
Public-key cryptography offers certain 3
advantages, providing the keys can be
adequately protected. For every security
threat there must be an appropriate
countermeasure.

Protecting Public Keys
and Signature Keys
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With conventional one-key cryptography, the sender
and receiver of a message share a secret encryption/
decryption key that allows both parties to encipher (en-
crypt) and decipher (decrypt) secret messages transmitted
between them. By separating the encryption and decryp-
tion keys, public-key (two-key) cryptography has two at-
tractive properties that conventional cryptography lacks:
the ability to transmit messages in secrecy without any

prior exchange of a secret key, and the ability to imple-
ment digital signatures that are legally binding. Public-
key encryption alone, however, does not guarantee either
message secrecy or signatures. Unless the keys are ade-
quately protected, a penetrator may be able to read en-

crypted messages or forge signatures.
This article discusses the problem of protecting keys in

a nationwide network using public-key cryptography for
secrecy and digital signatures. Particular attention is
given to detecting and recovering from key compromises,
especially when a high level of security is required.

Public-key cryptosystems

The concept of public-key cryptography was intro-
duced by Diffie and Hellman in 1976.1 The basic idea is
that each user A has a public key EA, which is registered
in a public directory, and a private key DA, which is
known only to the user. EA is the key to a public en-

ciphering transformation, which is also written as EA.
DA is the key to a private deciphering transformation
DA, which is related to EA but cannot be computational-
ly determined from EA. We assume the public-key
system is unbreakable; in particular, a cryptanalyst can-

not determine a secret key from intercepted ciphertext
even when the corresponding plaintext is known to or

chosen by the cryptanalyst.

Consider an application environment in which each
user has an intelligent terminal or personal workstation
where his private key is stored and all cryptographic
operations are performed. This terminal is connected to
a nationwide network through a shared host, as shown in
Figure 1. The public-key directory is managed by a net-
work key server. Users communicate with each other or

Figure 1. Network with key server.
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with the server through electronic mail. When a user A
needs the public key for another user B, A sends a
message to the server requesting EB. A can then keep a
record of EB for future use.
We assume the key server is trustworthy and returns

correct and current public keys. We do not, however,
make any assumptions about the security of the network
or the hosts on the network. The system may be vulner-
able to wiretapping along the communication channels,
or possible subversion of operating system or network
software on some host (e.g., through "Trojan horse" at-
tacks). Although little can be done to prevent wiretap-
ping, much can be done to strengthen the security of the
hosts.2 Many of the threats to be described will not affect
properly secured systems.
The public-key system is used for sending secret

messages, signing plaintext (cleartext) messages, and
sending signed secret messages.

Secret messages. To send a secret message M to a user
B, user A obtains B's public key EB, encrypts the
plaintext message M as C: = EB(M), and transmits the
ciphertext Cto B. (IfMexceeds the block size for EB, it is
broken into blocks and each block is encrypted separate-
ly.) B's private transformation DB is the inverse ofEB, so
that B can decipher Cand obtainMby computing DB (C)
= M(see Figure 2). If the cryptosystem is secure, secrecy
is possible under the following two conditions:

(1) No other user knows DB.
(2) There is enough uncertainty aboutM (i.e., Mhas

enough entropy). The encryption key EB is public, so if
only a few likely candidates Ml, . . . M,, exist for M,
thenMcan be found by enciphering these candidates un-

Figure 2. Using a public-key system for message secrecy.

Figure 3. Using a single-key system for message secrecy and a public-
key system for key exchange.

til an ME is found that enciphers to the same C; that is,
EB(M,)=C, wherefore M=Mi. (Simmons and Hold-
ridge show how this might be done with voice encryp-
cryption.3) One-key systems are not vulnerable to such
exhaustive searches forMbecause the encryption key is
secret.

With encryption alone, B cannot be sure the received
message is the one sent from A, because an active
wiretapper could obtain EB and alter A's message. He
might even impersonate A. To give B this assurance, the
message must be signed by A.

Signed messages. To send a signed message M to B,
user A applies the private transformation DA to M. Ig-
noring the issue of secrecy for the moment, A computes
and transmits to B the digital signature X: = DA(M). A's
public transformation EA is the inverse of DA, so that B
(or a judge) can validate A's signature on an alleged
message M by checking whether EA(X)= M. X serves as
A's signature onM only if:

(1) No other user knows DA and hence cannot com-
pute DA(M) for a messageM of the user's choice.

(2) Legitimate messages have enough redundant in-
formation to be easily distinguished from forgeries by the
receiver and by the judge. This condition is necessary be-
cause EA is public; thus, any user could claim an ar-
bitrary Xto be the signature for a message M computed
by M:= EA(X), since this implies X = DA(M). But a
message Mcomputed in this manner will be meaningless
and appear random. If legitimate messages are required
to be meaningful English-language text or to have some
other redundant information such as a time stamp, for-
geries are easily detected.

(3) Given the signature X, the odds of finding another
meaningful message M' with signature X, using avail-
able computing resources, are negligible.

Note that secrecy is not achieved with a digital signature
alone, because any user can obtain EA and compute M.
We will consider the problem of transmitting a signed
message in secrecy shortly and at that time look at an im-
proved method for signing messages.

Secrecy requires that an enciphering transformation
EA operate on plaintext and that the corresponding
deciphering transformation DA invert EA. Signatures,
on the other hand, require that a deciphering or digital
signature transformation DA operate on plaintext and
that the enciphering transformation EA invert DA. The
only known public-key cryptosystem meeting both of
these requirements is the Rivest-Shamir-Adleman, or
RSA, scheme,4 which is based on the difficulty of factor-
ing. For user A, the public enciphering transformation
EA is given by

EA(M) = MVA mod nA,

and the private deciphering transformation DA by

DA(C) = C!A mod nA,

where the modulus nA is the product of two large secret
primes PA and qA, and exponents eA and dA are mu-
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tual multiplicative inverses modulo the product
(PA - 1)(qA - 1). (This product is the Euler totient func-
tion of nA.) The secret exponent dA cannot be obtained
from the public exponent eA without knowing the factors
PA and qA of nA. Recently, Davida5 has shown that the
RSA scheme has a potential weakness that might allow a
cryptanalyst to obtain the plaintext corresponding to in-
tercepted ciphertext or to obtain signatures on hidden
messages. The protocol to be described shortly over-
comes this weakness.
The other known public-key cryptosystems can be

used for either secrecy or signatures, but not both. These
include the Merkle-Hellman6 and Graham-Shamir7'8
trapdoor knapsack schemes, Shamir's signature-only
knapsack scheme,9 McEliece's error-correcting code
scheme,10 and Janardan's matrix cover scheme.11 Re-
cently, Shamir has published a polynomial time algo-
rithm for breaking the Merkle-Hellman scheme, 12 raising
serious doubts about any knapsack-based or related
scheme, including the matrix cover scheme. Moreover,
since these systems are incapable of providing both
secrecy and signatures,13 we will assume that the public-
key system is the RSA system.
We could use separate cryptosystems for secrecy and

signatures, in which case each user would have a pair of
transformations, one for receiving secret messages and
one for sending signed messages. The procedures de-
scribed in this article are easily modified to accommodate
this.
We can also use a one-key system such as the Data En-

cryption Standard14 for message secrecy and reserve the
public-key system for signatures and key exchange. To
use a one-key system for message secrecy, the sender A
picks a keyK to a pair of invertible transformations, EK
for enciphering and DK for deciphering. The key K is
then transmitted to the receiver B in secrecy by encrypt-
ing it under B's public key; that is, A computes and
transmits EB(K) to B. A then enciphers Musing EK,
and B deciphers the received ciphertext using DK (see
Figure 3). Similarly, B can encipher a reply using EK,
which A can decipher using DK. The advantage of this
approach over the public-key cryptosystem for message
secrecy is primarily speed. The encryption/decryption
rate of the RSA scheme, for example, is several orders of
magnitude slower than that of the DES. Note, however,
that a one-key system cannot by itself provide signatures,
because the receiver of a message, knowing the encryp-
tion key, could forge the message. But it does provide
message authenticity in that the receiver can be sure the
message sent fromA has not been altered. In this sense, it
provides a greater level of protection than using a public-
key system for message secrecy only.

Signed secret messages. There are two approaches to
sending a signed secret messageM fromA to B. The first
composes the secrecy and signature transformations,
while the second keeps the transformations separate.

Composed secrecy and signature functions. With this
approach, A first encrypts M using B's public key and
then signs the result, getting Y := DA(EB(M)). B
recovers M by first applying A's public key EA to Y and

then applying DB to the result. This approach can also be
employed when a one-key system is used for message
secrecy. Here, A encrypts Munder a keyK shared with B
and then signs the result, getting Y := DA(EK(M)).
(Note that if a dispute arises, B must reveal K to a judge
to prove that applying EA and then DK to Y yields the
alleged message M.)
With either type of cryptosystem, this approach is sim-

ple though somewhat inconvenient; B must remove the
signature transformation to access M. If the signature
must be retained by B over an extended period to settle
possible disputes, B can speed up processing by also stor-
ing the unsigned message EB(M) (or just Mif encryption
is not needed for secure storage). This approximately
doubles the storage requirements for the message,
however.

Separate secrecy and signature functions. This ap-
proach keeps the secrecy and signature transformations
separate and uses another strategy that conceals the
message M in the signature but has minimal storage re-
quirements, namely one block of output from DA.
Davies and Price15 show how this can be done by com-
puting a "digest" or "checksum" of M, which we de-
note by M. A picks a random initialization seed I and
first computes the digest M :=h(M,I), where h is a
publicly available hashing function, described shortly. A
then signs the digest M together with I as X:=DA (M,
I), and transmits the signature X to B. (If the pair
(M,I) is shorter than the block size used by DA, it is
replicated as many times as necessary to fill the block; the
extra bits are discarded by B after computing EA (X). )
In addition, A computes and transmits to B the encryp-
ted message C:=EB (M) (or EK(M) if a one-key system
is used for secrecy). After recovering M, B (or a judge)
validates A's signatureXby computing EA (X) = (M,l)
and checking that thisM is the same as that obtained by
computing h (M,I) using the alleged message M.

Figure 4 illustrates the procedure for sending a signed
secret message using the public-key system for message
secrecy. If a single-key system is used for secrecy, then
the secrecy channel would be that shown in Figure 3. If
secrecy is not needed or is undesirable, the secrecy chan-
nel can be omitted entirely andMcan be transmitted in
the clear.

Figure 4. Sending a signed secret message from A to B.
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The hashing function. The hashing function h must
satisfy two properties. First, to ensure the secrecy of M,
h must be a one-way function of M. Otherwise, the con-
tents ofM could be determined by an eavesdropper, who
could obtairn EA, compute EA (X) = (M,I), and finally
compute h- i (M,I) =M. Second, to prevent forgeries, it
must not be possible to find another message with the
same digest M for the same seed I.

Finding such a function h that satisfies both properties
is tricky because of the need to make h public. Davies and
Price show that many techniques that are secure when h
is secret are vulnerable to attack when h is public. They
suggest a possible hashing function h that uses the DES
(or some other block encryption algorithm) as follows:
First, a random 64-bit seed I is picked; next,
M is blocked into 56-bit blocks M1, . . . Mt; finally,
h (M, I) is computed using each message block as a key
to the DES:

M= h (M, I) = EMt o . . . ° EM1 o EMt o o. . ° EM1 (I)

where EM, denotes the DES keyed to message block Mi,
and "o" denotes functional composition. (The message
is used twice to prevent a "meet-in-the-middle" forgery;
this can also be achieved with a one-pass scheme.16)

This method of signing a message M has four ad-
vantages over the standard technique of computing
DA (EB(M) ) (or just DA (M) if secrecy is not needed).

(1) It separates the signature transformation from the
secrecy transformation, allowing secrecy to be imple-
mented with a one-key system or to be skipped. 15 At the
same time, it conceals messages so that signatures can be
publicly disclosed without revealing their corresponding
messages. This will be important later in the discussion of
why signatures should be recorded in a public log.

(2) It reduces the need for adding redundancy to
messages to prevent forgeries, because it is difficult to
find even a random message that hashes to any given
digest M starting with the same seed I.

(3) It reduces the storage requirements for signatures
to a single block; thus, retaining signatures in a public log
need not require much space.

(4) It seems to overcome the potential weakness
Davida discovered in the RSA system,16 because the
hashing function is one-way and destroys the multiplica-
tive structure of messages.

Security threats and countermeasures

The preceding schemes for secrecy and signatures can-
not guarantee security if public keys can be faked or
private keys compromised. This is true regardless of
whether the keys are used for secrecy or signatures.

Fake public keys. Suppose that a user B requests A's
public key from the key server but a penetrator Z in-
tercepts and modifies the server's response to contain Ez
instead of EA. This might be done by active wiretapping
or by penetrating B's host. If EA is requested to transmit
a secret message M to A, then B will inadvertently form

the ciphertext Ez(M) and transmit this to A; Z then in-
tercepts the ciphertext and deciphers the message. If A
receives an indecipherable message, A will detect that
something is wrong and notify B; even so, Z may have
already acquired valuable information from B. To pro-
tect against this threat, A and B could agree on a hand-
shake procedure'7 whereby the key is tested before
valuable information is transmitted. This can introduce
long delays into the protocol, however, ifA is not logged
in when B sends the request for a handshake.
Now, if EA is requested to validate A's signature on a

message M received from A, then B will unwittingly ac-
cept Z's signature instead. Even though the signature
would not be legally binding, B may feel satisfied that it
belongs to A and accept the message.

In both the secrecy and signature cases, Z has acquired
some of A's capabilities. In the former case, these
capabilities allow Z to receive secret messages intended
for A; in the latter case, they allow Z to create documents
that appear to have been signed by A. If the system is suf-
ficiently insecure that Z can prevent messages from
reaching A and create messages appearing to have orig-
inated with A, then Z may be able to masquerade as A.
This scenario is not as farfetched as it might seem. If B's
host is insecure, it may be simple to modify the headers
of messages to reroute them or to change their source.
There are two techniques for protecting against fake

public keys: mass distribution and certificates. Mass
distribution simply recognizes that because the keys are
public, the complete directory can be regularly distrib-
uted (e.g., weekly or monthly) as hard copy through a
public newsletter or a widely distributed newspaper such
as the New York Times. Updates to the public-key direc-
tory could be distributed on a cumulative basis.

Public-key certificates. This technique, suggested by
Kohnfelder,18 is for the key server to distribute public
keys inside signed certificates. The public-key certificate
for user A contains a time stamp T, A 's unique identifier
(which for simplicity can be written as A), and A's public
key EA, all signed with the server's private key DS:

P:= DS(TA,LEA).

The receiver of certificate P applies the server's public
key Es to P, obtaining T,A, and EA. Note that the server
does not hash the message (T,A,EA) before signing. This
raises some question about whether a penetrator might
be able to forge the server's signature using the method
discovered by Davida. This seems very unlikely, how-
ever, if the only messages signed by the server are time-
stamped certificates that it has constructed.
The time stamp Tis used for validating the currency of

the certificate. Without the time stamp, a user might ac-
cept the replay of an old certificate containing the public
key EA for a private key DA that has been compro-
mised. 19 If the user then enciphers secret messages under
EA, the compromiser could read those messages. (Kohn-
felder's proposal did not include time stamps.) Note that
off-line publication of public keys in a newspaper auto-
matically time stamps all keys.
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Whereas mass distribution of public keys allows off-
line validation of keys, public-key certificates allow on-
line validation. Both techniques can be used for added
security. Even if certificates alone are used for user keys,
the server's public key Es should be publicly broadcast to
all users and retained at the users' workstations. Other-
wise, if an intruder Z can trick a user into accepting Ez
as the server's key, then Z can send fake public-key cer-
tificates to the user.

Compromise of users' private keys. Suppose that a
penetrator Z has acquired A's private key DA. The
method by which DA may have been acquired-by
breaking into A's terminal, by sloppy handling proced-
ures for keys, or by cryptanalysis, for instance-does not
concern us here. Even if this is unlikely, any practical
system must be capable of recovering from such com-
promises.
Now, if the corresponding public key EA is used by

others to send secret messages to A, then through passive
wiretapping Z can intercept and decipher these messages
without detection. IfDA is used byA to sign messages, Z
can forge A's signature on other messages. Once again Z
has acquired some of A's capabilities; in the first case
they allow Z to receive secret messages intended for A,
and in the second case they allow Z to create documents
allegedly signed by A.
Note the parallel between this problem and the prob-

lem of fake public keys. If Z can fake EA or compromise
DA, then Z may be able to read secret messages intended
forA or create documents allegedly signed byA. There is
an additional problem with private keys that does not
arise with public keys: IfA can deliberately compromise
DA, then A has a case for disavowing previously signed
messages.20
To protect against compromises (including deliberate

disclosures) of private keys, compromises must be re-
ported to the key server and new public keys registered.
If this is done, public-key certificates and mass distribu-
tion of public keys protect messages encrypted for secre-
cy; any user obtaining a public key EA is assured that the
corresponding key DA is still valid, and therefore a secret
message M encrypted under EA will not be disclosed.
They do not, however, protect signatures.
To protect signatures we need a mechanism whereby a

signature can be validated even after the signature key
has been compromised. This requires binding the signa-
ture to the public key that was valid at the time the
message was signed. This can be done with a signature
certificate, which is like a public-key certificate with a
signature inside.

Signature certificates. Let X = DA (,I) be the
signature computed by user A for message M, where M
= h (M,I) is the digest of M as described earlier and
shown in Figure 4. The signature certificate for Xis given
by

G:= DS(T,A,EA,X) .

The receiver of the certificate G obtains T, A, EA, andX
by computing ES(G) and checks that the time stamp is
current.

The time stamp in the signature certificate is essential
to determine whether a message was signed before the
signature key was compromised. This time stamp must
be affixed by the key server. IfA affixed the time stamp,
A could intentionally affix an incorrect time. Moreover,
if A's key is compromised, someone else could forge a
message and affix a time when the key was valid. Instead,
the key server affixes the time stamp to the signed
message and signs the result,21 thereby playing the role of
a "notary public."22
The key server is not given access to A's private keyDA

or any of the secret messages signed by A, and as noted
earlier, the hashing function is one-way so that Mcannot
be determined from the digest M. Thus, the server can-
not disclose secret information or forge A's signature on
a message but simply appends T, A, and EA to whatever
information is sent byA. The receiver of the certificate is
responsible for validating A's signature. Note also that
the signature certificate must be retained to resolve any
disputes that may arise later.

Sending a signed secret message with certificates.
Figure 5 gives a high-level protocol using public-key and
signature certificates whereby user A can send a signed
secret message to user B. The protocol is illustrated in
Figure 6.

Compromise of server's private key. There is a poten-
tially serious security problem with certificates if the
server's signature key DS is ever compromised. The com-
promiser, say Z, can then forge public-key certificates.
The problem becomes extremely serious if Z knows a
past (or present) signature keyDA belonging to some user
A, because Z can then forge signature certificates as well.
In particular, Z can take any message M, use DA to com-
pute the signature X, and then use Ds to create a valid

Figure 5. Protocol for sending a signed secret message M from A to B.
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signature certificate with time T when DA was valid. In
short, if Z has compromised both Ds and DA for some
user A, then Z can create messages that are legally bind-
ing to A. Moreover, Z can continue to do this even after
the server's key has been changed.
Even if the probability of compromise is small, the

consequences are so severe that if digital signatures are to
be used at all, some mechanism for detecting and
recovering from compromises should be installed.

An on-line certificate log

One method for protecting against forgeries and com-
promises of all keys, including the server's, is for the key
server to keep a log or audit trail of the following events:

(1) Registration of public key, noted by entry of
public-key certificate in the log.

(2) Registration of signature, noted by entry of
signature certificate in the log. (Signatures are not
legally binding unless they are logged.)

(3) Notification of key compromise.

The log is stored sequentially on a write-once device
such as an optical disk so that records in the log cannot be
altered and new records cannot be inserted in the middle.
Extra copies of the log can be kept in physically separate
locations to protect against destruction or loss. All infor-
mation placed in the log is time-stamped by the server,
and entries are in ascending order by time.

Only the server should be capable of writing into the
log. This will be achieved if the server is physically
isolated so that no process on the network can access the
log without going through the server. It might also be
achieved if the server and log are logically isolated in a
separate virtual machine on a secure host.
None of the information in the log is secret, and any-

one should be allowed to read it. The log is not en-
crypted. This prevents loss of the log in case the server's
key is destroyed, allows a third party to audit the server
or settle a dispute, and provides a recovery mechanism in
case the server is subverted.

Recording events in the log. Every event in the log can
be recorded both with and without the server's signature,
with the unsigned portion to be used for retrieval of
public keys and signatures.

Figure 6. Sending a signed secret message with certificates.
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Public-kev registration. At any given time, each user
has at most one valid public key, used for both secrecv
and signatures; the procedure is easily modified to allow
for separate key pairs. To change keys, the user simpiN
registers a newv public key. (If the reason for the key
change is compromise of the previous key, this event is
recorded first.) The same procedure is followed with the
key server. The correct public key of a user A is thus
giEen by the most recent public-key certificate P =
D( T,A,E1 ) in the log (as long as this record is not fol-
lowed bv a "compromise" message for E-). The log is
initialized with a record containing the server's public
kev.
When A registers E4, a copy of the public-key cer-

tificate P containing E., is returned to A. A can check the
validitv of P using the ser- er's public key. If another user
B wishes E-, then B can obtain P directlx from A. Alter-
natively, B can request a current certificate from the
server, in which case the server sends B a certificate for
E'. with the current time. This certificate is not logged.

Signature registration. Signature certificates are auto-
matically appended to the log when they are requested.
In particular, when the server computes a signature cer-
tificate G . = DS ( T,A,E4,X) for a signature X of A (as
in step 2 of the protocol in Figure 5), the server appends
G to the log.

ANotification ofkey compromise. If A 's private key D.,
is compromised. A signs the message M= "compro-
mise" in the usual way (i.e., by' hashing Mand then ap-

Table 1.
Sample log.

EVENT
REGISTER KEY FOR S

REGISTER KEY FOR A

REGISTER KEY FOR B

REGISTER SIGNA-
TURE FOR A

REGISTER COMPRO-
MISE FOR A

REGISTER KEY FOR A

CERTIFICATE LOGGED
(82:10:20:19:37:26. S. ES)

DS(8210f21 14-25(05 A, EA)

DS(82 10:21:15:36:52 B. EB)

DS(82: 1115:17:02:41. A. EA. X1)

DS(82 11:16:10:19:20. A. EA. XCOMP)

DS(1822 11:16: 10:20:47. A. E4 )

plying D). With XCOMP denoting the signature, M
and XCOMP are transmitted to the server, which ap-
pends the record Ds( T,A,E.4,XCOMP) to the log. The
purpose of this record is to limit A's liability on messages
signed with D., just before its compromise was detected
and a new public key established. If a dispute arises over
a signature X with certificate Ds( T1,A,E1,,X), and the
log contains a subsequent "compromise" record for EA
with time stamp T. falling within some specified time in-
terval dT from T1, then A wins the case.

If the server's key is compromised, this event is also
recorded in the log. Although this may not present false
information from being appended to the log between the
time of compromise and the time of detection (if the
compromiser can obtain access to the log, which may not
be possible), it limits the time stamps that can be placed
in those entries to that time period. In particular, it will
not be possible to forge a signature certificate for a
previously compromised key D,-, with a time stamp T
when DA was salid.

Table I shows a sample log recording keys for S, A,
and B; sipnatures for A; and compromise of A's key. For
clarity, time stamps are written in the form year:month:
day:hour:minute:second. Note that compromise of A's
key was reported the dav after the signature X was
registered. If dTexceeds one day, then A has a case for
disavowing X.

Authentication. Registration of public keys and
signatures raises an important security question: How
can the server be sure of anv user's identity? If the users'
hosts are secure and securelN linked to the server, then
the server can relv on information provided by the hosts
(as long as users are reliably authenticated by the hosts).
But if the hosts are insecure, the serser cannot rely on any
information they transmit. Although information trans-
mitted from a user's terminal can be encrvpted with the
server's key, authenticating the identity of the user at
that terminal is difficult, especiallv if keys (or passwords)
have been compromised. How-ever, masqueraders can be
detected if public keys and signatures placed in the log
are publiclN broadcast.

Key compromises. The log does not eliminate the
problems that arise from key compromises, but it does
confine them substantially. More important, it allows for
their detection. The following discussion of cases in
which a penetrator compromises a user's key, the
server's key, or both is summarized in Table 2.

Table 2.
What a penetrator can do with successful compromise of private keys.

PRIVATE KEYS COMPROMISED

NONE A KEY SERVER S KEY
SEND FAKE READ As MAIL N/A
PUBLIC KEYS FORGE A SIGNATURE

FORGE PUBLIC-
KEY CERTIFICATE

FORGE A'S SIGNATURE
& SIGNATURE CERTIFICATE

February 1983

COUNTER-
MEASURE
NOTH ING

CERTIF ICATES
WITHOUT LOG

CERTI F CABES
2VITH LOG

READ A S MAIL

BOTH KEYS
N/A

READ A'S MAIL
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User's key only. Suppose that Z has compromised A's
current private key DA but A has not yet detected the
compromise. Then Z can forge A's signature on any
message M. For such a signature to be legally binding,
however, Z must get a signature certificate from the key
server. As long as Z can successfully masquerade as A to
the server, the signature certificate will be recorded in the
log. If the server notifies users when records are logged
on their behalf (as mail programs notify users of incom-
ing mail), or if the server publicly broadcasts new entries
in the log, then A can detect the misuse ofDA, report the
compromise, and register a new key. Of course, Z could
also report the compromise ofDA and attempt to install a
new key for A that would be unknown to A, but this is
detectable as well.

Server's key. Suppose that Z has compromised the
server's private key Ds but the server has not yet detected
the compromise. Then Z can create fake public-key cer-
tificates. But unless Z can write into the log, the public
keys in these certificates will not be properly registered.
In the unlikely event that Z is able to write into the log,
the server can detect the fake certificates by comparing
the last record in the log with the last one it has written.
The server can then enter a "compromise" record into
the log, install and broadcast a new public key, and
notify the users identified in the certificates.

Server's and user's keys. If Z has also compromised
the private key DA of a user A, then Z can forge A's
signature on arbitrary messages and subsequently forge
the server's signature on a signature certificate. Again,
however, for such a certificate to be valid, it must be
written into the log, which makes the compromise detec-
table. Note also that once A changes DA and EA, Z can-
not forge DA on a message even by time-stamping the

message with a time Twhen both DA and Ds were valid,
because Z would have to insert the certificate into the log
in its proper time sequence, which is physically impossible.
We might imagine a worst-case scenario in which a

penetrator subverts the key server. Even then the possible
damage is confined because the penetrator will not be
able to create legally binding certificates with past time
stamps.

Conclusions

It would be unwise to use a public-key cryptosystem
for secrecy and legally binding signatures without install-
ing mechanisms for detecting and recovering from key
compromises. An on-line log provides such a mechan-
ism. Although the log does not prevent forgeries of
messages or certificates, it does permit their detection
and confine the damage. Security can be further en-
hanced by off-line publication of public keys and
signatures.

Keeping the log of signature certificates has other ad-
vantages as well. If a user loses a signature certificate, it
can be recovered from the log. The log also provides a
convenient mechanism for handling contracts signed by
more than one user. If a contract Mrequires n signatures
from users Al, . . ., A,, the contract becomes legally
binding only after all n users have registered signatures
on Min the log. To prevent some user from withholding
a signature for an indefinite period after the others have
signed, we can require that all signature certificates in the
log have time stamps falling within a predetermined in-
terval. (Contracts can also be signed without recourse to
a key server.23,24)
The key server is a potential bottleneck in the network

if there are many requests for public keys or the creation
of new certificates. This problem can be partially miti-
gated by regularly downloading all or part of the public-
key directory to the users' workstations (or host systems,
if secure).25 The problem can also be alleviated by
distributing the server over the network so that all re-
quests are not addressed to the same site. Each server
component might keep a complete list of all public keys
but not necessarily a complete log of all certificates. En-
cryption can be used to securely connect the components
of the server. Distributing the server has the additional
benefit of providing redundancy in case of failure.

Keeping a log or audit trail should be an important
part of any security program. Many systems already keep
a log to detect unauthorized activity on the system, and
its existence alone can be a powerful deterrent to a
would-be penetrator. High-capacity write-once devices
such as optical disks are ideally suited for security
logs because the information they contain cannot be
altered. O
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