
disadvantage that users cannot easily control the trans-
formations performed by programs running on their
PC's.

An additional data path through the enciphering unit
is also required to validate a signature. However this
does not appear to present a security threat, as perform-
ing additional public-key transformations (without cor-
responding secret-key ones) only tends to further scram-
ble a message.

4. Interface with Central Facility

The CF is also equipped with a pair of keys and one
or more encryption devices. In order that the CF may
identify and decipher messages addressed to it, protocols
are needed for communicating with the CF.

For example, messages addressed to the CF could be
prefixed with a fixed-format header identifying the CF,
the sender, and the time of transmission (to guard against
replay). Upon receipt of a message, the CF would at-
tempt to decipher the beginning of the message. If the
message begins with a recognizable header, the CF
would continue deciphering the message; otherwise, the
CF would simply route the message, in ciphertext, as
directed by a previous command. For example, a user A
wishing to store a confidential file at the CF would first
send a request, properly headed and enciphered under
the CF's public key PCF. This would be followed by the
file, enciphered under the user's public key PA.

The CF may provide "directory assistance" for public
keys of its customers. A user may reveal his P-key to the
general public, or he may have an unlisted key that he
personally gives to his associates.

There may be some risk associated with obtaining
keys from the directory [12, 14]. If a user requests the
key of an associate, the directory manager (or an impos-
ter) could accidentally or intentionally supply an incor-
rect key; the user may unknowingly encipher confidential
messages that are decipherable to a perpetrator rather
than his associate! The problem of protecting against
imposters can be solved by requiring a signature from
the directory manager [12, 14]. However this does not
protect against a faulty or untrustworthy directory man-
ager. Both problems can be solved if users exchange
signed "certificates" from the directory manager [4].
When a user registers his public key with the directory
manager, he receives in return a signed certificate con-
taining his public key. After verifying that the certificate
came from the directory manager and contains his cor-
rect public key, he distributes the certificate directly to
his associates. The receiver of a certificate can verify its
authenticity before using the public key contained
therein.

48!

5. Practical Considerations

5.1 Cost
The ultimate utility of the proposal depends on the

encryption speed and storage requirements of public-key
encryption. The efficiency of the encryption algorithm is
critical considering that all data sent to or from a user's
PC must pass through the user's encryption device, and
possibly the CF's as well. The encryption device cannot
be bypassed even for nonconfidential data. For efficient
transmissions, the encryption rate must be at least the
network transmission rate. Hardware implementations
of the (single-key) Data Encryption Standard (DES)
satisfy this requirement. Although many researchers
have been skeptical of the performance of public-key
encryption, Rivest told the author that he estimates that
there will soon be a two- to three-chip implementation
of the prime factor method that runs at 5,000 baud or
better. If this is so, public-key encryption schemes will
soon be competitive with DES.

Low-cost hardware keys and encryption devices are
also vital. Whereas "burning" a key into a ROM chip is
attractive, it may not be economical. LSI is cheap, in
part because identical components are mass produced;
the cost of producing nonidentical components is much
greater. It may be preferable to give users a means of
generating their own keys, which they could record in
an LSI/memory chip or possibly even on a magnetic
stripe card.

5.2 Convenience
An economical encryption scheme must not only be

efficient, it must be easy to use. The proposed scheme
requires only that the user plug his encryption keys into
the encryption device. He can, if he wishes, leave selec-
tion of the public key for enciphering outgoing data up
to (borrowed or purchased) software running on his PC
(via the A L T - P feature). However this does admit im-
portant security problems. For example, programs bor-
rowed from the CF may compromise a user's security by
enciphering confidential data transmitted to the CF (e.g.
for storage) with the wrong public key. The presence of
an additional data path through the deciphering unit (to
implement digital signatures) gives the potential to leak
confidential data in plaintext.

These problems are not unique to this proposal; they
arise in any single-key or public-key system if security
functions are trusted to software. However in this pro-
posal the user has the option of not relying on the CF or
borrowed software to safeguard his personal data.

It is also desirable to permit the option of connecting
to the CF without an encryption device (or even software
implemented encryption algorithms). This presents no
problem in the proposed scheme as long as the CF can
recognize messages addressed to it in either plaintext or
ciphertext. A one-bit flag at the beginning of a message

Communicat ions August 1979
of Volume 22
the A C M N u m b e r 8

could indicate whether or not a message has been enci-
phered~

6. Conclusions

A method for implementing secure personal comput-
ing in a large network has been outlined. The method is
based on the use of a public-key encryption device and
hardware keys. All confidential data is enciphered as it
is transmitted to the central facility or another node on
the network. Because the central facility is not responsi-
ble for enciphering or deciphering a user's confidential
data, it is not given access either to confidential plaintext
or to the secret keys needed to decipher it. A user can
safely store confidential files in the central facility or
transmit confidential data to other users on the network.

Our objective has been to outline a promising ap-
proach to secure personal computing. There are a num-
ber of questions to be addressed. How should the en-
cryption device and hardware keys be built? How should
they interface with a user's personal computer? How
should the mechanism be integrated into the network?
To what extent can borrowed software be used safely? Is
it possible to provide both confinement and digital sig-
natures, or are these objectives conflicting?

11. National Bureau of Standards. Data Encryption Standard. FIPS
PUB 46, Washington, D.C., Jan. 1977.
12. Needham, R., and Schroeder, M. Security and authentication in
large networks of computers. Comm. ACM 21, 12 (Dec. 1978), 993-
999.
13. Popek, G.J., and Kline, C.S. Design issues for secure computer
networks. In Operating Systems, an Advanced Course, R. Bayer, R.M.
Graham, and G. SeegmuUer, Eds., Springer-Verlag, New York, 1978.
14. Rivest, R.L., Shamir, A., and Adleman, L. A method for
obtaining digital signatures and public-key cryptosystems. Comm.
ACM 21, 2 (Feb. 1978), 120-126.
15. Rivest, R.L., Adleman, L., and Dertouzos, M.L. On data banks
and privacy homomorphisms. In Foundations of Secure Computation,
R. DeMillo, D. Dobkin, A. Jones, and R.L. Lipton, Eds., Academic
Press, New York, 1978.
16. Saltzer, J. On digital signatures. Operating Syst. Rev. 12, 2 (April
1978), 12-14.
17. Simmons, G.J. Computational complexity and secure
communications. Comptg. Surveys (to appear).
18. Tanenbaum, A. A distributed interactive computing system.
IR-20, Vrije Universiteit, The Netherlands, June 1977.

Acknowledgments. I am grateful to J.P. Anderson, P.
Denning, R. Stockton Gaines, M. Heltman, L. Hoffman,
D. Parker, R. Rivest, A. Tanenbaum, and the referees
for their comments and suggestions on an earlier version
of this paper.

Received September 1978; revised March 1979

References
1. Diffie, W., and Hellman, M.E. New directions in cryptography.
1EEE Trans. Inform. Theory IT-22, 6 (Nov. 1976), 644-654.
2. Flynn, R., and Campasano, A.S. Data dependent keys for a
selective encryption terminal. Proc. AFIPS 1978 NCC, Vol. 47,
AFIPS Press, Montvale, N.J., pp. 1127-1129.
3. Hellman, M.E. Security in communication networks. Proc.
AFIPS 1978 NCC, Vol. 47, AFIPS Press, Montvale, N.J., pp. 1131-
1134.
4. Konfelder, L.M. A method for certification. Tech. Rep., Lab. for
Comptr. Sci., M.I.T., Cambridge, Mass., May 1978.
5. Konheim, A.G. Cryptographic methods for data protection. Res.
Rep. RC 7026 (#30100), IBM Thomas J. Watson Res. Ctr.,
Yorktown Heights, N.Y., March 1978.
6. Lampson, B.W. A note on the confinement problem. Comm.
ACM 16, 10 (Oct. 1973), 613-615.
7. Lempel, A. Cryptography in transition. Comptg. Surveys (to
appear).
$. Merkle, R.C. Secure communication over an insecure eliannel.
Comm. ACM 21, 4 (April 1978), 294-299.
9. Merkle, R.C., and Hellman, M.E. Hiding information and
signatures in trap door knapsacks. IEEE Trans. Inform. Theory
IT-24, 5 (Sept. 1978), 525-530.

Montgomery, W.A. Measurements of sharing in MULTICS.
Proc. 6th Symp. on Operating Syst. Principles, Spec. issue, Operating
Syst. Rev. (ACM) 11, 5, Nov. 1977, pp. 85-90.

Communications August 1979
of Volume 22
the ACM Number 8

